
 

Ruby Panwar, Amit Kumar, Meenakshi        www.ijetst.in Page 2931 
 

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015 

International Journal of Emerging Trends in Science and Technology 

Performance Analysis of Hopfield Network Associative Memory using 

Evolutionary Algorithm for Superimposed Images of Numerals 
 

Authors 

Ruby Panwar, Amit Kumar, Meenakshi 
 

ABSTRACT 

This paper presents the implementation of a Hebbian learning rule and genetic algorithm to store and later, 

recall of superimposed images of numerals in Hopfield network associative memory. A set of ten objects (i.e. 0 

to 9 numerals) has been considered as the pattern set. In the Hopfield network associative memory, the 

weighted code of input patterns provides an auto-associative function in the network. The storing of images is 

done by hebbian learning rule and recalling is done by using both hebbian rule and genetic algorithm. The 

simulated results shows that the genetic algorithm gives efficient results as compared to hebbian rule for 

superimposed images of numerals.   

Keywords- Hopfield Neural network, associative memory, hebbian learning rule, genetic a lgorithm, weight 

matrices, pattern recalling, population generation technique.  

 

INTRODUCTION 

Building an Intelligent Machine, which can think 

and act completely as a human brain, is one of the 

upfront issues which is still to be realized by 

Computer Science fraternity. If we need to build 

such an Intelligent Machine, first we need to 

imitate the human brain. The human brain is 

difficult to study directly unlike animal brains. 

Indirect data such as brain waves pick up the 

electric potential of the brain surface, which gives 

us only crude information on the emotional state, 

and is not suitable for identifying information on 

the state of thinking, the essential part of the 

human brain function. 

When a child is born, what does the child know? 

To our knowledge, the child knows only how to 

cry. The child probably does not know its parents. 

When the child grows, the step by step learning 

process begins. First, the child learns to drink 

milk. Then the child learns to identify its parents. 

Every time a child learns something, it is encoded 

into some portion of the brain.  Yet there is a 

difference in the way the information is stored in 

brain. Some information or instances are "hard-

coded" within the brain. As a result, we never 

forget certain things. For example, once we learn 

to swim, we never forget swimming. Though it 

appears normal to say that we know swimming, 

there is a mystery behind this. Why are we unable 

to forget the swimming? The reason might be that 

when we are fully trained to swim, it is hard-

coded into our brain. There are many examples of 

unforgettable information. Another example is 

once we learn that 1 + 1 equals 2, we never forget 

that fact. Why? The reason is that it is completely 

learned. These examples demonstrate that we can 

learn, understand and remember certain things 

completely, partially and sometimes not at all. 

Depending on our capacity for learning, the 

information is stored in our brain. 

Artificial neural networks (ANN) are a form of 

artificial intelligence modeled after how the brain 

processes information. In this biological paradigm 

there are neurons (nodes) which are small 

processing units. Neurons are connected to other 

neurons and these connections can have various 

integrities (weights). As signals travel through the 

network output is produced. It is the purpose of 
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this experiment to see if the simplified artificial 

neural networks will function similarly to the 

complex human brain. Most importantly neural 

network models use some organizational 

principles such as learning, generalization, 

adaptivity and fault tolerance. ANN is useful only 

when the processing units are organized in a 

suitable manner to accomplish the given task.  

For the Hopfield network, superimposed numerals 

are presented at the input and the network iterates 

until it reaches a steady state or a limit cycle. A 

pattern is recalled when stability is reached. In 

general, if the input pattern is some corrupted or 

noisy version of pattern stored in the network, 

then the recalled pattern should be ideal or 

uncorrupted version of the input pattern. Hopfield 

network will try to converge on the closest 

memory state whether the input state is valid or 

merely random noise. An associative memory is a 

primary application of the Hopfield network. The 

weights of the connections between the neurons 

have to be thus set that the states of the system 

corresponding with the patterns which are to be 

stored in the network are stable.  

