

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 883

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

FPGA implementation of Decimal Adder and Multipliers in Binary Coded

Author

Amruta Vijay Bhamburkar

Email: amrutav10@gmail.com

Abstract

Arithmetic has gained high impact on the overall performance of today’s financial and commercial applications

in most binary. Although binary calculations are the dominant in most machines, they are not suitable for

commercial, banking, and business applications due to the unacceptable inexact decimal to-binary conversion

errors they produce Decimal additions and multiplication are the main decimal operations used in any decimal

arithmetic algorithm. Decimal digit adders and decimal digit multipliers are usually the building blocks for

higher order decimal adders and multipliers. In somehow very long time and energy are used. so FPGAs

provide an efficient hardware platform that can be employed for accelerating decimal algorithms.

In a real example shows the extreme effect of these wrong approximations, where it stated that if a company

approximates a4% sales tax on an item (such as a $0.70), the yearly loss is over than a $4 million.

Further, in showed that 54% of the numeric data columns, used by 51 major organization’s databases, were

decimal data types and 42.7% were integer types which could have been stored as decimals. In spite of this,

currently, decimal floating-point arithmetic is not supported by any microprocessors. Decimal floating-point

coprocessor could be including in the machines that handle these calculations to speed up these applications.

In the growing evolution of the decimal arithmetic, efficient decimal algorithms have to be investigate. Decimal

digit adders and decimal digit multipliers are key components of any decimal hardware to support decimal

arithmetic applications. Therefore, this work focuses on delivering efficient BCD digit units to be used in high

performance decimal hardware accelerators.

Two main contributions of this work can be highlighting: proposing two new BCD digit adders and proposing

one new BCD digit multiplier. These designs are described and simulating using VHDL hardware description

language. They are all implements on an FPGA an comparing with existing designers.

INTRODUCTION

In these proposed the BCD addition and BCD

multiplication are performed into minimised

delay. If i/p is in BCD form then required the

convertor first then performed the addition and

multiplication after that again converters are

required these shown in figure.5.1.

implementation on FPGA so delay minimised .

Figure.1 Basic architecture

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 884

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

1 ADDER

The main problem in decimal addition, that

increases the delay, is the need for correction if

the result exceeds the permitted BCD range

(decimal number 9). This correction actually adds

the binary number (0110)2 to the result. In this

project proposed design new high-speed area-

optimized correction-free BCD digit adders that

can be employed in different decimal applications.

Throughout this chapter, two new different design

configurations for BCD digit adders are discussed.

1.1 DIFFERENT ARCHITECTURES

The basic Adder Architectures are studied to

design BCD Adder Configuration. In electronics,

an adder or summer is a digital circuit that

performs addition of numbers. In many computers

and other kinds of processors, adders are used not

only in the arithmetic logic unit(s), but also in

other parts of the processor, where they are used

to calculate addresses, table indices, and similar

operations. Although adders can be constructed

for many numerical representations, such as

binary-coded decimal or excess-3, the most

common adders operate on binary numbers. In

cases where two's complement or ones'

complement is being used to represent negative

numbers, it is trivial to modify an adder into an

adder–sub tractor. Other signed number

representations require a more complex adder.

a) HALF ADDER

Figure.2 half adder

The half adder adds two single binary digits A and

B. It has two outputs, sum (S) and carry (C). The

carry signal represents an overflow into the next

digit of a multi-digit addition. The value of the

sum is 2C + S. The simplest half-adder design,

pictured on the right, incorporates an XOR gate

for S and an AND gate for C. With the addition of

an OR gate to combine their carry outputs, two

half adders can be combined to make a full adder.

The half-adder adds two input bits and generates a

carry and sum, which are the two outputs of half-

adder. The input variables of a half adder are

called the augend and addend bits. The output

variables are the sum and carry.

