

Ruby Panwar, Amit Kumar, Meenakshi www.ijetst.in Page 2931

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015

International Journal of Emerging Trends in Science and Technology

Performance Analysis of Hopfield Network Associative Memory using

Evolutionary Algorithm for Superimposed Images of Numerals

Authors

Ruby Panwar, Amit Kumar, Meenakshi

ABSTRACT

This paper presents the implementation of a Hebbian learning rule and genetic algorithm to store and later,

recall of superimposed images of numerals in Hopfield network associative memory. A set of ten objects (i.e. 0

to 9 numerals) has been considered as the pattern set. In the Hopfield network associative memory, the

weighted code of input patterns provides an auto-associative function in the network. The storing of images is

done by hebbian learning rule and recalling is done by using both hebbian rule and genetic algorithm. The

simulated results shows that the genetic algorithm gives efficient results as compared to hebbian rule for

superimposed images of numerals.

Keywords- Hopfield Neural network, associative memory, hebbian learning rule, genetic a lgorithm, weight

matrices, pattern recalling, population generation technique.

INTRODUCTION

Building an Intelligent Machine, which can think

and act completely as a human brain, is one of the

upfront issues which is still to be realized by

Computer Science fraternity. If we need to build

such an Intelligent Machine, first we need to

imitate the human brain. The human brain is

difficult to study directly unlike animal brains.

Indirect data such as brain waves pick up the

electric potential of the brain surface, which gives

us only crude information on the emotional state,

and is not suitable for identifying information on

the state of thinking, the essential part of the

human brain function.

When a child is born, what does the child know?

To our knowledge, the child knows only how to

cry. The child probably does not know its parents.

When the child grows, the step by step learning

process begins. First, the child learns to drink

milk. Then the child learns to identify its parents.

Every time a child learns something, it is encoded

into some portion of the brain. Yet there is a

difference in the way the information is stored in

brain. Some information or instances are "hard-

coded" within the brain. As a result, we never

forget certain things. For example, once we learn

to swim, we never forget swimming. Though it

appears normal to say that we know swimming,

there is a mystery behind this. Why are we unable

to forget the swimming? The reason might be that

when we are fully trained to swim, it is hard-

coded into our brain. There are many examples of

unforgettable information. Another example is

once we learn that 1 + 1 equals 2, we never forget

that fact. Why? The reason is that it is completely

learned. These examples demonstrate that we can

learn, understand and remember certain things

completely, partially and sometimes not at all.

Depending on our capacity for learning, the

information is stored in our brain.

Artificial neural networks (ANN) are a form of

artificial intelligence modeled after how the brain

processes information. In this biological paradigm

there are neurons (nodes) which are small

processing units. Neurons are connected to other

neurons and these connections can have various

integrities (weights). As signals travel through the

network output is produced. It is the purpose of

Ruby Panwar, Amit Kumar, Meenakshi www.ijetst.in Page 2932

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015

this experiment to see if the simplified artificial

neural networks will function similarly to the

complex human brain. Most importantly neural

network models use some organizational

principles such as learning, generalization,

adaptivity and fault tolerance. ANN is useful only

when the processing units are organized in a

suitable manner to accomplish the given task.

For the Hopfield network, superimposed numerals

are presented at the input and the network iterates

until it reaches a steady state or a limit cycle. A

pattern is recalled when stability is reached. In

general, if the input pattern is some corrupted or

noisy version of pattern stored in the network,

then the recalled pattern should be ideal or

uncorrupted version of the input pattern. Hopfield

network will try to converge on the closest

memory state whether the input state is valid or

merely random noise. An associative memory is a

primary application of the Hopfield network. The

weights of the connections between the neurons

have to be thus set that the states of the system

corresponding with the patterns which are to be

stored in the network are stable.

Developed by Holland (1975), an evolutionary

searching (genetic algorithm) is a biologically

inspired search technique. In simple terms, the

technique involves generating a random initial

population of individuals, each of which

represents a potential solution to a problem

Genetic algorithms have traditionally been used in

optimization but, with a few enhancements, can

perform classification, prediction and pattern

association as well.

