

Manpreet Kaur et al www.ijetst.in Page 4974

IJETST- Vol.||04||Issue||02||Pages 4974-4980||February||ISSN 2348-9480 2017

International Journal of Emerging Trends in Science and Technology
IC Value: 76.89 (Index Copernicus) Impact Factor: 4.219 DOI: https://dx.doi.org/10.18535/ijetst/v4i2.03

Categorizing and Analyzing the Impact of Bugs in Open Source Software

Authors

Manpreet Kaur
1
, Hardeep Singh

2

1
Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar, India

Email: manpreet.buttar.csb@gmail.com
2
Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar, India

Email: hardeep_gndu@rediffmail.com

ABSTRACT

As open source software is gaining popularity, it becomes necessary to do the modifications in the code.

Modifications could be enhancing the functionalities, or bug fixing. Therefore in this paper, we have used Find

Bugs plugin in the Eclipse environment to categorize the different types of bugs in Open Source Software to

study the bug dynamics. We have used various versions of JFreechart software to track and analyse different

types of bugs. JFreechart is open source software. After this CodePro AnalytiX plugin is used in Eclipse

environment to calculate the complexity metrics. Complexity is calculated on each version of JFreechart to

study the reasons for increase or decrease in the number of bugs in each version. The results have shown that

increase or decrease in number of bugs is closely related to average Cyclomatic complexity.

Keywords: Open source software, categorization of bugs, License, Lines of Code, Efferent Couplings, Average

Cyclomatic complexity.

INTRODUCTION

Open Source means something which can be

changed as its design is available publicly. Open

source software is software in which code is

accessible for alteration or improvement by

different users. Code which is also called Source

code is available to the developers for enhancing the

program by inserting new and improved functiona-

lities to it or repairing the errors that are not

producing correct outputs. Open source software,

products, or projects are those which include open

exchange, mutual contribution, quick prototyping,

transparency, and community expansion. Therefore

it is software in which copyright holder gives the

code to other users who want to use the code, or

copy it, change it, or share it. But users have to

agree to the conditions of a license while using open

source projects. Moreover these open source

licenses support group effort and contribution as

they permit users to do alterations to the code and

include those modifications into their projects.

Mainly open source licenses confirm that anybody

who modifies and shares the code with other users

should also distribute program's code free of cost.

In case, if they do not providing the code free of

cost, they might be infringing the conditions of open

source licenses. According to Open Source

Initiative, "open source doesn't mean that code is

available." It is a way with which anybody must be

capable to change the code to fulfil his/her require-

ments, and no one could stop others from doing this.

Moreover there is general misunderstanding about

open source that developers can charge fee for open

source projects for producing them. However, as the

majority of open source licenses involve providing

their code while selling these software to other

users, and several open source project developers

charges money for software facilities and

support instead of charging fee for the software

itself and they find it more profitable. In this way,

software is accessible free of cost and they earn

profits by serving others to install, exploit, and

troubleshoot it. Bugs are the errors that occur in the

software that leads to incorrect outputs. Therefore in

case of open source software, as the code is

Manpreet Kaur et al www.ijetst.in Page 4975

IJETST- Vol.||04||Issue||02||Pages 4974-4980||February||ISSN 2348-9480 2017

available and there is high probability that many

programmers can access the code and it is

sometimes possible that inexperienced users make

changes and may submit the buggy patches to bug

repositories. Therefore in case of open source

software, huge number of bugs can lead to more

serious errors that hinder the functionality of open

source software. Bugs can also lead to more risky

issues which might be very difficult for developers

to handle.

Categorization of Bugs in Open Source Software

We have categorized and analyzed 41 different

types of bugs across 37 different versions of

JFreechart software. But for paper point of view we

are explaining 20 different types of bugs which are

given in table 1:

Table 1. Classification of Bugs present in different versions of JFreechart Software

BUG TYPE DESCRIPTION

Scariest Highest ranked bugs, more vulnerable. These are kind of logic errors which produce unexpected output. Ranking (1-4).

Scary High ranked bugs and they are semantic type of errors. Comparatively less dangerous than scariest and Ranking within the range of (5-9).

Troubling Bugs are problematic in software but can be resolved as they are either syntactic or semantic errors; ranking given is (10-14).