Developed by Holland (1975), an evolutionary 

searching (genetic algorithm) is a biologically 

inspired search technique. In simple terms, the 

technique involves generating a random initial 

population of individuals, each of which 

represents a potential solution to a problem 

Genetic algorithms have traditionally been used in 

optimization but, with a few enhancements, can 

perform classification, prediction and pattern 

association as well. 

Much work has been done on the evolution of 

neural networks with GA. There have been a lot 

of researches which apply evolutionary techniques 

to layered neural networks.  The first attempt to 

conjugate evolutionary algorithms with Hopfield 

neural networks dealt with training of connection 

weights. Evolution has been introduced in neural 

networks at three levels: architectures, connection 

weights and learning rules. The evolution of 

connection weights proceeds at the lowest level on 

the fastest time scale in an environment 

determined by architecture, a learning rule, and 

learning tasks. The evolution of connection 

weights introduces an adaptive and global 

approach to training, especially in the 

reinforcement learning and recurrent network 

learning paradigm. The evolution of learning rules 

can be regarded as a process of “learning to learn” 

in ANN’s where the adaptation of learning rules is 

achieved through evolution. The evolution of 

architectures enables ANN’s to adapt their 

topologies to different tasks without human 

intervention and thus provides an approach to 

automatic ANN design as both ANN connection 

weights and structures can be evolved.  

In the present work, our objective is to analyze the 

performance of neural networks of Hopfield type 

for recalling of the already stored patterns with 

evolutionary algorithm. In this process, first the 

patterns of training set have been encoded in the 

neural network using conventional hebbian 

learning rule. It is expected that all the patterns of 

training set has been successfully stored as the 

associative memory feature of Hopfield type 

neural network. As a result of this learning 

process, we obtain the expected optimized weight 

matrix. Now, we employ the genetic algorithm to 

evolve the population of this approximate optimal 

weight matrix obtained by hebbian learning rule. 

The fitness of every evolved population of weight 

matrices is evaluated by using fitness evaluation 

function. This process of evaluation of weight 

matrices continues till the last matrix of the 

generated population is not examined. This 

selected population of weight matrices reflects the 

optimal solution for recalling process in a way 

that on presentation of any noisy input pattern, it 

produces the correct corresponding stored pattern. 

The advantage of this approach is that it is 

minimizing the randomness from the genetic 

algorithms because, instead of starting from the 

random solution, it starts from approximate 

optimum solution. 

Therefore, the process of recalling by proposed 

hybrid evolutionary system will be efficient and 

relatively faster compared to simple genetic 
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algorithm and conventional hebbian approach. 

The detailed comparative analysis of the results 

obtained during the simulation is presented and 

discussed with the help of graphs and tables.  

 

SIMULATION DESIGN AND IMPLEMEN-

TATION DETAILS 

This section describes the experiments designed to 

evaluate the performance of Hopfield neural 

network with the genetic algorithm for the taken 

set of objects recalling. 

 

Set of Patterns Used For Training 

The patterns used for the simulations are shown in 

Figure 1. Each pattern consisted of a 6 X 6 pixel 

matrix representing an object of the set. White and 

black pixels are respectively assigned 

corresponding values of -1 and +1.  

 
Figure 11: Set of patterns after superimposing 

two numerals (0 with other numerals 1 to 9) 

 

The above figure shows the set of patterns formed 

after mixing numerals 1 to 9 with 0, same patterns 

can also be generated for other numerals 1 to 9. 

For example, mixed 0 with 1 can be written as:-  

[-11111-11111-111-1-11-111-1-11-111-1-11-11-

11111-1] 

 

Experiments 

Experiments were taken on same Hopfield 

network architecture (i.e. 36 neurons network) by 

mixing two numerals with each other (shown in 

figure 2). Each experiment is based on two aspects 

which are recalling the objects with Hebbian rule 

and recalling the same objects with genetic 

algorithm. The inputs for different runs are carried 

out by superimposing numerals that are already 

stored in the network.  

