

G. Sugantha et al www.ijetst.in Page 3559

IJETST- Vol.||03||Issue||02||Pages 3559-3564||February||ISSN 2348-9480 2016

International Journal of Emerging Trends in Science and Technology

 Impact Factor: 2.838 DOI: http://dx.doi.org/10.18535/ijetst/v3i02.11

An Efficient Indexing Structure for Group Models On Data Streams

Authors

G. Sugantha, Dr Akila

Vels University

Abstract

Group learning is a common tool for data stream classification, mainly because of its inherent

advantages of handling huge volume of stream data and concept drifting. Have been mainly focused on

building accurate group models from stream data. a linear scan of a huge number of base classifiers in

the group during prediction incurs significant costs in response time, preventing group learning from

being practical for many real world time critical data stream applications, such as web traffic monitoring

spam detection, intrusion detection In these applications, data streams usually arrive at a speed of Giga

byte per Seconds, and it is necessary to classify each stream record in a timely manner we propose a

novel Ensemble tree indexing structure to organize all base classifiers in an grouped for fast prediction

On Ensemble trees treat group as spatial databases and employee an Random tree like height balanced

structure to minimize the expected prediction time of from linear to sub linear complexity. On the other

hand, Ensemble trees can be automatically updated by continuously integrating new classifiers and other

discarding outdated ones, well adapting to new trends and patterns underneath data streams.

Keywords: Stream data mining, classification, ensemble learning, spatial indexing, and concept drifting.

I. INTRODUCTION

Data Stream Mining is the process of extracting

knowledge structures from continuous, rapid data

records. A data stream is an ordered sequence of

instances that in many applications of data stream

mining can be read only once or a small number of

times using limited computing and storage

capabilities. Examples of data streams include

computer network traffic, phone conversations,

ATM transactions, web searches, and sensor data.

Data stream mining can be considered a subfield of

data mining, machine learning, and knowledge

discovery.

In many data stream mining applications, the goal is

to predict the class or value of new instances in the

data stream given some knowledge about the class

membership or values of previous instances in the

data stream. Machine learning techniques can be

used to learn this prediction task from labeled

examples in an automated fashion. Often, concepts

from the field of incremental learning, a

generalization of Incremental heuristic search are

applied to cope with structural changes, on-line

learning and real-time demands. In many

applications, especially operating within non-

stationary environments, the distribution underlying

the instances or the rules underlying their labeling

may change over time, i.e.The goal of the

prediction, the class to be predicted or the target

value to be predicted may change over time. This

problem is referred to as concept drift.

Classification and clustering are examples of the

more general problem of pattern recognition, which

is the assignment of some sort of output value to a

given input value. Other examples are regression,

which assigns a real-valued output to each input;

sequence labeling, which assigns a class to each

member of a sequence of values (for example, part

of speech tagging, which assigns a part of speech to

each word in an input sentence); parsing, which

G. Sugantha et al www.ijetst.in Page 3560

IJETST- Vol.||03||Issue||02||Pages 3559-3564||February||ISSN 2348-9480 2016

assigns a parse tree to an input sentence, describing

the syntactic structure of the sentence; etc.

A common subclass of classification is probabilistic

classification. Algorithms of this nature use

statistical inference to find the best class for a given

instance. Unlike other algorithms, which simply

output a "best" class, probabilistic algorithms

output a probability of the instance being a member

of each of the possible classes. The best class is

normally then selected as the one with the highest

probability. However, such an algorithm has

numerous advantages over non-probabilistic

classifiers

In ensemble learning, an agent takes a number of

learning algorithms and combines their output to

make a prediction. The algorithms being combined

are called base-level algorithms.The simplest case

of ensemble learning is to train the base-level

algorithms on random subsets of the data and either

let these vote for the most popular classification

(for definitive predictions) or average the

predictions of the base-level algorithm. For

example, one could train a number of decision

trees, each on random samples of, say, 50% of the

training data, and then either vote for the most

popular classification or average the numerical

predictions. The outputs of the decision trees could

even be inputs to a linear classifier, and the weights

of this classifier could be learned.