Of Concern These bugs are less dangerous and can be resolved easily. These are syntax or semantic types of errors. The ranking given to them is (15-20).

Normal Confidence Used to find warnings with a particular bug confidence. The value property must be an integer value: 1 for high-confidence warnings, 2 for

normal-confidence warnings, or 3 for low-confidence warnings.

High Confidence Used to find warnings with a particular bug confidence. The value property must be an integer value: 1 for high-confidence warnings, 2 for

normal-confidence warnings, or 3 for low-confidence warnings.

Call to equals()

comparing different
types

Calls equals(Object) on two references of separate class types and examination recommends that they are two objects of separate classes at

runtime. Besides this, analysis of the equals methods that will be called recommends that either call always return false, or the equals
method is not be symmetric (which is a property required by the contract for equals in class Object).[Rank: Scariest (1), confidence: High

Pattern: EC_UNRELATED_TYPES

 Type: EC, Category: CORRECTNESS]

Self assignment of
field

Method consists of a self assignment of a field; like int x; public void foo() { x = x; }.These assignments are useless, and may specify a
logic error.[Rank: Scariest (1), confidence: High

Pattern: SA_FIELD_SELF_ASSIGNMENT

 Type: SA, Category: CORRECTNESS]

Uninitialized read of

field in constructor

Such constructor examines a field whose value is not assigned yet. This generally happens when programmer by mistake uses the field

instead of one of the constructor's arguments. [Rank: Scariest(1), confidence: High

Pattern: UR_UNINIT_READ
 Type: UR, Category: CORRECTNESS]

Doomed test for

equality to NaN

Code confirms whether floating point value is equal to the particular Not A Number value (e.g., if (x == Double.NaN)). But due to unique

meaning of NaN, no value is equal to Nan, including NaN. Thus, x == Double.NaN is always calculated as false. For verifying whether a

value present in x is the particular Not A Number value, apply Double.isNaN(x) (or Float.isNaN(x) if x is floating point value). Rank: Scary
(6), confidence: High

Pattern: FE_TEST_IF_EQUAL_TO_NOT_A_NUMBER

 Type: FE, Category: CORRECTNESS]

Impossible cast

Throws a ClassCastException. FindBugs tool follows type information from instanceof checks, and also utilizes more accurate information

about the kinds of values returned from methods and loaded from fields and therefore uses this information to decide that a cast will throw an

exception at execution time.[Rank: Scary (9), confidence: High
Pattern:BC_IMPOSSIBLE_CAST Type: BC, Category: CORRECTNESS]

Method call passes

null for non-null

parameter

Method call passes a null value for a non-null method parameter. This either means that the variable is taken as a variable that must be non-

null all the time, or investigation has shown that it will be dereferenced all the time. [Rank: Scary (8), confidence: Normal

Pattern:NP_NULL_PARAM_DEREF Type: NP, Category: CORRECTNESS]

Call to static
DateFormat

DateFormats are not secure for multithreaded purpose. The detector finds a call to a parameter of DateFormat which is achieved by a static
field. [Rank: Scary (8), confidence: Normal

Pattern:STCAL_INVOKE_ON_STATIC_DATE_FORMAT_INSTANCE

Type: STCAL, Category: MT_CORRECTNESS]

Read of unwritten

field

Dereferencing a field which does not ever have non-null value written to it. Dereferencing the field value will produce a null pointer

exception. [Rank: Scary (8), confidence: Normal

Pattern: NP_UNWRITTEN_FIELD
Type: NP, Category: CORRECTNESS]

Class defines

equals() and uses

Object.hashCode()

Class overrides the method equals(Object), but does not override hashCode(), and inherits the implementation of hashCode() from

java.lang.Object and it returns the unique hash code, an arbitrary value assigned to the object by the VM). Therefore, the class is violating the

invariant that equal objects must have equal hashcodes. [Rank: Troubling (14), confidence: High
Pattern:HE_EQUALS_USE_HASHCODE Type: HE, Category: BAD_PRACTICE]

Method might

ignore exception

Method may overlook an exception. Basically, exceptions must be handled or they must not be included inside the method.[Rank: Troubling

(14), confidence: High
Pattern: DE_MIGHT_IGNORE

Type: DE, Category: BAD_PRACTICE]

