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Abstract 

Group learning is a common tool for data stream classification, mainly because of its inherent 

advantages of handling huge volume of stream data and concept drifting. Have been mainly focused on 

building accurate group models from stream data.  a linear scan of a huge number of base classifiers in 

the group during prediction incurs significant costs in response time, preventing group learning from 

being practical for many real world time critical data stream applications, such as web traffic monitoring 

spam detection, intrusion detection In these  applications, data streams usually arrive at a speed of Giga 

byte per Seconds, and it is necessary to classify each stream record in a timely manner  we propose a 

novel Ensemble tree indexing structure to organize all base classifiers in an grouped for fast prediction 

On  Ensemble trees treat group as spatial databases and employee an Random tree like height balanced 

structure to minimize the expected prediction time of from linear to sub linear complexity. On the other 

hand, Ensemble trees can be automatically updated by continuously integrating new classifiers and other 

discarding outdated ones, well adapting to new trends and patterns underneath data streams. 

Keywords: Stream data mining, classification, ensemble learning, spatial indexing, and concept drifting. 

 

I. INTRODUCTION 

Data Stream Mining is the process of extracting 

knowledge structures from continuous, rapid data 

records. A data stream is an ordered sequence of 

instances that in many applications of data stream 

mining can be read only once or a small number of 

times using limited computing and storage 

capabilities. Examples of data streams include 

computer network traffic, phone conversations, 

ATM transactions, web searches, and sensor data. 

Data stream mining can be considered a subfield of 

data mining, machine learning, and knowledge 

discovery. 

In many data stream mining applications, the goal is 

to predict the class or value of new instances in the 

data stream given some knowledge about the class 

membership or values of previous instances in the 

data stream. Machine learning techniques can be 

used to learn this prediction task from labeled 

examples in an automated fashion. Often, concepts 

from the field of incremental learning, a 

generalization of Incremental heuristic search are 

applied to cope with structural changes, on-line 

learning and real-time demands. In many 

applications, especially operating within non-

stationary environments, the distribution underlying 

the instances or the rules underlying their labeling 

may change over time, i.e.The goal of the 

prediction, the class to be predicted or the target 

value to be predicted may change over time. This 

problem is referred to as concept drift. 

Classification and clustering are examples of the 

more general problem of pattern recognition, which 

is the assignment of some sort of output value to a 

given input value. Other examples are regression, 

which assigns a real-valued output to each input; 

sequence labeling, which assigns a class to each 

member of a sequence of values (for example, part 

of speech tagging, which assigns a part of speech to 

each word in an input sentence); parsing, which 



 

G. Sugantha et al                                               www.ijetst.in Page 3560 
 

IJETST- Vol.||03||Issue||02||Pages 3559-3564||February||ISSN 2348-9480 2016 

assigns a parse tree to an input sentence, describing 

the syntactic structure of the sentence; etc. 

A common subclass of classification is probabilistic 

classification. Algorithms of this nature use 

statistical inference to find the best class for a given 

instance. Unlike other algorithms, which simply 

output a "best" class, probabilistic algorithms 

output a probability of the instance being a member 

of each of the possible classes. The best class is 

normally then selected as the one with the highest 

probability. However, such an algorithm has 

numerous advantages over non-probabilistic 

classifiers 

In ensemble learning, an agent takes a number of 

learning algorithms and combines their output to 

make a prediction. The algorithms being combined 

are called base-level algorithms.The simplest case 

of ensemble learning is to train the base-level 

algorithms on random subsets of the data and either 

let these vote for the most popular classification 

(for definitive predictions) or average the 

predictions of the base-level algorithm. For 

example, one could train a number of decision 

trees, each on random samples of, say, 50% of the 

training data, and then either vote for the most 

popular classification or average the numerical 

predictions. The outputs of the decision trees could 

even be inputs to a linear classifier, and the weights 

of this classifier could be learned.  

 

 

1.1 An Efficient Indexing Structure for group 

Models on Data Streams 

In bagging, if there are m training examples, the 

base-level algorithms are trained on sets of m 

randomly drawn, with replacement, sets of the 

training examples. In each of these sets, some 

examples are not chosen, and some are duplicated. 

On average, each set contains about 63% of the 

original examples.  

In boosting there is a sequence of classifiers in 

which each classifier uses a weighted set of 

examples. Those examples that the previous 

classifiers misclassified are weighted more. 

Weighting examples can either be incorporated into 

the base-level algorithms or can affect which 

examples are chosen as training examples for the 

future classifiers.  

Another way to create base-level classifiers is to 

manipulate the input features. Different base-level 

classifiers can be trained on different features. 

Often the sets of features are hand-tuned.  

Another way to get diverse base-level classifiers is 

to randomize the algorithm. For example, neural 

network algorithms that start at different parameter 

settings may find different local minima, which 

make different predictions. These different 

networks can be combined.  