1.1 An Efficient Indexing Structure for group

Models on Data Streams

In bagging, if there are m training examples, the

base-level algorithms are trained on sets of m

randomly drawn, with replacement, sets of the

training examples. In each of these sets, some

examples are not chosen, and some are duplicated.

On average, each set contains about 63% of the

original examples.

In boosting there is a sequence of classifiers in

which each classifier uses a weighted set of

examples. Those examples that the previous

classifiers misclassified are weighted more.

Weighting examples can either be incorporated into

the base-level algorithms or can affect which

examples are chosen as training examples for the

future classifiers.

Another way to create base-level classifiers is to

manipulate the input features. Different base-level

classifiers can be trained on different features.

Often the sets of features are hand-tuned.

Another way to get diverse base-level classifiers is

to randomize the algorithm. For example, neural

network algorithms that start at different parameter

settings may find different local minima, which

make different predictions. These different

networks can be combined.

2. OBJECTIVE OF THE STUDY

We first define the key data structures and notations

used in this paper. Geographical information of

User. Each user u has a register location generated

in various EBSNs or LBSNs.

User Activity. A user activity is a triple (u, v, r) that

user u rates item v with score R. User activity

historical data is given by S⊆U ×V×R , where user

activities are positive observations in the past. User

Group. A user group can be a set of users by

considering users’ geographical information. Item

group. Sets of item with similar preference from

users. In our analysis, rating scores are strongly

correlated with location-based user group

preferences, where z l and zg represent two

difference topic models. This enables rating r to be

G. Sugantha et al www.ijetst.in Page 3561

IJETST- Vol.||03||Issue||02||Pages 3559-3564||February||ISSN 2348-9480 2016

mutually influenced during the both topic discovery

processed.

3 LITRATURE REVIEW

3.1 PROBLEM DEFINITION

A two class data stream S consisting of an infinite

number of records fxi, yi pg, where xi 2 Rd is a d -

dimensional attribute vector, and yet 2 formal,

abnormal is the class label, which is unobservable

unless the sample is properly labeled. Suppose that

we have built on base classifiers C1, C2 . . . ; Cn

from historical stream data using a decision tree

algorithm (such as C4.5). All the n base classifies

are combined together as an ensemble classifier E.

Each base classifier Ci 1 i nÞ is comprised of l

decision rules

J prep resented by conjunction literals (i.e., rules are

expressed as “if . . . then . . .”). Then, there are N

1⁄4 n Al decision rules in the ensemble E. The aim

of this paper is to generate accurate prediction for

an incoming stream record x, using the ensemble

model E, with sub-linear time complexity O (log

(N)).

Existing works on ensemble learning in data

streams mainly focus on building accurate

ensemble models. Prediction efficiency has not

been concerned mainly because (1) prediction

typically takes linear time, which is sufficient for

general applications with undemanding prediction

efficiency. (2) Existing works only consider

combining a small number of base classifiers, e.g.,

no more than 30 However, there are increasingly

more real world applications where stream data

arrive intensively in large volumes. In addition, the

hidden patterns underneath data streams may

change continuously, which requires a large number

of base classifiers to capture various patterns and

form a quality ensemble. Such applications call for

fast sub linear prediction solutions.

3.2 PROPOSED TECHNIQUE

Structure that organizes base classifiers in a height-

balanced tree structure to achieve logarithmic time

complexity for prediction. Technically, an E-tree

has three key operations

1. Search: traverse an E-tree to classify an

incoming stream record x;

2. Insertion: Integrate new classifiers into an

E-tree;

3. Deletion: Remove outdates classifiers from

a Tree.