Much work has been done on the evolution of

neural networks with GA. There have been a lot

of researches which apply evolutionary techniques

to layered neural networks. The first attempt to

conjugate evolutionary algorithms with Hopfield

neural networks dealt with training of connection

weights. Evolution has been introduced in neural

networks at three levels: architectures, connection

weights and learning rules. The evolution of

connection weights proceeds at the lowest level on

the fastest time scale in an environment

determined by architecture, a learning rule, and

learning tasks. The evolution of connection

weights introduces an adaptive and global

approach to training, especially in the

reinforcement learning and recurrent network

learning paradigm. The evolution of learning rules

can be regarded as a process of “learning to learn”

in ANN’s where the adaptation of learning rules is

achieved through evolution. The evolution of

architectures enables ANN’s to adapt their

topologies to different tasks without human

intervention and thus provides an approach to

automatic ANN design as both ANN connection

weights and structures can be evolved.

In the present work, our objective is to analyze the

performance of neural networks of Hopfield type

for recalling of the already stored patterns with

evolutionary algorithm. In this process, first the

patterns of training set have been encoded in the

neural network using conventional hebbian

learning rule. It is expected that all the patterns of

training set has been successfully stored as the

associative memory feature of Hopfield type

neural network. As a result of this learning

process, we obtain the expected optimized weight

matrix. Now, we employ the genetic algorithm to

evolve the population of this approximate optimal

weight matrix obtained by hebbian learning rule.

The fitness of every evolved population of weight

matrices is evaluated by using fitness evaluation

function. This process of evaluation of weight

matrices continues till the last matrix of the

generated population is not examined. This

selected population of weight matrices reflects the

optimal solution for recalling process in a way

that on presentation of any noisy input pattern, it

produces the correct corresponding stored pattern.

The advantage of this approach is that it is

minimizing the randomness from the genetic

algorithms because, instead of starting from the

random solution, it starts from approximate

optimum solution.

Therefore, the process of recalling by proposed

hybrid evolutionary system will be efficient and

relatively faster compared to simple genetic

Ruby Panwar, Amit Kumar, Meenakshi www.ijetst.in Page 2933

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015

algorithm and conventional hebbian approach.

The detailed comparative analysis of the results

obtained during the simulation is presented and

discussed with the help of graphs and tables.

SIMULATION DESIGN AND IMPLEMEN-

TATION DETAILS

This section describes the experiments designed to

evaluate the performance of Hopfield neural

network with the genetic algorithm for the taken

set of objects recalling.

Set of Patterns Used For Training

The patterns used for the simulations are shown in

Figure 1. Each pattern consisted of a 6 X 6 pixel

matrix representing an object of the set. White and

black pixels are respectively assigned

corresponding values of -1 and +1.

Figure 11: Set of patterns after superimposing

two numerals (0 with other numerals 1 to 9)

The above figure shows the set of patterns formed

after mixing numerals 1 to 9 with 0, same patterns

can also be generated for other numerals 1 to 9.

For example, mixed 0 with 1 can be written as:-

[-11111-11111-111-1-11-111-1-11-111-1-11-11-

11111-1]

Experiments

Experiments were taken on same Hopfield

network architecture (i.e. 36 neurons network) by

mixing two numerals with each other (shown in

figure 2). Each experiment is based on two aspects

which are recalling the objects with Hebbian rule

and recalling the same objects with genetic

algorithm. The inputs for different runs are carried

out by superimposing numerals that are already

stored in the network.

The genetic operators used in finding out results

are summarized in Table 1.

Table 1: Genetic operator used in experiments

The parameters used in experiments are described

in Table 2.

Table 2: Parameters used for Hebbian learning

rule

The task associated to the Hopfield neural

networks in performing experiments is to store the

taken set of objects as patterns with the

appropriate recalling of the patterns by mixing

numerals with one another.