The genetic operators used in finding out results 

are summarized in Table 1. 

 

Table 1: Genetic operator used in experiments 

 
The parameters used in experiments are described 

in Table 2. 

 

Table 2: Parameters used for Hebbian learning 

rule 

 
The task associated to the Hopfield neural 

networks in performing experiments is to store the 

taken set of objects as patterns with the 

appropriate recalling of the patterns by mixing 

numerals with one another.  

 

Hopfield Neural Network 

The proposed Hopfield model consists of N (36 = 

6 X 6) neurons and N*N connection strengths. 

Each neuron can be in one of two states i.e. ±1, 

and L bipolar patterns have to be memorized in 

associative memory. For storing L patterns, we 

could choose a Hebbian rule given by the 

summation of the Hebbian terms for each pattern. 

i.e. 
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To store 10 objects in a 36-unit bipolar Hopfield neural network, at each corresponding one stable state and 

that must satisfy the following activation dynamics equation: 
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We can generalize this as 
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After storing all the patterns, the final weight matrix looks like as follows 

 
 

The Genetic Algorithm Implementation 

In this simulation, a population of weight matrices 

is produced randomly from the parent weight 

matrix when GA starts. In each generation, this 

population is modified through uniform random 

mutations and discrete crossovers and their fitness 

values are evaluated. According to the fitness 

values, individuals of the next generation are 

selected, using a (µ+λ) -strategy in ES 

terminology. 

The cycle of generating the new population with 

better individuals and restarting the search is 

repeated until an optimum solution was found. 

The first fitness function is evaluating the best 

matrices of the weights population on the basics 

of the settlement of the network in the stable state 
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corresponding to the stored pattern on the 

presentation of the already stored pattern as the 

input pattern. The fitness evaluation function is 

selection of the weight matrices on the basis of 

settlement of the network in the stable state 

corresponding to the correct or exact stored 

pattern on the presentation of prototype input 

pattern as the already stored pattern. It indicates 

that the stable states of the network will be used 

for the evaluation of the weight’s population. 

Thus in the recalling process, stable state of the 

network corresponding to the stored pattern 

should be retained for the selected weight vector 

on the presentation of prototype input pattern. All 

those weight matrices which can successfully 

recall the respective stored patterns by providing 

the same as input pattern (with no error) at a time 

will be considered as fitted weight matrix.  

 

RESULTS AND DISCUSSIONS 

The results presented in this section demonstrate 

that large significant difference exists between the 

performance of genetic algorithm and 

conventional Hebbian rule for recalling objects 

those have been stored in Hopfield neural network 

using Hebbian learning rule. These results 

recommend that, in all cases, recalling of any 

approximate pattern through genetic algorithm 

outperformed the recalling of the same patterns 

through conventional Hebbian rule. While there 

are mixed patterns presented in the input pattern 

(tables given below) shows the results for 

recalling the stored objects using both Hebbian 

rule and genetic algorithm. In total 1000 times the 

recalling was made through both the algorithms 

separately for each object.  

In table 3, the numeral 0 is superimposed with 

other numerals (1to 9) and then the results are 

carried out by recalling mixed pattern as 0 or 1 or 

not distinguished with Hebbian learning rule and 

genetic algorithm. When the superimposed 

patterns are recalled by using genetic algorithm 

then the recalling rate is higher than the hebbian 

learning rule. As patterns are superimposed with 

each other, obviously noise will arise. GA has 

shown that out of the mixed patterns it works 

better for identifying the original patterns, 

numerals in our case. There has been some cases 

when the recalling was made 100 percent like in 

the combination of numeral 6 and numeral 8, this 

is because of the superimposed pattern was at the 

least hamming distance from either of the original 

numeral. There has been cases when the recalling 

was significantly low, which again can be 

explained by the maximum hamming distance 

between superimposed pattern and either of the 

original numeral. 