Call to static

Calendar

Calendars are inherently dangerous for multithreaded usage. The detector has found a call to an instance of Calendar which has been achieved

through a static field which is itself doubtful. [Rank: Troubling (14), confidence: Normal
Pattern: STCAL_INVOKE_ON_STATIC_CALENDAR_INSTANCE

 Type: STCAL, Category: MT_CORRECTNESS (Multithreaded correctness)]

Unwritten field Field is not written ever. Every reads of this field will return the default value. [Rank: Troubling (12), confidence: Normal
Pattern:UWF_UNWRITTEN_FIELD Type: UwF, Category: CORRECTNESS]

Manpreet Kaur et al www.ijetst.in Page 4976

IJETST- Vol.||04||Issue||02||Pages 4974-4980||February||ISSN 2348-9480 2017

Dead store to local
variable

Assigns a value to a local variable, but the value is not read or used in any succeeding instruction. This generally point towards an error, as
the value calculated is never used. [Rank: Of Concern (15), confidence: High

Pattern: DLS_DEAD_LOCAL_STORE

Type: DLS, Category: STYLE (Dodgy code)]

Test for floating
point equality

Compares two floating point values for parity. As floating point computation may include rounding of digits, computed values of float and
double may be inaccurate. Therefore, values that need accurate precision, like financial values, use a fixed-precision type like BigDecimal and

values that do not need precision, use comparing for equality within some range, like: if (Math.abs(x - y) < .0000001). [Rank: Of Concern

(15), confidence: High
Pattern: FE_FLOATING_POINT_EQUALITY

Type: FE, Category: STYLE (Dodgy code)]

RELATED WORK

Sascha Just et al. 2008
[1]

 have conducted a survey

on three major bug tacking systems namely

APACHE, MOZILLA, AND ECLIPSE in order to

find the information requirements and problem

faced by developers in bug reporting system. N.

Jalbert et al. 2008
[2]

 have proposed a method that

automatically categorizes redundant bug reports

when they arrive to save developer time. Thomas

Zimmermann et al. 2009
[3]

 have addressed the

problem of inadequately designed bug tracking

systems in which information about bugs filtered

out after numerous iterations of messages between

user and developers. G. Abaee et al. 2010
[4]

 have

compared the features as well as limitations of four

bug tracking tools. V.B Singh et al. 2011
[5]

 have

done the comparative study of various bug tracking

tools. A. Raza et al. 2012
[6]

 have proposed the

model to establish the relationship between usability

bugs in Open source projects and online public

conferences. Akhilesh Babu Kolluri et al. 2012
[7]

have presented a model which is efficient in

tracking the bugs by collecting the important

information from users and useful in resolving the

bugs immediately. S Lal et al. 2012
[8]

 have

presented which provides the comparison between

different kinds of bug reports on the basis of metrics

like statistics on close-time, number of comments,

entropy among reporters, entropy across comp-

onent, continuity and debugging efficiency

performance characteristics. Sean Banerjee et al.

2012
[9]

 have presented the methodology named

Factor LCS that uses common sequence matching

for finding the duplicate bug reports. Swati Sen et

al. 2013
[10]

 have suggested that in open source

development process bug tracking system are most

significant for tracking the bugs.

EXPERIMENTAL SETUP

Figure 1 shows the flowchart for proposed

methodology which is explained below:

Step1: Initially the different versions of JFreechart

softwareare downloaded from Sourceforge.net.

JFreechart is open source software.

Step2: In second step Eclipse tool is used and

JFreechart versions are imported in it.

Step3: In this step FindBugs plugin is downloaded

in the Eclipse environment for tracking the bugs in

various versions of JFreechart software.

Step4: In this step FindBugs plugin is used for

tracking the bugs on every version of JFreechart

software.

Step5: In this step bugs tracked with the help of

FindBugs plugin are evaluated to study the different

types of bugs present in JFreechart software.

Step6: In this step Codepro AnalytiX plugin is

downloaded in Eclipse enviroment to evaluate

different complexity metrics on each version of

JFreechart software.