Hopfield Neural Network

The proposed Hopfield model consists of N (36 =

6 X 6) neurons and N*N connection strengths.

Each neuron can be in one of two states i.e. ±1,

and L bipolar patterns have to be memorized in

associative memory. For storing L patterns, we

could choose a Hebbian rule given by the

summation of the Hebbian terms for each pattern.

i.e.

Ruby Panwar, Amit Kumar, Meenakshi www.ijetst.in Page 2934

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015

);(
1

1 jixxw
L

l

L

j

L

iLij

 and .0iiw ……………….. (1)

To store 10 objects in a 36-unit bipolar Hopfield neural network, at each corresponding one stable state and

that must satisfy the following activation dynamics equation:

j

ijij sswf ;).(where i=1,2,3…………………….N. (2)

Let the pattern set is X = {x1, x2
 ,....................................x

L}………… (3)

 where x1 = (a1
1, a2

1,………………………aN
1)

 x2
 = (a1

2, a2
2,………………………aN

2)

 .

 .

 .

 xL
 = (a1

L, a2
L,………………………aN

L)

 where N = 1,2,3…………………….35 (4)

Now, the initial weights has been considered as 0iiw (near to zero) for all i’s and j’s. Now,

11. ji

old

ij

new

ij XXww (5)

 or
ji

ji

old

ij

new

ij ssww
,

 ii xs [for all i] (6)

 and
new

ij

old

ij ww (7)

Similarly for the Lth pattern

ji

L

j

L

i

L

ij

L

ij ssww
,

1

 (8)

We can generalize this as

L

l ji

l

j

l

iL

L

ij ssW
1 ,

1 . (9)

or

L

l

Tll

L

L ssW
1

1)((10)

After storing all the patterns, the final weight matrix looks like as follows

The Genetic Algorithm Implementation

In this simulation, a population of weight matrices

is produced randomly from the parent weight

matrix when GA starts. In each generation, this

population is modified through uniform random

mutations and discrete crossovers and their fitness

values are evaluated. According to the fitness

values, individuals of the next generation are

selected, using a (µ+λ) -strategy in ES

terminology.

The cycle of generating the new population with

better individuals and restarting the search is

repeated until an optimum solution was found.

The first fitness function is evaluating the best

matrices of the weights population on the basics

of the settlement of the network in the stable state

Ruby Panwar, Amit Kumar, Meenakshi www.ijetst.in Page 2935

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015

corresponding to the stored pattern on the

presentation of the already stored pattern as the

input pattern. The fitness evaluation function is

selection of the weight matrices on the basis of

settlement of the network in the stable state

corresponding to the correct or exact stored

pattern on the presentation of prototype input

pattern as the already stored pattern. It indicates

that the stable states of the network will be used

for the evaluation of the weight’s population.

Thus in the recalling process, stable state of the

network corresponding to the stored pattern

should be retained for the selected weight vector

on the presentation of prototype input pattern. All

those weight matrices which can successfully

recall the respective stored patterns by providing

the same as input pattern (with no error) at a time

will be considered as fitted weight matrix.

RESULTS AND DISCUSSIONS

The results presented in this section demonstrate

that large significant difference exists between the

performance of genetic algorithm and

conventional Hebbian rule for recalling objects

those have been stored in Hopfield neural network

using Hebbian learning rule. These results

recommend that, in all cases, recalling of any

approximate pattern through genetic algorithm

outperformed the recalling of the same patterns

through conventional Hebbian rule. While there

are mixed patterns presented in the input pattern

(tables given below) shows the results for

recalling the stored objects using both Hebbian

rule and genetic algorithm. In total 1000 times the

recalling was made through both the algorithms

separately for each object.

In table 3, the numeral 0 is superimposed with

other numerals (1to 9) and then the results are

carried out by recalling mixed pattern as 0 or 1 or

not distinguished with Hebbian learning rule and

genetic algorithm. When the superimposed

patterns are recalled by using genetic algorithm

then the recalling rate is higher than the hebbian

learning rule. As patterns are superimposed with

each other, obviously noise will arise. GA has

shown that out of the mixed patterns it works

better for identifying the original patterns,

numerals in our case. There has been some cases

when the recalling was made 100 percent like in

the combination of numeral 6 and numeral 8, this

is because of the superimposed pattern was at the

least hamming distance from either of the original

numeral. There has been cases when the recalling

was significantly low, which again can be

explained by the maximum hamming distance

between superimposed pattern and either of the

original numeral.