 

Table 3: Results when 0 superimposed with other numerals (1 to 9) 

 

After 1000 iterations success (%) 

 

By Hebb's rule  By Genetic algorithm  

Numeral

s mixed 
together 

Numeral

s 
identifie
d as '0'  

Numerals 

identified as the 
other numerals 
from super-

imposed images 

Numeral

s not 
identifie
d 

Total 

succes
s  

Numeral

s 
identifie
d as '0'  

Numerals 

identified as the 
other numerals 
from super-

imposed images 

Numera

ls not  
identifi
ed 

Total 

success 

(0,1) 0.6 1.4 98 2 45.6 12.6 41.8 58.2 

(0,2) 0.9 0.7 98.4 1.6 69.6 30.2 0.2 99.8 

(0,3) 0.6 0.8 98.6 1.4 41.0 32.1 26.9 73.1 

(0,4) 0.9 1.3 97.9 2.1 55.6 44.3 0.1 99.9 

(0,5) 0.7 1 98.3 1.7 31.6 25.6 42.8 57.2 

(0,6) 1 0.8 98.2 1.8 35.6 54.6 9.8 90.2 

(0,7) 0.7 1.3 98 2 29.6 36.8 33.6 66.4 

(0,8) 1 0.8 98.2 1.8 35.6 32.6 31.8 68.2 

(0,9) 0.7 1.2 98.1 1.9 26.8 35.9 37.3 62.7 
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Graph 1: Results when 0 superimposed with other numerals (1 to 9)  

 

 

Table 4: Results when 1 superimposed with other numerals (0 to 9) 

 
After 1000 iterations success (%) 

 
By Hebb's rule  By Genetic algorithm  

Numera
ls 
mixed 

togethe
r 

Numeral
s 
identifie

d as '1'  

Numerals 
identified as 
the other 

numerals 
from super-

imposed 
images 

Numeral
s not 
identifie

d 

Total 
succes
s  

Numeral
s 
identifie

d as '1'  

Numerals 
identified as 
the other 

numerals 
from super-

imposed 
images 

Numeral
s not 
identifie

d 

Total 
succes
s 

(1,0) 0.6 1.4 98 2 45.6 12.6 41.8 58.2 

(1,2) 1.1 0.4 98.5 1.5 49.4 13.3 37.3 62.7 

(1,3) 1 0.4 98.6 1.4 41.0 25.4 33.6 66.4 

(1,4) 1 0.6 98.4 1.6 50.7 35.3 14.0 86.0 

(1,5) 0.8 0.4 98.8 1.2 25.6 11.6 62.8 37.2 

(1,6) 1.2 0.4 98.4 1.6 22.6 34.9 42.5 57.5 

(1,7) 0.4 0.2 99.4 0.6 39.0 26.7 34.3 65.7 

(1,8) 1.3 0.4 98.3 1.7 15.3 38.6 46.1 53.9 

(1,9) 1 0.5 98.5 1.5 25.4 33.5 41.1 58.9 

 

Graph 2: Results when 1 superimposed with other numerals (0 to 9) 

 
 

 

 

 

 

 

 

 

0 

20 

40 

60 

80 

100 

1 2 3 4 5 6 7 8 9 

"GA" 

"Hebb's rule" 

0 

50 

100 

150 

1 2 3 4 5 6 7 8 9 

GA 

Hebb's rule 



 

Ruby Panwar, Amit Kumar, Meenakshi        www.ijetst.in Page 2937 
 

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015 

Table 5: Results when 2 superimposed with other numerals (0 to 9) 

 

After 1000 iterations success (%) 

 

By Hebb's rule  By Genetic algorithm  

Numeral

s mixed 
together 

Numeral

s 
identifie

d as '2'  

Numerals 

identified 
as the 

other 
numerals 
from super-

imposed 
images 

Numeral

s not 
identifie

d 

Total 

succes
s  

Numeral

s 
identifie

d as '2'  

