Abstract
The parallel rise in the prevalence of obesity and T2DM is a global health challenge. One of the pathogenesis involved in development and progression of type-2 diabetes mellitus is beta cell dysfunction. Until now, diabetes treatments could not restore the reduced function of pancreatic β cell, necessitating the need for advanced treatment options. This led to discovery of incretin hormones in the small intestine, which stimulates insulin secretion in response to glucose. Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are two such incretin hormones, secreted by the small intestine in response to food ingestion. Important physiological effects of GLP-1 include enhancement of the insulinotropic response of beta cells to intake of nutrients, reduced gastrointestinal secretion and motility, as well as induction of satiety and ensuing reduction of food intake.
Recent evidence suggests that in addition to its established glucose-lowering actions, GLP-1 RAs may also exert several beneficial actions extending beyond glycemic control. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to lack therapeutic potential.
This is a narrative review examining some of the ‘beyond-glycemic” benefits of incretin hormones, focusing predominantly on GLP-1 RAs including blood pressure lowering, improvements in the lipid profile, improvements in myocardial and endothelial function. We explore how those effects may help reduce the cardiovascular burden in patients with diabetes. The aim is to encourage use of GLP-1 RA early in patients with established CVD risk factors to prevent CVD related complications and mortality.
Keywords: glucagon-like peptide-1 receptor agonist, cardiovascular diseases, major adverse cardiovascular events, type 2 diabetes mellitus, obesity, GIP receptor.
References
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014 Jan;37 Suppl 1:S81-90. doi: 10.2337/dc14-S081. PMID: 24357215.
- Sheldon TA, Wright J. Twin epidemics of covid-19 and non-communicable disease. BMJ. 2020 Jun 30;369:m2618. doi: 10.1136/bmj.m2618. PMID: 32605906.
- Chobot A, Górowska-Kowolik K, Sokołowska M, Jarosz-Chobot P. Obesity and diabetes-Not only a simple link between two epidemics. Diabetes Metab Res Rev. 2018 Oct;34(7):e3042. doi: 10.1002/dmrr.3042. Epub 2018 Jul 17. PMID: 29931823; PMCID: PMC6220876.
- Drucker DJ, Holst JJ. The expanding incretin universe: from basic biology to clinical translation. Diabetologia. 2023 Oct;66(10):1765-1779. doi: 10.1007/s00125-023-05906-7. Epub 2023 Mar 28. PMID: 36976349.
- Zhao X, Wang M, Wen Z, et al. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front Endocrinol (Lausanne). 2021;12:721135. Published 2021 Aug 23. doi:10.3389/fendo.2021.721135
- Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group [published correction appears in Lancet 1999 Aug 14;354(9178):602]. Lancet. 1998;352(9131):837-853.
- Brubaker PL, Drucker DJ. Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology. 2004;145(6):2653-2659. doi:10.1210/en.2004-0015
- Wang Z, Wang RM, Owji AA, Smith DM, Ghatei MA, Bloom SR. Glucagon-like peptide-1 is a physiological incretin in rat. J Clin Invest. 1995;95(1):417-421. doi:10.1172/JCI117671
- Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol. 2016;4(6):525-536. doi:10.1016/S2213-8587(15)00482-9
- Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab. 2004;287(2):E199-E206. doi:10.1152/ajpendo.00545.2003
- Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88. Published 2009 Mar 25. doi:10.1186/1471-2458-9-88
- Drucker DJ. The Cardiovascular Biology of Glucagon-like Peptide-1. Cell Metab. 2016;24(1):15-30. doi:10.1016/j.cmet.2016.06.009
- Davies MJ, Bergenstal R, Bode B, et al. Efficacy of Liraglutide for Weight Loss Among Patients With Type 2 Diabetes: The SCALE Diabetes Randomized Clinical Trial [published correction appears in JAMA. 2016 Jan 5;315(1):90. doi: 10.1001/jama.2015.17311]. JAMA. 2015;314(7):687-699. doi:10.1001/jama.2015.9676
- Rubino D, Abrahamsson N, Davies M, et al. Effect of Continued Weekly Subcutaneous Semaglutide vs Placebo on Weight Loss Maintenance in Adults With Overweight or Obesity: The STEP 4 Randomized Clinical Trial. JAMA. 2021;325(14):1414-1425. doi:10.1001/jama.2021.3224
- Frías JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N Engl J Med. 2021;385(6):503-515. doi:10.1056/NEJMoa2107519
- Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979;241(19):2035-2038. doi:10.1001/jama.241.19.2035.
- Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229-234. doi:10.1056/NEJM199807233390404
- Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-2128. doi:10.1056/NEJMoa1504720
- Drucker DJ. The cardiovascular biology of glucagon-like peptide-1. Cell Metab (2016) 24(1):15–30. doi: 10.1016/j.cmet.2016.06.009
- Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311-322. doi:10.1056/NEJMoa1603827
- Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394(10193):121-130. doi:10.1016/S0140-6736(19)31149-3
- Mellbin LG, Bhatt DL, David JP, et al. Semaglutide and cardiovascular outcomes by baseline HbA1c in diabetes: the SUSTAIN 6 and PIONEER 6 trials. Eur Heart J. 2024;45(15):1371-1374. doi:10.1093/eurheartj/ehae028
- Sattar N, Lee MMY, Kristensen SL, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021;9(10):653-662. doi:10.1016/S2213-8587(21)00203-5
- Hankosky ER, Wang H, Neff LM, et al. Tirzepatide reduces the predicted risk of atherosclerotic cardiovascular disease and improves cardiometabolic risk factors in adults with obesity or overweight: SURMOUNT-1 post hoc analysis. Diabetes Obes Metab. 2024;26(1):319-328. doi:10.1111/dom.15318
- Kaneko S. Tirzepatide: A Novel, Once-weekly Dual GIP and GLP-1 Receptor Agonist for the Treatment of Type 2 Diabetes. touchREV Endocrinol. 2022;18(1):10-19. doi:10.17925/EE.2022.18.1.10
- Neves JS, Vasques-Nóvoa F, Borges-Canha M, et al. Risk of adverse events with liraglutide in heart failure with reduced ejection fraction: A post hoc analysis of the FIGHT trial. Diabetes Obes Metab. 2023;25(1):189-197. doi:10.1111/dom.14862
- Nicholls SJ, Bhatt DL, Buse JB, et al. Comparison of tirzepatide and dulaglutide on major adverse cardiovascular events in participants with type 2 diabetes and atherosclerotic cardiovascular disease: SURPASS-CVOT design and baseline characteristics. Am Heart J. 2024;267:1-11. doi:10.1016/j.ahj.2023.09.007
- Rolek B, Haber M, Gajewska M, Rogula S, Pietrasik A, Gąsecka A. SGLT2 Inhibitors vs. GLP-1 Agonists to Treat the Heart, the Kidneys and the Brain. J Cardiovasc Dev Dis. 2023;10(8):322. Published 2023 Jul 30. doi:10.3390/jcdd10080322
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388-1402. doi:10.1016/j.jhep.2015.11.004
- Petit JM, Vergès B. GLP-1 receptor agonists in NAFLD. Diabetes Metab. 2017;43 Suppl 1:2S28-2S33. doi:10.1016/S1262-3636(17)30070-8
- Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387(10019):679-690. doi:10.1016/S0140-6736(15)00803-X
- Newsome PN, Buchholtz K, Cusi K, et al. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N Engl J Med. 2021;384(12):1113-1124. doi:10.1056/NEJMoa2028395
- Targher G. Tirzepatide adds hepatoprotection to its armoury. Lancet Diabetes Endocrinol. 2022;10(6):374-375. doi:10.1016/S2213-8587(22)00074-2
- Loomba R, Hartman ML, Lawitz EJ, et al. Tirzepatide for Metabolic Dysfunction-Associated Steatohepatitis with Liver Fibrosis. N Engl J Med. 2024;391(4):299-310. doi:10.1056/NEJMoa2401943
- Rahimi K, Bidel Z, Nazarzadeh M, et al. Blood Pressure Lowering Treatment Trialists' Collaboration. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis [published correction appears in Lancet. 2021 May 22;397(10288):1884. doi: 10.1016/S0140-6736(21)01069-2]. Lancet. 2021;397(10285):1625-1636. doi:10.1016/S0140-6736(21)00590-0
- Goud A, Zhong J, Peters M, Brook RD, Rajagopalan S. GLP-1 Agonists and Blood Pressure: A Review of the Evidence. Curr Hypertens Rep. 2016;18(2):16. doi:10.1007/s11906-015-0621-6