Figure 1. Flowchart for Proposed Methodology

Initialize

Download Jfreechart versions from Sourceforge.net

Initialize Eclipse and load each Jfreechart version in it

Download and update FindBugs in Eclipse environment

Now track bugs on each version

Evaluate bugs and their types

Return

Evaluate Complexity using Codepro Analyti X Tool

Manpreet Kaur et al www.ijetst.in Page 4977

IJETST- Vol.||04||Issue||02||Pages 4974-4980||February||ISSN 2348-9480 2017

RESULTS AND DISCUSSION

Correlation Analysis

Table 2 shows the Pearson Correlation Analysis.

We have used Pearson Correlation coefficient for

measuring the correlation between multiple

variables like total bugs, Scariest, Scary, Troubling,

Of Concern type of bugs, loc, number of methods,

number of constructors and Efferent coupling.

Strong correlation is shown by values close to 1 and

-1 in which 1 indicates perfect correlation and -1

indicates inverse correlation while values close to 0

show no correlation. Pearson correlation is

significant at level 0.01. Initially, total bugs are

showing weakest correlation with Scariest type of

bugs as total bugs are having correlation value 1

whereas Scariest has correlation value -.528.

Therefore total bugs have inverse relation with

Scariest. As total bugs are increasing number of

Scariest type of bugs are decreasing. Moreover

Scariest types of bugs are logical type of errors

which produces unexpected output and are most

difficult to locate and fix. Therefore developers try

to keep the low false positive rate of such kinds of

errors and thus their number remain small as these

errors are not frequently occurring errors and

therefore they are less contributing to total bugs.

Total bugs are having strongest relation with

efferent coupling. Efferent coupling is an indicator

of package dependency on external packages.

Therefore more the class is coupled with other

classes, there will be a more risk that number of

bugs will increase as whenever the code changes in

one class, we have to change the code in other

classes also and if changes are not done properly

number of bugs will increase.

Secondly, Scariest types of bugs are showing

weakest correlation with Efferent coupling as

Scariest types of bugs are having value 1 and

efferent coupling is having value -.680. As a result

Scariest types of bugs are having inverse relation

with efferent coupling. As the value of Scariest

types of bugs are less contributing in total bugs

because these errors are very small in number,

therefore efferent coupling value is increasing due

to inverse relation with Scariest types of bugs.

Scariest types of bugs (with value 1) are showing

strongest correlation with average Cyclomatic

Complexity (with value .018). This is because if

logical types of errors are increasing, they definitely

increase the overall Cyclomatic complexity.

Scary types of bugs have weakest correlation with

Scariest types of bugs because Scary are semantic

types of errors which occur due to improper use of

program statements and they comparatively easy to

locate as whenever these errors occur error message

will be shown whereas Scariest are logical types of

errors which get executed without any errors but

produce unexpected outcomes. So they have

weakest correlation with Scary types of bugs. Scary

types of bugs are showing strongest correlation with

total bugs because these are semantic errors which

are frequently occurring errors like string not

declared in scope or a word is not declared in scope.

Troubling bugs are showing weakest correlation

with Scariest bugs as troubling are Compile time

errors or syntax errors and semantic errors whereas

Scariest are logical errors. Troubling is showing

strongest correlation with total bugs because these

are frequently occurring errors like equals check for

incompatible operand or missing the rules of

programming language like missing semicolon etc.

Of Concern is showing weakest correlation with

Scariest types of bugs as Of Concern is basically

semantic types of errors. Of Concern is showing

strongest correlation with Scary bugs because both

are semantic types of errors.

Lines of code have weakest correlation with

Scariest types of bugs because Scariest are small in

number and correcting these bugs do not have

significant effect on Lines of Code. Lines of code

have perfect 1-1 relation with number of methods as

number of methods are increasing, LOC will also

increase.

Number of Methods is showing weakest correlation

with Scariest types of bugs because Scariest are

very small in number and they have inverse relation

with number of methods therefore as the number of

methods are increasing the value of Scariest types of

bugs is decreasing. This is because increase in

number of methods improves the readability of code

Manpreet Kaur et al www.ijetst.in Page 4978

IJETST- Vol.||04||Issue||02||Pages 4974-4980||February||ISSN 2348-9480 2017

and decreases the logic errors. Number of methods

is showing perfect 1-1 relation with LOC as number

of methods are increasing, LOC will automatically

increase.

Number of Constructors has weakest correlation

with Scariest types of bugs because they have

similar behavior as methods and improve the

readability of code and decrease the logic errors.