Numerals 

identified 
as the 

other 
numerals 
from super-

imposed 
images 

Numerals 

not 
identified 

Total 

succes
s 

(2,0) 0.9 0.7 98.4 1.6 69.6 30.2 0.2 99.8 

(2,1) 1.1 0.4 98.5 1.5 49.4 13.3 37.3 62.7 

(2,3) 0.3 0.5 99.2 0.8 36.0 46.4 17.6 82.4 

(2,4) 0.4 0.9 98.7 1.3 33.2 63.1 3.7 96.3 

(2,5) 0.4 0.8 98.8 1.2 39.0 58.6 2.4 97.6 

(2,6) 0.2 0.1 99.7 0.3 26.5 15.2 58.3 41.7 

(2,7) 0.4 0.9 98.7 1.3 32.5 63.3 4.2 95.8 

(2,8) 0.2 0 99.8 0.2 19.2 9.3 71.5 28.5 

(2,9) 0.2 0.4 99.4 0.6 19.6 41.3 39.1 60.9 

 

Graph 3: Results when 2 superimposed with other numerals (0 to 9) 

 
Table 6: Results when 3 superimposed with other numerals (0 to 9) 

 
After 1000 iterations success (%) 

 
By Hebb's rule  By Genetic algorithm  

Numeral
s mixed 

together 

Numeral
s 

identifie
d as '3'  

Numerals 
identified 

as the other 
numerals 
from super-

imposed 
images 

Numeral
s not 

identifie
d 

Total 
succes

s  

Numeral
s 

identifie
d as '3'  

Numerals 
identified 

as the other 
numerals 
from super-

imposed 
images 

Numerals 
not 

identified 

Total 
succes

s 

(3,0) 0.6 0.8 98.6 1.4 41.0 32.1 26.9 73.1 

(3,1) 1 0.4 98.6 1.4 41.0 25.4 33.6 66.4 

(3,2) 0.3 0.5 99.2 0.8 36.0 46.4 17.6 82.4 

(3,4) 0.2 0.5 99.3 0.7 11.3 31.6 57.1 42.9 

(3,5) 0.4 0 99.6 0.4 25.3 2.6 72.1 27.9 

(3,6) 0.6 0.4 99 1 28.2 24.3 47.5 52.5 

(3,7) 0.6 0.1 99.3 0.7 29.3 10.6 60.1 39.9 

(3,8) 0.6 0.3 99.1 0.9 31.8 25.6 42.6 57.4 

(3,9) 0.2 0.5 99.3 0.7 13.6 38.9 47.5 52.5 
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Graph 4: Results when 3 superimposed with other numerals (0 to 9) 

 
 

Table 7: Results when 4 superimposed with other numerals (0 to 9) 

 

After 1000 iterations success (%) 

 

By Hebb's rule  By Genetic algorithm  

Numeral
s mixed 
together 

Numeral
s 
identified 

as '4'  

Numerals 
identified as 
the other 

numerals 
from super-

imposed 
images 

Numeral
s not 
identified 

Total 
success  

Numeral
s 
identified 

as '4'  

Numerals 
identified as 
the other 

numerals 
from super-

imposed 
images 

Numerals 
not 
identified 

Total 
success 

(4,0) 0.9 1.3 97.8 2.2 55.6 44.3 0.1 99.9 

(4,1) 1 0.6 98.4 1.6 50.7 35.3 14.0 86.0 

(4,2) 0.4 0.9 98.7 1.3 33.2 63.1 3.7 96.3 

(4,3) 0.2 0.5 99.3 0.7 11.3 31.6 57.1 42.9 

(4,5) 0.6 0.4 99 1 51.6 32.1 16.3 83.7 

(4,6) 0.9 0.3 98.8 1.2 62.3 25.3 12.4 87.6 

(4,7) 0.8 0.8 98.4 1.6 42.3 41.3 16.4 83.6 

(4,8) 0 1 99 1 12.0 45.9 42.1 57.9 

(4,9) 0.4 0.5 99.1 0.9 28.6 39.6 31.8 68.2 

 