 

2. OBJECTIVE OF THE STUDY 

We first define the key data structures and notations 

used in this paper. Geographical information of 

User. Each user u has a register location generated 

in various EBSNs or LBSNs. 

User Activity. A user activity is a triple (u, v, r) that 

user u rates item v with score R. User activity 

historical data is given by S⊆U ×V×R , where user 

activities are positive observations in the past. User 

Group. A user group can be a set of users by 

considering users’ geographical information. Item 

group. Sets of item with similar preference from 

users. In our analysis, rating scores are strongly 

correlated with location-based user group 

preferences, where z l and zg represent two 

difference topic models. This enables rating r to be 
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mutually influenced during the both topic discovery 

processed. 

 

3 LITRATURE REVIEW 

3.1 PROBLEM DEFINITION 

A two class data stream S consisting of an infinite 

number of records fxi, yi pg, where xi 2 Rd is a d -

dimensional attribute vector, and yet 2 formal, 

abnormal is the class label, which is unobservable 

unless the sample is properly labeled. Suppose that 

we have built on base classifiers C1, C2  . . . ; Cn 

from historical stream data using a decision tree 

algorithm (such as C4.5). All the n base classifies 

are combined together as an ensemble classifier E. 

Each base classifier Ci 1 i nÞ is comprised of l 

decision rules 

J prep resented by conjunction literals (i.e., rules are 

expressed as “if . . . then . . .”). Then, there are N 

1⁄4 n Al decision rules in the ensemble E. The aim 

of this paper is to generate accurate prediction for 

an incoming stream record x, using the ensemble 

model E, with sub-linear time complexity O (log 

(N)). 

Existing works on ensemble learning in data 

streams mainly focus on building accurate 

ensemble models. Prediction efficiency has not 

been concerned mainly because (1) prediction 

typically takes linear time, which is sufficient for 

general applications with undemanding prediction 

efficiency. (2) Existing works only consider 

combining a small number of base classifiers, e.g., 

no more than 30 However, there are increasingly 

more real world applications where stream data 

arrive intensively in large volumes. In addition, the 

hidden patterns underneath data streams may 

change continuously, which requires a large number 

of base classifiers to capture various patterns and 

form a quality ensemble. Such applications call for 

fast sub linear prediction solutions. 

 

3.2 PROPOSED TECHNIQUE 

Structure that organizes base classifiers in a height-

balanced tree structure to achieve logarithmic time 

complexity for prediction. Technically, an E-tree 

has three key operations 

1. Search: traverse an E-tree to classify an 

incoming stream record x; 

2. Insertion: Integrate new classifiers into an 

E-tree; 

3. Deletion: Remove outdates classifiers from 

a Tree.  

As a result, the E-tree approach not only guarantees 

a logarithmic time complexity for prediction, but is 

also able to adapt to new trends and patterns in 

stream data. The rest of the paper is structured as 

follows. Section introduces the ensemble indexing 

problem. Section describes the main structure and 

key operations of E-trees. 

 

4. ALGORITHEM USED 

4.1 SEARCH ALGORITHM 

Search Algorithm is an algorithm for finding an 

item with specified properties among a collection of 

items which are coded into a computer program, 

that look for clues to return what is wanted. The 

items may be stored individually as records in a 

database; or may be elements of a search space 

defined by a mathematical formula or procedure, 

such as the roots of an equation with integer 

variables; or a combination of the two, such as the 

Hamiltonian circuits of a graph. 

 

Virtual Search Spaces 

Algorithms for searching virtual spaces are used in 

constraint satisfaction problem, where the goal is to 

find a set of value assignments to certain variables 

that will satisfy specific mathematical equations 

and in equations. They are also used when the goal 

is to find a variable assignment that will maximize 

or minimize a certain function of those variables. 

Algorithms for these problems include the basic 

brute-force search (also called "naïve" or 

"uninformed" search), and a variety of heuristics 

that try to exploit partial knowledge about structure 

of the space, such as linear relaxation, 'constraint 

generation, and constraint propagation. 

An important subclass are the local search methods, 

that view the elements of the search space as the 

vertices of a graph, with edges defined by a set of 

heuristics applicable to the case; and scan the space 
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by moving from item to item along the edges, for 

example according to the steepest descent or best-

first criterion, or in a stochastic search. This 

category includes a great variety of general met 

heuristic methods, such as simulated annealing, tab 

search, A-teams, and genetic programming that 

combine arbitrary heuristics in specific ways. 

 

 
This class also includes various tree search 

algorithms that view the elements as vertices of a 

tree, and traverse that tree in some special order. 