Table 3: Results when 0 superimposed with other numerals (1 to 9)

After 1000 iterations success (%)

By Hebb's rule By Genetic algorithm

Numeral

s mixed
together

Numeral

s
identifie
d as '0'

Numerals

identified as the
other numerals
from super-

imposed images

Numeral

s not
identifie
d

Total

succes
s

Numeral

s
identifie
d as '0'

Numerals

identified as the
other numerals
from super-

imposed images

Numera

ls not
identifi
ed

Total

success

(0,1) 0.6 1.4 98 2 45.6 12.6 41.8 58.2

(0,2) 0.9 0.7 98.4 1.6 69.6 30.2 0.2 99.8

(0,3) 0.6 0.8 98.6 1.4 41.0 32.1 26.9 73.1

(0,4) 0.9 1.3 97.9 2.1 55.6 44.3 0.1 99.9

(0,5) 0.7 1 98.3 1.7 31.6 25.6 42.8 57.2

(0,6) 1 0.8 98.2 1.8 35.6 54.6 9.8 90.2

(0,7) 0.7 1.3 98 2 29.6 36.8 33.6 66.4

(0,8) 1 0.8 98.2 1.8 35.6 32.6 31.8 68.2

(0,9) 0.7 1.2 98.1 1.9 26.8 35.9 37.3 62.7

Ruby Panwar, Amit Kumar, Meenakshi www.ijetst.in Page 2936

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015

Graph 1: Results when 0 superimposed with other numerals (1 to 9)

Table 4: Results when 1 superimposed with other numerals (0 to 9)

After 1000 iterations success (%)

By Hebb's rule By Genetic algorithm

Numera
ls
mixed

togethe
r

Numeral
s
identifie

d as '1'

Numerals
identified as
the other

numerals
from super-

imposed
images

Numeral
s not
identifie

d

Total
succes
s

Numeral
s
identifie

d as '1'

Numerals
identified as
the other

numerals
from super-

imposed
images

Numeral
s not
identifie

d

Total
succes
s

(1,0) 0.6 1.4 98 2 45.6 12.6 41.8 58.2

(1,2) 1.1 0.4 98.5 1.5 49.4 13.3 37.3 62.7

(1,3) 1 0.4 98.6 1.4 41.0 25.4 33.6 66.4

(1,4) 1 0.6 98.4 1.6 50.7 35.3 14.0 86.0

(1,5) 0.8 0.4 98.8 1.2 25.6 11.6 62.8 37.2

(1,6) 1.2 0.4 98.4 1.6 22.6 34.9 42.5 57.5

(1,7) 0.4 0.2 99.4 0.6 39.0 26.7 34.3 65.7

(1,8) 1.3 0.4 98.3 1.7 15.3 38.6 46.1 53.9

(1,9) 1 0.5 98.5 1.5 25.4 33.5 41.1 58.9

Graph 2: Results when 1 superimposed with other numerals (0 to 9)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9

"GA"

"Hebb's rule"

0

50

100

150

1 2 3 4 5 6 7 8 9

GA

Hebb's rule

Ruby Panwar, Amit Kumar, Meenakshi www.ijetst.in Page 2937

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015

Table 5: Results when 2 superimposed with other numerals (0 to 9)

After 1000 iterations success (%)

By Hebb's rule By Genetic algorithm

Numeral

s mixed
together

Numeral

s
identifie

d as '2'

Numerals

identified
as the

other
numerals
from super-

imposed
images

Numeral

s not
identifie

d

Total

succes
s

Numeral

s
identifie

d as '2'