b) FULL ADDER

Figure 3 full adder

A full adder can be implemented in many

different ways such as with a custom transistor-

level circuit or composed of other gates. One

example implementation is with

 and

. In this

implementation, the final OR gate before the

carry-out output may be replaced by an XOR gate

without altering the resulting logic. Using only

two types of gates is convenient if the circuit is

being implemented using simple IC chips which

contain only one gate type per chip. The carry-

block subcomponent consists of 2 gates and

therefore has a delay of

In the variety adder are used. Each type of adder

are selected on the where are used basic adder A

combinational circuit that adds two bits is called a

half adder A full adder is one that adds three bits,

the third produced from a previous addition

operation basically the following adder are used in

VLSI we consider,

http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Addition
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/Binary-coded_decimal
http://en.wikipedia.org/wiki/Excess-3
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Ones%27_complement
http://en.wikipedia.org/wiki/Ones%27_complement
http://en.wikipedia.org/wiki/Adder%E2%80%93subtractor
http://en.wikipedia.org/wiki/Signed_number_representations
http://en.wikipedia.org/wiki/Signed_number_representations
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/OR_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/File:Half_Adder.svg

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 885

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

1. Ripple carry adder

2. Carry look head adder

1. Ripple Carry Adder:

The ripple carry adder is constructed by cascading

full adder blocks in series. The carryout of one

stage is fed directly to the carry-in of the next

stage For an n-bit parallel adder, it requires n full

adders .is shown in the figure.4. In these

calculated the carry by one by one then total time

have to be consider. When n bit consider then

carry calculation are complex.

Figure 4: Ripple carry adder

Drawback:

1. not very efficient in large bit number are used.

2 .delay increase linearly with bit rate

2. Carry look head adder:

Ripple carry adder drawback overcome by carry

look head adder. Carry Look Ahead Adder (CLA)

has a proper balance between both the Area

occupied and Time required. Hence among the

three, Carry Look Ahead Adder has the least

AREA DELAY PRODUCT. Hence we should use

Carry Look ahead Adders when it comes to

optimization with both Area and Time. For an

instance, the last stage of the Wallace tree Adder

in Booth multiplier is a Carry look Ahead Adder.

In these Calculates the carry signals in advance,

based on the input signals generator carry look

ahead adder is shown in figure 5.

Boolean Equations

Pi = Ai +Bi Carry propagate

Gi = Ai Bi Carry generate

Si = Pi Ci Sum Ci+1= Gi + PiC Carry out

Signals P and G only depend on the input bits, Applying these equations for a 4-bit adder:

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1(G0 + P0C0) = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

Figure .5 :Look ahead carry generator

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 886

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

Advantage of carry look ahead adder that they

have consider direct carry. they give the minimum

delay, Because of that it very efficient in the large

bit number.

3. BCD Adder

Design a direct BCD digit adder using a four bit

input, five bit output combinational logic. The

four bit inputs are the two BCD input digits A and

B plus the decimal carry input Cin and the five bit

outputs are the BCD digit of the decimal sum S

plus the decimal carry out Cout. For example, to

add (6 + 7 = 13), this operation is translated to

(0110 + 0111 = 10011) BCD. The output result

(10011) BCD is the BCD representation of the

decimal number 13. The most significant bit is the

decimal carry output generated from the addition

operation, while the other bits are the BCD

summation digit. The truth table for all output

logic functions is constructed for all possible

combinations of the inputs. Since the inputs are

nine bits, the number of possible combinations is

2
4
 = 16. Many of these combinations are valid

since 4-bit number can take any value from 0 to

(15)10. In the case when the input is not valid, the

output is set to don’t care.

The two input BCD digits are assumed to be A =

a3a2a1a0 and B = b3b2b1b0. The output consists

of the BCD digit sum S = s3s2s1s0 and the

decimal carry output. This adder is designed to

support both binary and decimal additions. A

binary carry look-ahead adder (CLA) is used to

add two input operands, which are either binary or

decimal numbers. The result of the binary CLA is

the correct result for binary inputs, but it needs to

be corrected for decimal inputs. This proposed

architecture requires less area compared to other

configurations.

Figure .6 BCD adder architecture

The first adder configuration is the conventional

decimal adder. For each decimal digit, it has two

4-bit binary adders and correction circuit between

the adders. The first level adders produce the

binary addition results. If the result is greater than

9, a carry output is produced and the result of first

level 4-bit adder is corrected by adding 6.

Furthermore, the carry output is used as a carry

input for the next digit. The main advantage of the

direct Boolean expression BCD adder is its area

reduction.

1.2 Multipliers

Multiplication is one of the basic arithmetic

operations and it requires substantially more

hardware resources and processing time. In the

decimal system, digit-by-digit lookup table

multipliers are inefficient from both area and

speed sides. There are number of techniques that

can be used to perform multiplication. In general,

the choice is based upon factors such as latency,

throughput, area, and design complexity. More

efficient approach uses some sort of array or tree

of full adders to sum partial products. Array

multiplier, Wallace Tree multipliers are suitable

for VLSI implementation.