Graph 5: Results when 4 superimposed with other numerals (0 to 9) 
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Table 8: Results when 5 superimposed with other numerals (0 to 9) 

 

After 1000 iterations success (%) 

 

By Hebb's rule  By Genetic algorithm  

Numeral

s mixed 
together 

Numeral

s 
identifie

d as '5'  

Numerals 

identified 
as the other 

numerals 
from super-
imposed 

images 

Numeral

s not 
identifie

d 

Total 

succes
s  

Numeral

s 
identifie

d as '5'  

Numerals 

identified 
as the other 

numerals 
from super-
imposed 

images 

Numerals 

not 
identified 

Total 

succes
s 

(5,0) 0.7 1 98.3 1.7 31.6 25.6 42.8 57.2 

(5,1) 0.8 0.4 98.8 1.2 25.6 11.6 62.8 37.2 

(5,2) 0.4 0.8 98.8 1.2 39.0 58.6 2.4 97.6 

(5,3) 0 0.4 99.6 0.4 25.3 2.6 72.1 27.9 

(5,4) 0.6 0.4 99 1 51.6 32.1 16.3 83.7 

(5,6) 0.9 0.5 98.6 1.4 35.9 21.9 42.2 57.8 

(5,7) 0.4 0.8 98.8 1.2 22.7 35.6 41.7 58.3 

(5,8) 0.9 0.4 98.7 1.3 54.6 21.9 23.5 76.5 

(5,9) 0.8 0.6 98.6 1.4 39.8 28.6 31.6 68.4 

 

Graph 6: Results when 5 superimposed with other numerals (0 to 9) 

 
 

Table 9: Results when 6 superimposed with other numerals (0 to 9) 

 
After 1000 iterations success (%) 

 
By Hebb's rule  By Genetic algorithm  

Numeral
s mixed 

together 

Numeral
s 

identifie
d as '6'  

Numerals 
identified 

as the other 
numerals 

from super-
imposed 
images 

Numeral
s not 

identifie
d 

Total 
succes

s  

Numeral
s 

identifie
d as '6'  

Numerals 
identified 

as the other 
numerals 

from super-
imposed 
images 

Numerals 
not 

identified 

Total 
succes

s 

(6,0) 1 0.8 98.2 1.8 35.6 54.6 9.8 90.2 

(6,1) 1.2 0.4 98.4 1.6 22.6 34.9 42.5 57.5 

(6,2) 0.2 0.1 99.7 0.3 26.5 15.2 58.3 41.7 

(6,3) 0.4 0.6 99 1 28.2 24.3 47.5 52.5 

(6,4) 0.9 0.3 98.8 1.2 62.3 25.3 12.4 87.6 

(6,5) 0.9 0.5 98.6 1.4 35.9 21.9 42.2 57.8 

(6,7) 0.1 1 98.9 1.1 19.6 56.9 23.5 76.5 

(6,8) 0 100 0 100 6.9 93.1 0 100 

(6,9) 0.1 0.4 99.5 0.5 21.8 45.9 32.3 67.7 
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Graph 7: Results when 6 superimposed with other numerals (0 to 9) 

 
Table 10: Results when 7 superimposed with other numerals (0 to 9) 

 

After 1000 iterations success (%) 

 

By Hebb's rule  By Genetic algorithm  

Numerals 

mixed 
together 

Numeral

s 
identifie

d as '7'  

Numerals 

identified as the 
other numerals 

from super-
imposed images 

Numeral

s not 
identifie

d 

Total 

succes
s  

Numeral

s 
identifie

d as '7'  