Numerals

identified
as the

other
numerals
from super-

imposed
images

Numerals

not
identified

Total

succes
s

(2,0) 0.9 0.7 98.4 1.6 69.6 30.2 0.2 99.8

(2,1) 1.1 0.4 98.5 1.5 49.4 13.3 37.3 62.7

(2,3) 0.3 0.5 99.2 0.8 36.0 46.4 17.6 82.4

(2,4) 0.4 0.9 98.7 1.3 33.2 63.1 3.7 96.3

(2,5) 0.4 0.8 98.8 1.2 39.0 58.6 2.4 97.6

(2,6) 0.2 0.1 99.7 0.3 26.5 15.2 58.3 41.7

(2,7) 0.4 0.9 98.7 1.3 32.5 63.3 4.2 95.8

(2,8) 0.2 0 99.8 0.2 19.2 9.3 71.5 28.5

(2,9) 0.2 0.4 99.4 0.6 19.6 41.3 39.1 60.9

Graph 3: Results when 2 superimposed with other numerals (0 to 9)

Table 6: Results when 3 superimposed with other numerals (0 to 9)

After 1000 iterations success (%)

By Hebb's rule By Genetic algorithm

Numeral
s mixed

together

Numeral
s

identifie
d as '3'

Numerals
identified

as the other
numerals
from super-

imposed
images

Numeral
s not

identifie
d

Total
succes

s

Numeral
s

identifie
d as '3'

Numerals
identified

as the other
numerals
from super-

imposed
images

Numerals
not

identified

Total
succes

s

(3,0) 0.6 0.8 98.6 1.4 41.0 32.1 26.9 73.1

(3,1) 1 0.4 98.6 1.4 41.0 25.4 33.6 66.4

(3,2) 0.3 0.5 99.2 0.8 36.0 46.4 17.6 82.4

(3,4) 0.2 0.5 99.3 0.7 11.3 31.6 57.1 42.9

(3,5) 0.4 0 99.6 0.4 25.3 2.6 72.1 27.9

(3,6) 0.6 0.4 99 1 28.2 24.3 47.5 52.5

(3,7) 0.6 0.1 99.3 0.7 29.3 10.6 60.1 39.9

(3,8) 0.6 0.3 99.1 0.9 31.8 25.6 42.6 57.4

(3,9) 0.2 0.5 99.3 0.7 13.6 38.9 47.5 52.5

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

GA

Hebb's rule

Ruby Panwar, Amit Kumar, Meenakshi www.ijetst.in Page 2938

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015

Graph 4: Results when 3 superimposed with other numerals (0 to 9)

Table 7: Results when 4 superimposed with other numerals (0 to 9)

After 1000 iterations success (%)

By Hebb's rule By Genetic algorithm

Numeral
s mixed
together

Numeral
s
identified

as '4'

Numerals
identified as
the other

numerals
from super-

imposed
images

Numeral
s not
identified

Total
success

Numeral
s
identified

as '4'

Numerals
identified as
the other

numerals
from super-

imposed
images

Numerals
not
identified

Total
success

(4,0) 0.9 1.3 97.8 2.2 55.6 44.3 0.1 99.9

(4,1) 1 0.6 98.4 1.6 50.7 35.3 14.0 86.0

(4,2) 0.4 0.9 98.7 1.3 33.2 63.1 3.7 96.3

(4,3) 0.2 0.5 99.3 0.7 11.3 31.6 57.1 42.9

(4,5) 0.6 0.4 99 1 51.6 32.1 16.3 83.7

(4,6) 0.9 0.3 98.8 1.2 62.3 25.3 12.4 87.6

(4,7) 0.8 0.8 98.4 1.6 42.3 41.3 16.4 83.6

(4,8) 0 1 99 1 12.0 45.9 42.1 57.9

(4,9) 0.4 0.5 99.1 0.9 28.6 39.6 31.8 68.2

Graph 5: Results when 4 superimposed with other numerals (0 to 9)

0

50

100

1 2 3 4 5 6 7 8 9

GA

Hebb's rule

0

50

100

150

1 2 3 4 5 6 7 8 9

GA

Hebb's rule

Ruby Panwar, Amit Kumar, Meenakshi www.ijetst.in Page 2939

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015

Table 8: Results when 5 superimposed with other numerals (0 to 9)