Multipliers are key components of many

high performance systems such as FIR filters,

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 887

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

microprocessors, digital signal processors, etc. A

system’s performance is generally determined by

the performance of the multiplier because the

multiplier is generally the lowest element in the

system. Furthermore, it is generally the most area

consuming. Hence, optimizing the speed and area

of the multiplier is a major design issue. However,

area and speed are usually conflicting constraints

so that improving speed results mostly in larger

areas.

1.2.1 ARRAY MULTIPLIER

Array multiplier is an efficient layout of a

combinational multiplier. Multiplication of two

binary number can be obtained with one micro-

operation by using a combinational circuit that

forms the product bit all at once thus making it a

fast way of multiplying two numbers since only

delay is the time for the signals to propagate

through the gates that forms the multiplication

array. A basic Array multiplier consists of three

parts (i) partial product generation (ii) partial

product addition and (iii) final addition.

In Array multiplier, word “direct” means no need

for neither “first finding the binary multiplication

result and then converting the product to a BCD

form” nor “any recoding process” .Instead, we

have used a simplified Boolean expressions to

perform the “direct” functionality. In this case, the

two operands are two decimal digits A = a3a2a1a0

and B = b3b2b1b0 and the output P = A × B is 8

bit P7P6P5P4P3P2P1P0 (two BCD digits).

Since the input is 8 bits wide, the number of

combinations in the truth table is 2
8
 = 256. Among

all these combinations only 100 combinations are

valid and the rest are invalid. All outputs for the

invalid combinations in the truth table are set to

don’t care. If the output functions depend on more

than six variables from the input variable then it

needs hierarchy of LUTs to be implemented. An

example on this is P1 which depends on all the

eight input variables. On the other hand, some

functions depend only on two variables like P0 or

four variables like P7. This means that these two

outputs consumes a single 6-input LUT each.

In array multiplier, consider two binary numbers

A and B, of m and n bits. There are m n

summands that are produced in parallel by a set of

m n AND gates. n x n multiplier requires n (n-2)

full adders, n half-adders and n2AND gates. Also,

in array multiplier worst case delay would be

(2n+1) td. multiplier worst case delay architecture

of array multiplier shown in fig.7.

.

Figure.7 Archite acture of array multiplier

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 888

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

Drawback of array multiplier

1. Array Multiplier gives more power

consumption as well as optimum number of

components required, but delay for this multiplier

is larger.

2. It also requires larger number of gates because

of which area is also increased; due to this array

multiplier is less economical. Thus, it is a fast

multiplier but hardware complexity is high.

1.2.2 WALLACE MULTIPLIER

A fast process for multiplication of two numbers

was developed by Wallace. Using this method, a

three step process is used to multiply two

numbers; the bit products are formed, the bit

product matrix is reduced to a two row matrix

where sum of the row equals the sum of bit

products, and the two resulting rows are summed

with a fast adder to produce a final product. In the

Wallace tree method, three bit signals are passed

to a one bit full adder (“3W”) which is called a

three input Wallace tree circuit, and the output

signal (sum signal) is supplied to the next stage

full adder of the same bit, and the carry output

signal is passed to the next stage full adder of the

same no of bit, and the carry output signal is

supplied to the next stage of the full adder located

at a one bit higher position. Wallace tree is

reducing the number of operands at earliest

opportunity.

A multiplier essentially consists of two operands,

a multiplicand “A” and a multiplier “B” and

produces a product “P”. In the first stage, the

multiplicand and the multiplier are multiplied bit

by bit to generate the partial product terms. The

second stage is the most important, as it is the

most complicated and determines the overall

speed of the multiplier. This stage includes

addition of these partial product terms to generate

the product “P”. This paper will be more focused

on the optimization of this stage, which consists of

the addition of all the partial products. If speed is

not an issue, the partial products can be added

serially, reducing the design complexity.

However, in high-speed design, the Wallace tree

construction method is usually used to add the

partial products in a tree-like fashion in order to

produce two rows of partial products that can be

added in the last stage.

 Fig.8.shows the structural representation

of 4x4 multiplier using half adders and full adders

for the addition of intermediate terms formed after

the multiplication of two numbers. Finally, the

product output is shown, showing each bit of the

product obtained. R0 to R15 denotes the various

product terms obtained at the first stage of

multiplication. Product term a0b0 is represented

by R0. Similarly the other product terms are

represented by different notations from R1 to R15.