Number of Constructors has strongest correlation

with LOC as number of constructors are increasing,

LOC will also increase.

Efferent Coupling is having weakest correlation

with Scariest types of bugs because Scariest types of

bugs are less contributing in total bugs because

these errors are very small in number, therefore

efferent coupling value is increasing due to inverse

relation with Scariest types of bugs. Efferent

Coupling is showing strongest correlation with total

bugs because more the class is coupled with other

classes, there will be a more risk that number of

bugs will increase as whenever the code changes in

one class, we have to change the code in other

classes also and if changes are not done properly

number of bugs will increase.

Average Cyclomatic Complexity is showing

weakest correlation with Scariest types of bugs as

these errors are small in number increase in these

types of errors do not have significance on overall

complexity of code. Average Cylcomatic Comple-

xity is showing strongest correlation with Of

Concern types of bugs because syntax and semantic

types of errors are more frequently occurring errors

and increase in syntax and semantic errors increase

the overall complexity of code.

Table 2. Pearson Correlation Table
Correlations

 Total

Bugs Scariest Scary Troubling

Of

Concern

Lines of

Code

No of

Methods

Number of

Constructors

Efferent

Coupling

Average Cyclomatic

Complexity

Total Bugs Pearson Correlation 1 -.528** .927** .979** .759** .815** .819** .773** .935** .208

Sig. (2-tailed) .001 .000 .000 .000 .000 .000 .000 .000 .216

N 37 37 37 37 37 37 37 37 37 37

Scariest Pearson Correlation
-.528** 1

-

.515**
-.521** -.274 -.618** -.623** -.583** -.680** .018

Sig. (2-tailed) .001 .001 .001 .101 .000 .000 .000 .000 .917

N 37 37 37 37 37 37 37 37 37 37

Scary Pearson Correlation .927** -.515** 1 .834** .808** .794** .802** .702** .869** .089

Sig. (2-tailed) .000 .001 .000 .000 .000 .000 .000 .000 .599

N 37 37 37 37 37 37 37 37 37 37

Troubling

Pearson Correlation .979** -.521** .834** 1 .668** .783** .784** .771** .920** .245

Sig. (2-tailed) .000 .001 .000 .000 .000 .000 .000 .000 .144

N 37 37 37 37 37 37 37 37 37 37

Of Concern Pearson Correlation .759** -.274 .808** .668** 1 .612** .618** .519** .662** .321

Sig. (2-tailed) .000 .101 .000 .000 .000 .000 .001 .000 .053

N 37 37 37 37 37 37 37 37 37 37

Lines of Code Pearson Correlation .815** -.618** .794** .783** .612** 1 1.000** .978** .883** .207

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .218

N 37 37 37 37 37 37 37 37 37 37

No of Methods Pearson Correlation .819** -.623** .802** .784** .618** 1.000** 1 .973** .885** .190

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .259

N 37 37 37 37 37 37 37 37 37 37

Number of
Constructors

Pearson Correlation .773** -.583** .702** .771** .519** .978** .973** 1 .840** .248

Sig. (2-tailed) .000 .000 .000 .000 .001 .000 .000 .000 .139

N 37 37 37 37 37 37 37 37 37 37

Efferent Coupling Pearson Correlation .935** -.680** .869** .920** .662** .883** .885** .840** 1 .247