As a result, the E-tree approach not only guarantees

a logarithmic time complexity for prediction, but is

also able to adapt to new trends and patterns in

stream data. The rest of the paper is structured as

follows. Section introduces the ensemble indexing

problem. Section describes the main structure and

key operations of E-trees.

4. ALGORITHEM USED

4.1 SEARCH ALGORITHM

Search Algorithm is an algorithm for finding an

item with specified properties among a collection of

items which are coded into a computer program,

that look for clues to return what is wanted. The

items may be stored individually as records in a

database; or may be elements of a search space

defined by a mathematical formula or procedure,

such as the roots of an equation with integer

variables; or a combination of the two, such as the

Hamiltonian circuits of a graph.

Virtual Search Spaces

Algorithms for searching virtual spaces are used in

constraint satisfaction problem, where the goal is to

find a set of value assignments to certain variables

that will satisfy specific mathematical equations

and in equations. They are also used when the goal

is to find a variable assignment that will maximize

or minimize a certain function of those variables.

Algorithms for these problems include the basic

brute-force search (also called "naïve" or

"uninformed" search), and a variety of heuristics

that try to exploit partial knowledge about structure

of the space, such as linear relaxation, 'constraint

generation, and constraint propagation.

An important subclass are the local search methods,

that view the elements of the search space as the

vertices of a graph, with edges defined by a set of

heuristics applicable to the case; and scan the space

G. Sugantha et al www.ijetst.in Page 3562

IJETST- Vol.||03||Issue||02||Pages 3559-3564||February||ISSN 2348-9480 2016

by moving from item to item along the edges, for

example according to the steepest descent or best-

first criterion, or in a stochastic search. This

category includes a great variety of general met

heuristic methods, such as simulated annealing, tab

search, A-teams, and genetic programming that

combine arbitrary heuristics in specific ways.

This class also includes various tree search

algorithms that view the elements as vertices of a

tree, and traverse that tree in some special order.

Examples of the latter include the exhaustive

methods such as depth-first search and breadth-first

search, as well as various heuristic-based search

trees pruning methods such as backtracking and

branch and bound. Unlike general met heuristics,

which at best work only in a probabilistic sense,

many of these tree-search methods are guaranteed

to find the exact or optimal solution, if given

enough time. This is called "completeness".

Another important sub-class consists of algorithms

for exploring the game tree of multiple-player

games, such as chess or backgammon, whose nodes

consist of all possible game situations that could

result from the current situation. The goal in these

problems is to find the move that provides the best

chance of a win, taking into account all possible

moves of the opponent(s). Similar problems occur

when humans or machines have to make successive

decisions whose outcomes are not entirely under

one's control, such as in robot guidance or in

marketing, financial, or military strategy planning.

This kind of problem — combinatorial search —

has been extensively studied in the context of

artificial intelligence. Examples of algorithms for

this class are the mini max algorithm, alpha–beta

pruning, and the A* algorithm.

Sub-Structures of a Given Structure

The name combinatorial search is generally used

for algorithms that look for a specific sub-structure

of a given discrete structure, such as a graph, a

string, a finite group, and so on. The term

combinatorial optimization is typically used when

the goal is to find a sub-structure with a maximum

(or minimum) value of some parameter. (Since the

sub-structure is usually represented in the computer

by a set of integer variables with constraints, these

problems can be viewed as special cases of

constraint satisfaction or discrete optimization; but

they are usually formulated and solved in a more

abstract setting where the internal representation is

not explicitly mentioned.)

An important and extensively studied subclass are

the graph algorithms, in particular graph traversal

algorithms, for finding specific sub-structures in a

given graph — such as sub graphs, paths, circuits,

and so on. Examples include Dijkstra's algorithm,

Kruskal's algorithm, the nearest neighbour

algorithm, and Prim's algorithm.