Figure.8 Architecture of WALLACE MULTIPLIER

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 889

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

The first bit p0 of the product P is obtained by the

first product term a0b0 which is denoted by R0.

R1 and R2 then become the inputs of the half

adder to give two outputs, sum S1 and carry C1.

Sum S1 is nothing but the next bit of the product

P which is denoted by p1. R3, R4, and R5 become

the input bits of the full adder to give outputs as

sum S2 and carry C2. Previous carry C1 and sum

S2 becomes the input bits of next half adder to

produce two outputs sum S6 and carry C6. Sum

S6 is the third bit of the product P which is named

as p2. The remaining bits of the product P i.e. p3,

p4, p5, p6, p7, p8 respectively are obtained in the

same way as explained.

1.2.3 BCD MULTIPLIER

`A Binary multiplier is an electronic hardware

device used in digital electronics or a computer or

other electronic device to perform rapid

multiplication of two numbers in binary

representation. Efficient BCD Multiplier is design

by using the architecture of Wallace Tree.

Wallace tree multiplier consists of three step

process, in the first step, the bit product terms are

formed after the multiplication of the bits of

multiplicand and multiplier, in second step, the bit

product matrix is reduced to lower number of

rows using half and full adders, this process

continues till the last addition remains, in the final

step, final addition is done using adders to obtain

the result.

Figure. 9 multiplication of two numbers A and B

Fig. 9 shows the multiplication of two numbers A

and B and producing its result as P. explains the

method of addition of different intermediate

terms. The different intermediate terms formed

after the multiplication of two 4-bit numbers. Two

intermediate terms in one column are added using

a half adder and more than two terms in one

column are added using full adder as explained in

fig.10. The sum obtained after each addition is

denoted by where varies from 1 to 10. Similarly

carries are denoted by where varies from 1 to 10

and denotes next carries, where varies from 0 to 3.

Figure. 10 the method of addition of different

intermediate terms

Designing of BCD Digit Multiplier based on

Wallace Tree Architecture uses a novel method,

which has been proved to be more efficient i.e.

shift and add-3 algorithm, to convert from binary

to BCD. The effective combination of the new

binary to BCD converter with the embedded

binary multipliers in the FPGAs, has been shown

to be competitive. The shift and add-3 algorithmic

steps are as follows

1. Shift the binary number left one bit.

2. If 8 shifts have taken place, the BCD number is

in the Hundreds, Tens and Units column.

3. If the binary value in any of the BCD columns

is 5 or greater, add 3 to that value in that BCD

column.

4. Go to 1.

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 890

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

Finally BCD multiplier is designed to provide

high performance & consumes less power. BCD

digit multiplier gives the best speed performance.

So, latency become smaller as speed and latency

are inversely proportional to each other.

SOFTWERS TOOL

Model Sim SE 6.3f and simulation tool for

VHDL, Verilog and mixed hardware descriptive

languadesigns, used is ModelSim SE 6.3f

software

Xilinx ISE 13.1

Xilinx Integrated Software Environment (ISE) is a

software tool developed by Xilinx corporation for

the synthesis and analysis of Hardware

Descriptive Language (HDL) designs. It enables

the synthesis of designs, timing analysis, Register

Transfer Level (RTL) diagram examinations and

simulation as per different environments as well

as the configuration of the target device with the

help of the programmer

DESIGN PROJECT FLOW CHART

Figure. 11 design of project flow. From design

specification, BCD adder and multiplier, design is

coded using Very High Speed Integrated Circuit

Hardware Descriptive Language. In a designed

correction less BCD adder the logic of carry look

ahead adder used, and BCD multiplier the

Wallace multiplier logic are used. Simulation and

verification is done on ModelSim SE 6.3f

software. Results are then synthesized on Xilinx

ISE 13.1. Finally,

Figure.11 Design of Project Flow

Observation

6.1 ADDER

The main problem in decimal addition, that

increases the delay, is the need for correction if

the result exceeds the permitted BCD range

(decimal number 9). This correction actually adds

the binary number (0110)2 to the result. One

contribution in this work is the design of new

high-speed area-optimized correction-free BCD

digit adders that can be employed in different

decimal applications.