After 1000 iterations success (%)

By Hebb's rule By Genetic algorithm

Numeral

s mixed
together

Numeral

s
identifie

d as '5'

Numerals

identified
as the other

numerals
from super-
imposed

images

Numeral

s not
identifie

d

Total

succes
s

Numeral

s
identifie

d as '5'

Numerals

identified
as the other

numerals
from super-
imposed

images

Numerals

not
identified

Total

succes
s

(5,0) 0.7 1 98.3 1.7 31.6 25.6 42.8 57.2

(5,1) 0.8 0.4 98.8 1.2 25.6 11.6 62.8 37.2

(5,2) 0.4 0.8 98.8 1.2 39.0 58.6 2.4 97.6

(5,3) 0 0.4 99.6 0.4 25.3 2.6 72.1 27.9

(5,4) 0.6 0.4 99 1 51.6 32.1 16.3 83.7

(5,6) 0.9 0.5 98.6 1.4 35.9 21.9 42.2 57.8

(5,7) 0.4 0.8 98.8 1.2 22.7 35.6 41.7 58.3

(5,8) 0.9 0.4 98.7 1.3 54.6 21.9 23.5 76.5

(5,9) 0.8 0.6 98.6 1.4 39.8 28.6 31.6 68.4

Graph 6: Results when 5 superimposed with other numerals (0 to 9)

Table 9: Results when 6 superimposed with other numerals (0 to 9)

After 1000 iterations success (%)

By Hebb's rule By Genetic algorithm

Numeral
s mixed

together

Numeral
s

identifie
d as '6'

Numerals
identified

as the other
numerals

from super-
imposed
images

Numeral
s not

identifie
d

Total
succes

s

Numeral
s

identifie
d as '6'

Numerals
identified

as the other
numerals

from super-
imposed
images

Numerals
not

identified

Total
succes

s

(6,0) 1 0.8 98.2 1.8 35.6 54.6 9.8 90.2

(6,1) 1.2 0.4 98.4 1.6 22.6 34.9 42.5 57.5

(6,2) 0.2 0.1 99.7 0.3 26.5 15.2 58.3 41.7

(6,3) 0.4 0.6 99 1 28.2 24.3 47.5 52.5

(6,4) 0.9 0.3 98.8 1.2 62.3 25.3 12.4 87.6

(6,5) 0.9 0.5 98.6 1.4 35.9 21.9 42.2 57.8

(6,7) 0.1 1 98.9 1.1 19.6 56.9 23.5 76.5

(6,8) 0 100 0 100 6.9 93.1 0 100

(6,9) 0.1 0.4 99.5 0.5 21.8 45.9 32.3 67.7

0

50

100

150

1 2 3 4 5 6 7 8 9

GA

Hebb's rule

Ruby Panwar, Amit Kumar, Meenakshi www.ijetst.in Page 2940

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015

Graph 7: Results when 6 superimposed with other numerals (0 to 9)

Table 10: Results when 7 superimposed with other numerals (0 to 9)

After 1000 iterations success (%)

By Hebb's rule By Genetic algorithm

Numerals

mixed
together

Numeral

s
identifie

d as '7'

Numerals

identified as the
other numerals

from super-
imposed images

Numeral

s not
identifie

d

Total

succes
s

Numeral

s
identifie

d as '7'

Numerals

identified as the
other numerals

from super-
imposed images

Numerals

not
identified

Total

success

(7,0) 0.7 1.3 98 2 29.6 36.8 33.6 66.4

(7,1) 0.4 0.2 99.4 0.6 39.0 26.7 34.3 65.7

(7,2) 0.4 0.9 98.7 1.3 32.5 63.3 4.2 95.8

(7,3) 0.1 0.6 99.3 0.7 29.3 10.6 60.1 39.9

(7,4) 0.8 0.8 98.4 1.6 42.3 41.3 16.4 83.6

(7,5) 0.4 0.8 98.8 1.2 22.7 35.6 41.7 58.3

(7,6) 0.1 1 98.9 1.1 19.6 56.9 23.5 76.5

(7,8) 0 0.4 99.6 0.4 5.9 35.6 58.5 41.5

(7,9) 0.8 0.5 98.7 1.3 45.9 22.9 31.2 68.8

Graph 8: Results when 7 superimposed with other numerals (0 to 9)