Examples of the latter include the exhaustive 

methods such as depth-first search and breadth-first 

search, as well as various heuristic-based search 

trees pruning methods such as backtracking and 

branch and bound. Unlike general met heuristics, 

which at best work only in a probabilistic sense, 

many of these tree-search methods are guaranteed 

to find the exact or optimal solution, if given 

enough time. This is called "completeness". 

Another important sub-class consists of algorithms 

for exploring the game tree of multiple-player 

games, such as chess or backgammon, whose nodes 

consist of all possible game situations that could 

result from the current situation. The goal in these 

problems is to find the move that provides the best 

chance of a win, taking into account all possible 

moves of the opponent(s). Similar problems occur 

when humans or machines have to make successive 

decisions whose outcomes are not entirely under 

one's control, such as in robot guidance or in 

marketing, financial, or military strategy planning. 

This kind of problem — combinatorial search — 

has been extensively studied in the context of 

artificial intelligence. Examples of algorithms for 

this class are the mini max algorithm, alpha–beta 

pruning, and the A* algorithm. 

 

Sub-Structures of a Given Structure 

The name combinatorial search is generally used 

for algorithms that look for a specific sub-structure 

of a given discrete structure, such as a graph, a 

string, a finite group, and so on. The term 

combinatorial optimization is typically used when 

the goal is to find a sub-structure with a maximum 

(or minimum) value of some parameter. (Since the 

sub-structure is usually represented in the computer 

by a set of integer variables with constraints, these 

problems can be viewed as special cases of 

constraint satisfaction or discrete optimization; but 

they are usually formulated and solved in a more 

abstract setting where the internal representation is 

not explicitly mentioned.) 

An important and extensively studied subclass are 

the graph algorithms, in particular graph traversal 

algorithms, for finding specific sub-structures in a 

given graph — such as sub graphs, paths, circuits, 

and so on. Examples include Dijkstra's algorithm, 

Kruskal's algorithm, the nearest neighbour 

algorithm, and Prim's algorithm. 

Another important subclass of this category is the 

string searching algorithms that search for patterns 

within strings. Two famous examples are the 

Boyer–Moore and Knuth–Morris–Pratt algorithms, 
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and several algorithms based on the suffix tree data 

structure. 

Search for the Maximum of a Function 

In 1953, American statistician Jack Kiefer devised 

Fibonacci search which can be used to find the 

maximum of a unit modal function and has many 

other applications in computer science. 

 

5. THEORETICAL ANALYSIS 

TREE TRAVERSAL ANALAYSIS: 

Depth-first search is Trees can be traversed in pre-

order, in-order, or post-order. These searches are 

referred to as depth-first search (DFS), as the search 

tree is deepened as much as possible on each child 

before going to the next sibling. For a binary tree, 

they are defined as display operations recursively at 

each node, starting with the root. 

Breadth-first search Trees can also be traversed in 

level-order, where we visit every node on a level 

before going to a lower level. This search is 

referred to as breadth-first search (BFS), as the 

search tree is broadened as much as possible on 

each depth before going to the next depth. 

 

6. RELATED WORK 

Stream classification. Existing data stream 

classification models can be roughly categorized 

into two groups: online/ incremental models and 

ensemble learning 
[5], [6], [7], [8], [9], [10], [11]

. The former 

aims to build a single sophisticated model that can 

be continuously updated. Examples include the 

Very Fast Decision Tree (VFDT) model and the 

incremental SVM model. 

Ensemble pruning. For the purpose of reducing 

computational and memory costs, ensemble pruning 
[15], [16]

 searches for a good subset of all ensemble 

members that perform as good as the original 

ensemble. 

Classifier indexing Grouping images into 

(semantically) meaningful categories using low-

level visual features is a challenging and important 

problem in content-based image retrieval 
[17] [18] [10] 

[11]
.  Using binary Bayesian classifiers, we attempt 

to capture high-level concepts from low-level 

image features under the constraint that the test 

image does belong to one of the classes. 

Specifically, we consider the hierarchical 

classification of vacation images; at the highest 

level, images are classified as indoor or outdoor; 

outdoor images are further classified as city or 

landscape; finally, a subset of landscape images is 

classified into sunset, forest, and mountain classes. 

 

7. CONCLUSION 

Security E-tree indexing structure for sub linear 

time complexity for classifying high speed stream 

records. The main contributions of this study are 

threefold: (1) we formulate and address the 

prediction efficiency problem for ensemble models 

on data streams, which is a legitimate research 

problem well motivated by increasing real-time 

applications. (2) Our solution converts ensemble 

models into spatial databases and applies spatial 

indexing techniques to achieve sub-linear 

prediction. This novel technique can be extended to 

other data stream classification models besides 

ensemble learning, or general classification models 

that require timely prediction. (3) The proposed E-

tree evaluation method can be extended to 

spatial/temporal data analysis where data nodes 

have arbitrary extents. 
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