Another important subclass of this category is the

string searching algorithms that search for patterns

within strings. Two famous examples are the

Boyer–Moore and Knuth–Morris–Pratt algorithms,

G. Sugantha et al www.ijetst.in Page 3563

IJETST- Vol.||03||Issue||02||Pages 3559-3564||February||ISSN 2348-9480 2016

and several algorithms based on the suffix tree data

structure.

Search for the Maximum of a Function

In 1953, American statistician Jack Kiefer devised

Fibonacci search which can be used to find the

maximum of a unit modal function and has many

other applications in computer science.

5. THEORETICAL ANALYSIS

TREE TRAVERSAL ANALAYSIS:

Depth-first search is Trees can be traversed in pre-

order, in-order, or post-order. These searches are

referred to as depth-first search (DFS), as the search

tree is deepened as much as possible on each child

before going to the next sibling. For a binary tree,

they are defined as display operations recursively at

each node, starting with the root.

Breadth-first search Trees can also be traversed in

level-order, where we visit every node on a level

before going to a lower level. This search is

referred to as breadth-first search (BFS), as the

search tree is broadened as much as possible on

each depth before going to the next depth.

6. RELATED WORK

Stream classification. Existing data stream

classification models can be roughly categorized

into two groups: online/ incremental models and

ensemble learning
[5], [6], [7], [8], [9], [10], [11]

. The former

aims to build a single sophisticated model that can

be continuously updated. Examples include the

Very Fast Decision Tree (VFDT) model and the

incremental SVM model.

Ensemble pruning. For the purpose of reducing

computational and memory costs, ensemble pruning
[15], [16]

 searches for a good subset of all ensemble

members that perform as good as the original

ensemble.

Classifier indexing Grouping images into

(semantically) meaningful categories using low-

level visual features is a challenging and important

problem in content-based image retrieval
[17] [18] [10]

[11]
. Using binary Bayesian classifiers, we attempt

to capture high-level concepts from low-level

image features under the constraint that the test

image does belong to one of the classes.

Specifically, we consider the hierarchical

classification of vacation images; at the highest

level, images are classified as indoor or outdoor;

outdoor images are further classified as city or

landscape; finally, a subset of landscape images is

classified into sunset, forest, and mountain classes.

7. CONCLUSION

Security E-tree indexing structure for sub linear

time complexity for classifying high speed stream

records. The main contributions of this study are

threefold: (1) we formulate and address the

prediction efficiency problem for ensemble models

on data streams, which is a legitimate research

problem well motivated by increasing real-time

applications. (2) Our solution converts ensemble

models into spatial databases and applies spatial

indexing techniques to achieve sub-linear

prediction. This novel technique can be extended to

other data stream classification models besides

ensemble learning, or general classification models

that require timely prediction. (3) The proposed E-

tree evaluation method can be extended to

spatial/temporal data analysis where data nodes

have arbitrary extents.

REFERENCES

1. C. Agawam, Data Streams: Models and

Algorithms. Springer, 2006.

2. P. Zhang, J. Li, P. Wang, B. Gao, X. Zhu,

and L. Guo, “Enabling Fast Prediction for

Ensemble Models on Data Streams,” Proc.

17
th

 ACM SIGKDD Int’l Conf. Knowledge

Discovery and Data Mining (KDD), 2011.

3. M. Masud, J. Gao, L. Khan, J. Han, and B.

Thuraisingham, “Classification and Novel

Class Detection in Concept-Drifting Data

Streams under Time Constraints,” IEEE

Trans. Knowledge and Data Eng., vol. 23,

no. 6, pp. 859-874, June 2011.

4. J. Gao, R. Sebastiao, and P. Rodrigues,

“Issues in Evaluation ofStream Learning

Algorithms,” Proc. 15th ACM SIGKDD

G. Sugantha et al www.ijetst.in Page 3564

IJETST- Vol.||03||Issue||02||Pages 3559-3564||February||ISSN 2348-9480 2016

Int’l Conf.Knowledge Discovery and Data

Mining (KDD), 2009.