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .141

N 37 37 37 37 37 37 37 37 37 37

Average Cyclomatic
Complexity

Pearson Correlation .208 .018 .089 .245 .321 .207 .190 .248 .247 1

Sig. (2-tailed) .216 .917 .599 .144 .053 .218 .259 .139 .141

N 37 37 37 37 37 37 37 37 37 37

**.Correlation is significant at 0.01 level (2-tailed)

Manpreet Kaur et al www.ijetst.in Page 4979

IJETST- Vol.||04||Issue||02||Pages 4974-4980||February||ISSN 2348-9480 2017

DISCUSSION

Figure 2. Correlation between Average number of

bugs and Average Cyclomatic Complexity

The graph shown in Figure 2 is a plot between

average number of bugs per lines of code and the

average cyclomatic complexity. The green line

shows the values for average Cyclomatic

complexity and blue line shows average number of

bugs per lines of code. Initially as the numbers of

versions are increasing, the complexity is also

increasing as user is demanding better functionality

in new versions. Therefore with the increase in

complexity, numbers of bugs are decreasing

because previous bugs are removed from earlier

versions and better functionality is provided to

newer versions. As from version 0.7.0 to version

0.7.1 complexity and number of bugs remain the

same. But from version 0.7.2 to 0.7.4 and version

0.9.5 to 0.9.6 number of bugs are decreasing as well

as complexity is also decreasing because sometime

new version is demanded, therefore reduction is

done in the number of bugs as well as complexity

because there may some non-usable functions with

high complexity and more number of bugs present

in earlier versions and they are removed to decrease

the complexity as well as number of bugs.

CONCLUSIONS

In this paper we have tracked and analyzed different

types of bugs present in various versions of

JFreechart We have used Find Bugs plugin in

Eclipse environment while categorizing the bugs. In

order to study the increasing and decreasing nature

of bugs in JFreechart software, complexity is

calculated using CodePro AnalytiX plugin in

Eclipse environment. The empirical analysis shows

that variation in the number of bugs is closely

related to average Cyclomatic complexity. So in

future, we can consider more number of versions of

JFreechart software or can take other open source

software for tracking and analyzing more types of

bugs. Moreover besides Cyclomatic complexity we

can also consider more parameters for finding the

relation with number of bugs.

REFERENCES

1. Just, Sascha, Rahul Premraj, and Thomas

Zimmermann. "Towards the next generation

of bug tracking systems." In Visual

Languages and Human-Centric Computing,

2008. VL/HCC 2008. IEEE Symposium on,

pp. 82-85. IEEE, 2008.

2. Jalbert, Nicholas, and Westley Weimer.

"Automated duplicate detection for bug

tracking systems." In Dependable Systems

and Networks With FTCS and DCC, 2008.

DSN 2008. IEEE International Conference

on, pp. 52-61. IEEE, 2008.

3. Zimmermann, Thomas, Rahul Premraj,

Jonathan Sillito, and Silvia Breu. "Impro-

ving bug tracking systems." In Software

Engineering-Companion Volume, 2009.

ICSE-Companion 2009. 31st International

Conference on, pp. 247-250. IEEE, 2009.

4. Abaee, Golnoosh, and D. S. Guru.

"Enhancement of Bug Tracking Tools; the

Debugger." In Software Technology and

Engineering (ICSTE), 2010 2nd Internat-

ional Conference on, vol. 1, pp. V1-165.

IEEE, 2010.

5. Singh, V. B., and Krishna Kumar

Chaturvedi. "Bug tracking and reliability

assessment system (btras)." International

Journal of Software Engineering and Its

Applications 5, no. 4 (2011): 1-14.

6. Raza, Arif, Luiz Fernando Capretz, and

Faheem Ahmed. "Usability bugs in open-

source software and online forums." IET

software 6, no. 3 (2012): 226-230.

Manpreet Kaur et al www.ijetst.in Page 4980

IJETST- Vol.||04||Issue||02||Pages 4974-4980||February||ISSN 2348-9480 2017

7. Akhilesh Babu Kolluri, K. Tameezuddin,

Kalpana Gudikandula “Effective Bug

Tracking Systems: Theories and

Implementation” IOSR Journal of Computer

Engineering (IOSRJCE) ISSN: 22780661

Volume 4, Issue 6(Sep-Oct. 2012), PP 31-

36.

8. Lal, Sangeeta, and Ashish Sureka.

"Comparison of seven bug report types: A

case-study of google chrome browser

project." In Software Engineering Confe-

rence (APSEC), 2012 19th Asia-Pacific, vol.

1, pp. 517-526. IEEE, 2012.

9. Banerjee, Sean, Bojan Cukic, and Donald

Adjeroh. "Automated duplicate bug report

classification using subsequence matching."

In High-Assurance Systems Engineering

(HASE), 2012 IEEE 14th International

Symposium on, pp. 74-81. IEEE, 2012.

10. Swati Sen, Anita Ganpati “Proposed

Framework for Bug Tracking System in

OSS Domain” Volume 3, Issue 8, August

2013ISSN: 2277 128XInternational Journal

of Advanced Research in Computer Science

and Software Engineering.