6.1.1 Ripple Carry Adder

The ripple carry adder is constructed by cascading

full adder blocks in series. The carryout of one

stage is fed directly to the carry-in of the next

stage For an n-bit parallel adder, it requires n full

adders. simulation o/p are shown in figure.12

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 891

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

Simulation process : the i/p are as, a=0010,

b =0001

Figure12 simulation for ripple carry adder

b) Synthesis Process:

In synthesis report ripple carry adder design is

implemented separately on Xilinx XC3S500E

Spartan-3E FPGA kit. we can calculated time that

is the delay..and device summary are shown as

follows

Timing Summary:

Maximum combinational path delay: 9.926ns * 4

= 39.704 ns

Device utilization summary:

Selected Device : 3s500efg320-4

 Number of Slices: 4 out of 4656 0%

 Number of 4 input LUTs: 8 out of 9312 0%

 Number of IOs: 14

 Number of bonded IOBs: 14 out of 232 6%

6.1.2 Carry look head adder

a) Simulation process :

Ripple carry adder drawback over come by carry

look head adder. In these Calculates the carry

signals in advance, based on the input signals .the

output are shown in fig 13

 a= 0011 b =0011

Figure 13 simulation process for carry look ahead adder

b) Synthesise process:

In synthesis design isimplemented separately on

Xilinx XC3S500E Spartan-3E FPGA kit.

calculated the delay, The maximum time required

device summery are shown as

Timing Summary:

Maximum combinational path delay: 9.926ns

Device utilization summary:

Selected Device : 3s500efg320-4

Number of Slices: 4 out of 4656 0%

Number of 4 input LUTs: 8 out of 9312 0%

Number of IOs: 14

Number of bonded IOBs: 14 out of 232 6%

6.1.3 BCD Adder

 a) Simulation process :

BCD addition by overall function done by

procedure are done by step in these simulation. In

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 892

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

simulation ripple carry adder, carry look ahead

adder, conversion programme are included .

 In these BCD adder when we have the BCD I/p

then o/p is in also BCD so that binary to decimal

are converted need in a ripple carry adder and

carry look ahead adder are all these included and

conversion programme. The i/p’s are 0111, 0110

as shown in figure14

1

Figure. 14 simulation process for bcd adder

b) Synthesise process:

In synthesis report number of logic utilised is

shown in fig bcd adder design is implemented

separately on Xilinx XC3S500E Spartan-3E

FPGA kit.

Timinge Summary:

Maximum combinational path delay: 8.748ns

Device utilization summary:

Selected Device : 3s500efg320-4

Number of Slices: 4 out of 4656 0%

 Number of 4 input LUTs: 7 out of 9312 0%

 Number of IOs: 40

 Number of bonded IOBs: 40 out of 232 17%

6.1.4 Comparison:

Comparing the ripple carry adder , Carry look

ahead adder, BCD adder in base of delay and area

is shown in table no. 1

 Different of adder Delay (ns) No. of LUT’s 9312

 RCA 39.70 8

 CLA 9.927 8

 BCD 8.748 7

Table no. 1 show comparison of adder

6.2 MULTIPLIER

Binary coded decimal digit multiplier is a

fundamental cell in the BCD multiplication

operation. It multiplies two BCD digits to produce

a two BCD digits product output. In these

proposed new BCD digit multiplier

6.2.1 Array multiplier

a) Simulation process :

Array multiplier is combination of half adder full

adder and array programmed is included. In the i/p

are a= 0011

b=0010 is shown in figure.15

Figure.15 imulation process of array multiplier

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 893

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

b) Synthesise process:

In synthesis report number of logic utilised is

tabel no. 2. Arey multiplier

design is implemented separately on Xilinx

XC3S500E Spartan-3E FPGA kit.

Table no 2 device utilization summary for Array Multiplier

6.2.2 WALLACE MULTIPLIER

Wallace tree is reducing the number of operands at earliest opportunity.