Table 11: Results when 8 superimposed with other numerals (0 to 9)

After 1000 iterations success (%)

By Hebb's rule By Genetic algorithm

Numeral
s mixed
together

Numera
ls
identifi

ed as
'8'

Numerals
identified as the
other numerals

from super-
imposed images

Numeral
s not
identifie

d

Total
succes
s

Numeral
s
identifie

d as '8'

Numerals
identified as the
other numerals

from super-
imposed images

Numera
ls not
identifi

ed

Total
success

(8,0) 1 0.8 98.2 1.8 35.6 32.6 31.8 68.2

(8,1) 1.3 0.4 98.3 1.7 15.3 38.6 46.1 53.9

(8,2) 0.2 0 99.8 0.2 19.2 9.3 71.5 28.5

(8,3) 0.3 0.6 99.1 0.9 31.8 25.6 42.6 57.4

(8,4) 0 1 99 1 12.0 45.9 42.1 57.9

(8,5) 0.9 0.4 98.7 1.3 54.6 21.9 23.5 76.5

(8,6) 0 100 0 100 6.9 93.1 0 100

(8,7) 0 0.4 99.6 0.4 5.9 35.6 58.5 41.5

(8,9) 100 0 0 100 100 0 0 100

0

50

100

150

1 2 3 4 5 6 7 8 9

GA

Hebb's rule

0

50

100

150

1 2 3 4 5 6 7 8 9

GA

Hebb's rule

Ruby Panwar, Amit Kumar, Meenakshi www.ijetst.in Page 2941

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015

Graph 9: Results when 8 superimposed with other numerals (0 to 9)

Table 12: Results when 9 superimposed with other numerals (0 to 9)

 After 1000 iterations success (%)

By Hebb's rule By Genetic algorithm

Numeral
s mixed

together

Numerals
identified

as '9'

Numerals
identified as the

other numerals
from super-
imposed images

Numeral
s not

identifie
d

Total
succes

s

Numeral
s

identifie
d as '9'

Numerals
identified as the

other numerals
from super-
imposed images

Numerals
not

identified

Total
succe

ss

(9,0) 0.7 1.2 98.1 1.9 26.8 35.9 37.3 62.7

(9,1) 1 0.5 98.5 1.5 25.4 33.5 41.1 58.9

(9,2) 0.2 0.4 99.4 0.6 19.6 41.3 39.1 60.9

(9,3) 0.5 0.2 99.3 0.7 13.6 38.9 47.5 52.5

(9,4) 0.4 0.5 99.1 0.9 28.6 39.6 31.8 68.2

(9,5) 0.8 0.6 98.6 1.4 39.8 28.6 31.6 68.4

(9,6) 0.1 0.4 99.5 0.5 21.8 45.9 32.3 67.7

(9,7) 0.8 0.5 98.7 1.3 45.9 22.9 31.2 68.8

(9,8) 100 0 0 100 100 0 0 100

Graph 10: Results when 9 superimposed with other numerals (0 to 9)

CONCLUSION AND FUTURE SCOPE

In this research, two numerals are mixed together

by which input pattern is generated and that input

pattern is recalled by using two approaches

Hebbian learning rule and Genetic algorithm.