Numerals 

identified as the 
other numerals 

from super-
imposed images 

Numerals 

not 
identified 

Total 

success 

(7,0) 0.7 1.3 98 2 29.6 36.8 33.6 66.4 

(7,1) 0.4 0.2 99.4 0.6 39.0 26.7 34.3 65.7 

(7,2) 0.4 0.9 98.7 1.3 32.5 63.3 4.2 95.8 

(7,3) 0.1 0.6 99.3 0.7 29.3 10.6 60.1 39.9 

(7,4) 0.8 0.8 98.4 1.6 42.3 41.3 16.4 83.6 

(7,5) 0.4 0.8 98.8 1.2 22.7 35.6 41.7 58.3 

(7,6) 0.1 1 98.9 1.1 19.6 56.9 23.5 76.5 

(7,8) 0 0.4 99.6 0.4 5.9 35.6 58.5 41.5 

(7,9) 0.8 0.5 98.7 1.3 45.9 22.9 31.2 68.8 

Graph 8: Results when 7 superimposed with other numerals (0 to 9) 

 
Table 11: Results when 8 superimposed with other numerals (0 to 9) 
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s 

Numeral
s 
identifie

d as '8' 

Numerals 
identified as the 
other numerals 

from super-
imposed images 

Numera
ls not  
identifi

ed 

Total 
success 

(8,0) 1 0.8 98.2 1.8 35.6 32.6 31.8 68.2 

(8,1) 1.3 0.4 98.3 1.7 15.3 38.6 46.1 53.9 

(8,2) 0.2 0 99.8 0.2 19.2 9.3 71.5 28.5 

(8,3) 0.3 0.6 99.1 0.9 31.8 25.6 42.6 57.4 

(8,4) 0 1 99 1 12.0 45.9 42.1 57.9 

(8,5) 0.9 0.4 98.7 1.3 54.6 21.9 23.5 76.5 

(8,6) 0 100 0 100 6.9 93.1 0 100 

(8,7) 0 0.4 99.6 0.4 5.9 35.6 58.5 41.5 

(8,9) 100 0 0 100 100 0 0 100 
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Graph 9: Results when 8 superimposed with other numerals (0 to 9) 

 
 

Table 12: Results when 9 superimposed with other numerals (0 to 9) 

 After 1000 iterations success (%) 

 
By Hebb's rule  By Genetic algorithm  

Numeral
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together 

Numerals 
identified 

as '9' 
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identified as the 

other numerals 
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imposed images 

Numeral
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s 
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s 

identifie
d as '9' 

Numerals 
identified as the 

other numerals 
from super-
imposed images 

Numerals 
not 

identified 

Total 
succe

ss 

(9,0) 0.7 1.2 98.1 1.9 26.8 35.9 37.3 62.7 

(9,1) 1 0.5 98.5 1.5 25.4 33.5 41.1 58.9 

(9,2) 0.2 0.4 99.4 0.6 19.6 41.3 39.1 60.9 

(9,3) 0.5 0.2 99.3 0.7 13.6 38.9 47.5 52.5 

(9,4) 0.4 0.5 99.1 0.9 28.6 39.6 31.8 68.2 

(9,5) 0.8 0.6 98.6 1.4 39.8 28.6 31.6 68.4 

(9,6) 0.1 0.4 99.5 0.5 21.8 45.9 32.3 67.7 

(9,7) 0.8 0.5 98.7 1.3 45.9 22.9 31.2 68.8 

(9,8) 100 0 0 100 100 0 0 100 

 

Graph 10: Results when 9 superimposed with other numerals (0 to 9) 

 
 

CONCLUSION AND FUTURE SCOPE 

In this research, two numerals are mixed together 

by which input pattern is generated and that input 

pattern is recalled by using two approaches 

Hebbian learning rule and Genetic algorithm. 

Hebbian learning rule fails while distinguishing 

mixed pattern as 0 or 1 whereas Genetic algorithm 

provides an efficient results. In future, the similar 

approach of genetic algorithm may be extended to 

the superimposed images preprocessed by using 

image processing techniques. The simulation was 

carried using Matlab and on a single machine. If 

parallel machines are to be used, we may get 

faster results and more maneuvering in the 

algorithm (like refinement in fitness functions etc) 

can be done and results may be analyzed.  
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