A) Simulation process : In i/p’s a = 0011,

 b = 0000

Figure. 16 Simulation process for WALLACE MULTIPLIER

b) Synthesise process:

In synthesis report number of logic utilised is

shown in design is implemented separately

on Xilinx XC3S500E Spartan-3E FPGA kit

Table no3 device utilization summary for WALLACE MULTIPLIER

6.2.3 BCD MULTIPLIER

Efficient BCD Multiplier is design by using the

architecture of Wallace Tree. Finally BCD

multiplier is designed to provide high

performance & consumes less power. BCD digit

multiplier gives the best speed performance. So,

latency become smaller as speed and latency are

inversely proportional to each other.

a) Simulation process : In figure shows for i/p

mult.1= 0011

Mult.2= 0011

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 894

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

Figure.17 Simulation process of BCD multiplier

b) Synthesise process:

In synthesis report number of logic utilised is

shown in design is implemented separately on

Xilinx XC3S500E Spartan-3E FPGA kit.

Table no.4 device utilization summary for BCD multiplier

6.2.4 Comparisons:

Comparison between Array multiplier

,Wallace multiplier and BCD of multiplier

on the area and delay

Different of Multiplier Delay (ns) No. Of LUT’s out of 9312

Array mult. 24.944 33

Wallace mult. 18.708 33

BCD mult. 24.622 65

Table no.5 Comparison of different multiplier

CHAPTER CONCLUSION

7.1 CONCLUSION

All above proposed designs were described using

VHDL hardware description language, and

simulated to ensure correct functionality. They

were synthesized with Xilinx ISE tool and then

simulated in Modelsim Simulator SE . Synthesis

results of our BCD digit adders & multipliers are

shown in above.

In this project, new BCD digit adders and one new

BCD digit multipliers are designed to speed up

decimal arithmetic applications over FPGA. The

different designers have proposed several

enhancements for high speed, area optimization.

In proposed that implemented direct BCD

Addition approach which provide correction-free

addition techniques.

In this project, the proposed Direct Boolean

Expression BCD Digit Adder optimized the

resource utilization factors. So, this configuration

also defined as minimal area BCD Adder.

Analysis & synthesis results show that our

Amruta Vijay Bhamburkar IJMEIT Volume 2 Issue 11 November 2014 Page 895

IJMEIT// Vol. 2 Issue 11//November//Page No: 883-895//ISSN-2348-196x 2014

Correction free BCD digit adder is the fastest

among other proposed adders and comparision of

all are shown in table. The BCD Multiplier is

implemented using Wallace Multipliers

architecture which consumes less propagation

time delay wrt the operations compared to other

multipliers architecture.

REFERENCES

1. REKHA K. JAMES and SHAHANA T. K,

“Decimal Multiplication using compact

BCD Multiplier ”, 2008 IEEE International

Conference on Electronic Design.

2. Alvaro Vazquez, Elisardo Antelo,

“Improved Design of High-Performance

Parallel Decimal Multipliers ”,IEEE

TRANSACTIONS ON

COMPUTERS,MAY 2010

3. Álvaro Vázquez, “Multi-operand Decimal

Adder Trees for FPGAs”, INRIA 14 Oct

201

4. L. Dadda ,“ A Parallel-Serial Decimal

Multiplier Architecture” ,in 2012 IEEE

5. Osama D. Al-Khaleel, “FPGA

implementation of Binary Coded Decimal

Digit Adders and Multipliers”, IEEE

(2012).

6. Kaivani, “Binary-coded decimal digit

multipliers,” IET Computers and Digital

Techniques, vol. 1, no. 4, pp. 377–381,

2007.

7. H. Wetter W. Bultmann, W. Haller and A.

Worner, “Binary and decimal adder unit,”

2001. E. M. Schwarz, “Decimal

multiplication with efficient partial

product generation,” in Proceedings of the

17th IEEE Symposium on M. F.

Cowlishaw, “Decimal floating-point:

Algorism for computers,” in Proceedings

of the 16th IEEE Symposium on Computer

Arithmetic (ARITH-16’03), Washington,

DC, USA, 2003, ARITH ’03, pp. 104–

,IEEE Computer Society.

8. Society. Arithmetic, Washington, DC,

USA, 2005, ARITH ’05, pp. 21–28, IEEE

Computer Society.

9. Vazquez, E. Antelo, and P. Montuschi, “A

new family of high performance parallel

decimal multipliers,” in Proceedings of the

18
th

 IEEE Symposium on Computer

Arithmetic, Washington, DC, USA, 2007,

ARITH ’07, pp. 195–204, IEEE Computer.

10. Parallel-Serial Decimal Multiplier

Architecture” L. Dadda1, M. Pisoni1, M.

D. Santambrogioin ,2012 IEEE 15th

International Conference on

Computational Engiring.