5. H. Wang, W. Fan, P. Yu, and J. Han,

“Mining Concept-Drifting Data Streams

Using Ensemble Classifiers,” Proc. Ninth

ACM SIGKDD Int’l Conf. Knowledge

Discovery and Data Mining (KDD), 2003.

6. Bifet, G. Holmes, B. Pfahringer, R. Kirkby,

and R. Gavalda, “New Ensemble Methods

for Evolving Data Streams,” Proc. 15
th

 CM

SIGKDD Int’l Conf. Knowledge Discovery

and Data Mining (KDD), 2009.

7. X. Zhu, P. Zhang, X. Lin, and Y. Shi,

“Active Learning from Stream Data Using

Optimal Weight Classifier Ensemble,” IEEE

Trans. System, Man, Cybernetics, Part B:

Cybernetics, vol. 40, no. 4, pp. 1-15, Dec.

2010.

8. T. Sellis, N. Roussopoulos, and C.

Faloutsos, “The Rþ-tree: ADynamic Index

for Multi-Dimensional Objects,” Proc. 13th

Int’lConf. Very Large Data Bases (VLDB),

1987.

9. D. Balzarotti, M. Monga, and S. Sicari,

“Assessing the Risk of Using Vulnerable

Components,” Proc. ACM Second

Workshop Quality of Protection (QoP ’05),

pp. 65-78, 2005.

10. P. Ciaccia, M. Patella, and P. Zezula, “M-

Tree: An Efficient AccessMethod for

Similarity Search in Metric Spaces,” Proc.

23rd Int’lConf. Very Large Data Bases

(VLDB), 1997.

11. M. McQueen, T. McQueen, W. Boyer, and

M. Chaffin, “Empirical Estimates and

Observations of 0Day Vulnerabilities,”

Proc. Hawaii Int’l Conf. System Sciences,

pp. 1-12, 2009.

12. Y. Zhang, S. Burer, and W. Street,

“Ensemble Pruning via Semi-Definite

Programming,” J. Machine Learning

Research, vol. 7, no. 2006, pp. 1315-1338,

2006.

13. Y. Theodoridis, E. Stefanakis, and T. Sellis,

“Efficient Cost Models for Spatial Queries

Using R-Trees,” IEEE Trans. Knowledge

and Data Eng., vol. 12, no. 1, pp. 19-32,

Jan./Feb. 2000.

14. S. Babu, R. Motwani, K. Munagala, I.

Nishizawa, and J. Widom, “Adaptive

Ordering of Pipelined Stream Filters,” Proc.

ACM SIGMOD Int’l Conf. Management of

Data (SIGMOD), 2004..

15. Machanavajjhala, E. Vee, M. Garofalakis,

and J. Shanmugasundaram, “Scalable

Ranked Publish/Subscribe,” Proc. VLDB

Endowment, vol. 1, pp. 451-462, 2008.

16. E. Ikonomovska, J. Gama, B. Zenko, and S.

Dzeroski, “Speeding- Up Hoeffding-Based

Regression Trees with Options,” Proc.

28
th

Int’l Conf. Machine Learning (ICML),

2011.

17. H. Yu, I. Ko, Y. Kim, S. Hwang, and W.

Han, “Exact Indexing for Support Vector

Machines,” Proc. ACM SIGMOD Int’l

Conf. Management of Data (SIGMOD),

2011.

18. N. Panda and E. Chang, “Exploiting

Geometry for Support Vector Machine

Indexing,” Proc. SIAMInt’l Conf.

DataMining (SDM), 2005.

19. C. Chang and C. Lin, “LIBSVM: A Library

for Support Vector Machines,”

http://www.csie.ntu.edu.tw/cjlin/libsvm,

2001.

20. Asuncion and D. Newman, “UCI Machine

Learning Repository,”

http://mlearn.ics.uci.edu/databases/, 2007.

	id1
	id2
	id4
	id5