Hebbian learning rule fails while distinguishing

mixed pattern as 0 or 1 whereas Genetic algorithm

provides an efficient results. In future, the similar

approach of genetic algorithm may be extended to

the superimposed images preprocessed by using

image processing techniques. The simulation was

carried using Matlab and on a single machine. If

parallel machines are to be used, we may get

faster results and more maneuvering in the

algorithm (like refinement in fitness functions etc)

can be done and results may be analyzed.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

GA

Hebb's rule

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

GA

Hebb's rule

Ruby Panwar, Amit Kumar, Meenakshi www.ijetst.in Page 2942

IJETST- Vol.||02||Issue||07||Pages 2931-2942||July||ISSN 2348-9480 2015

REFERENCES

1. Tanaka-Ynamawaki,M., (1992) “Human

Generated Random Numbers and a Model

of the Human Brain Functions”,

Department of Computer Science and

Systems Engineering Faculty of

Engineering, Miyazaki University,

Miyazaki Japan, pp 889-2192.

2. Jesan,J.P. and Lauro,M.D., (2003)

”Human Brain and Neural Network

Behaviour”. ACM publication.

3. Findley,D.M., (2009) “Thinking Like

Human: A study of Human Brain and

artificial Neural Network.” Westmoore

High School 12613 S. Western

Ave.Oklahoma City, pp. 73170.

4. Mangal, M. & Singh, M. P., (2007)

“Analysis of Multidimensional XOR

Classification Problem with Evolutionary

Feed-forward Neural Networks”,

International Journal on Artificial Intellig-

ence Tools, Vol. 16, No.1, pp.111-120.

5. Yao, X., (1999) “Evolving artificial neural

networks”, Proceeding of the IEEE,

vol.87, no. 9,pp.1423-1447.

6. Pal,S.K., De,S. & Ghosh, A., (1997)

“Designing Hopfield type networks using

genetic algorithms and its comparison with

simulated annealing”, Intl Journal of

Pattern Recognition and Artificial

Intelligence, Vol. 11, No. 3 pp-447-461.

7. Salcedo-Sanz,S. & Yao,X., (2004) “A

Hybrid Hopfield Network-Genetic

Algorithm Approach for the Terminal

Assignment Problem” IEEE Transactions

on Systems, Man, and Cybernetics—Part

B: Cybernetics, Vol. 34, No. 6, pp. 2343-

2353.

8. Jiyou Xu,J.H., & Yao,X., (2000) “Solving

Equations by Hybrid Evolutionary

Computation Techniques”, IEEE

Transactions on Evolutionary

Computation, Vol. 4, Issue 3, pp. 295-304.

9. Mangal, M. & Singh, M. P., (2006)

“Handwritten English Vowels using

Hybrid Evolutionary Feed-forward Neural

Network”, Malaysian Journal of Computer

Science, Vol. 19, No. 2, pp. 169-187.

10. Imada, A., Araki K.., “Evolved

Asymmetry and Dilution of Random

Synaptic Weights in HopfieldNetwork

Turn a Spin-glass Phase into Associative

Memory”, The 2nd International

Conference on Computational Intelligence

and Neuroscience proceedings of Joint

Conference of Computer Science, Vol. 2

(1997) 223-226.

11. Imada, A., Araki K.,” Hopfield Model of

Associative Memory as a Test Function of

Evolutionary Computations”, The 1st

International Workshop on Frontiers in

Evolutionary Algorithms,Proceedings of

Joint Conference of Computer Science,

Vol. 1 (1997) 180-183.

12. Shrivastava, S., Singh, M.P., “Performance

evaluation of feed-forward neural network

with soft computing techniques for hand

written English alphabets, Applied soft

Computing Journal, Vol. 11(1) (2011)

1156-1182.

13. Kumar, S., Singh, M.P., “Pattern recalling

analysis of English alphabets using

Hopfield model of feedback neural

network with evolutionary searching”,

International Journal of Business

Information Systems, Vol. 6(2) (2010)

200-218.

14. Singh, T.P., Jabin, S., Singh, M. “Evolving

Weight Matrices to increase the Capacity

of Hopfield Neural Network Associative

Memory using Hybrid Evolutionary

Algorithm”, Proceedings of 2010 IEEE

International Conference on

Computational Intelligence and

Computing Research (ICCIC 2010), art.

no. 5705809, pp. 434-438, doi

10.1109/ICCIC.2010.5705809.