- Ussher JR, Drucker DJ. Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat Rev Cardiol. 2023;20(7):463-474. doi:10.1038/s41569-023-00849-3
- Muzurović E, Mikhailidis DP. Impact of glucagon-like peptide 1 receptor agonists and sodium-glucose transport protein 2 inhibitors on blood pressure and lipid profile. Expert Opin Pharmacother. 2020;21(17):2125-2135. doi:10.1080/14656566.2020.1795132
- Heneka MT, O'Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer's disease. J Neural Transm (Vienna). 2010;117(8):919-947. doi:10.1007/s00702-010-0438-z
- Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res. 2022;186:106550. doi:10.1016/j.phrs.2022.106550
- Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci. 2022;16:970925. Published 2022 Sep 1. doi:10.3389/fnins.2022.970925
- Prasad-Reddy L, Isaacs D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context. 2015;4:212283. Published 2015 Jul 9. doi:10.7573/dic.212283
- He L, Wang J, Ping F, et al. Association of Glucagon-Like Peptide-1 Receptor Agonist Use With Risk of Gallbladder and Biliary Diseases: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Intern Med. 2022;182(5):513-519. doi:10.1001/jamainternmed.2022.0338
- EMA statement on ongoing review of GLP-1 receptor agonists [Internet]. [cited 2024 Jan 29]. Available at: https://www.ema.europa.eu/en/news/ema-statement-ongoing-review-glp-1-receptor-agonists Accessed September 11, 2024
- Lau D, Gamble JM. Suicidality among users of glucagon-like peptide-1 receptor agonists: An emerging signal?. Diabetes Obes Metab. 2024;26(4):1150-1156. doi:10.1111/dom.15459
- McIntyre RS, Mansur RB, Rosenblat JD, Kwan ATH. The association between glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and suicidality: reports to the Food and Drug Administration Adverse Event Reporting System (FAERS). Expert Opin Drug Saf. 2024;23(1):47-55. doi:10.1080/14740338.2023.2295397
- Dankner R, Murad H, Agay N, Olmer L, Freedman LS. Glucagon-Like Peptide-1 Receptor Agonists and Pancreatic Cancer Risk in Patients With Type 2 Diabetes. JAMA Netw Open. 2024;7(1):e2350408. Published 2024 Jan 2. doi:10.1001/jamanetworkopen.2023.50408
- Pasternak B, Wintzell V, Hviid A, et al. Glucagon-like peptide 1 receptor agonist use and risk of thyroid cancer: Scandinavian cohort study. BMJ. 2024;385:e078225. Published 2024 Apr 10. doi:10.1136/bmj-2023-078225
- Sodhi M, Rezaeianzadeh R, Kezouh A, Etminan M. Risk of Gastrointestinal Adverse Events Associated With Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss. JAMA. 2023;330(18):1795-1797. doi:10.1001/jama.2023.19574
- Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2022;65(12):1925-1966. doi:10.1007/s00125-022-05787-2
- ElSayed NA, Aleppo G, Aroda VR, et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S140-S157. doi:10.2337/dc23-S009
- American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2024 [published correction appears in Diabetes Care. 2024 Jul 1;47(7):1238. doi: 10.2337/dc24-er07a]. Diabetes Care. 2024;47(Suppl 1):S158-S178. doi:10.2337/dc24-S009
- A Research Study Investigating Semaglutide in People With Early Alzheimer's Disease (EVOKE Plus)[internet] Available at https://clinicaltrials.gov/study/NCT04777409 Accessed September 11, 2024
Corresponding Author
Fatma Abubakar Amin
Primary Health Care Headquarters, Doha, Qatar