

Manisha Umak et al www.ijetst.in Page 2924

IJETST- Vol.||02||Issue||07||Pages 2924-2930||July||ISSN 2348-9480 2015

International Journal of Emerging Trends in Science and Technology

Control Model for Analyzing Erroneous Human Behavior a System Safety

Using Model Checker with Mutation Testing Approach

Authors

Manisha Umak
1
, Prof. U. A. Jogalekar

2

1Pune University, Smt. Kashibai Navale college of Engineering, Vadgaon (BK), Pune
Email: Manisha.umak059@email.com

2Pune University, Smt. Kashibai Navale college of Engineering, Vadgaon (BK), Pune

Email: uajogalekar@sinhgad.edu

Abstract

Safety critical system always provides the automatic system machine where automation testing become an

important part for safety. Automation testing is one way to change the way to operate Safety critical system.

This is achieved by changing the nature of the tasks that the operators perform. Safety standard assures the

little about design and verification of operating procedures. Safety in coma system is maintained by using

model checker and mutation testing model. The model checker is used for validating informal hazard analysis

result. The coma monitoring system verifies the erroneous human behavior in coma patient system using

model checker in which mutation testing method analyze the human behavior interface with the system and

generate the invalid actions. The state diagram of coma patient recognition system use for identify whether

the system is in safe state or in unsafe state. Testing is important in order to achieve sufficiently high software

quality. Test-suite derived from the specification can only be as good as the specification itself.

Keywords: Model Checking, Task analysis, System Safety, Human Automation Interaction (HAI), coma,

coma Patient Monitoring, Mutation testing, mutants, specification.

1. Introduction

Automation testing provides the way to operate

critical system is in safe state. The complexity of

both software and the testing process itself yields the

desire for automation. One direction to address this

issue is model-based testing. There, test-cases are

used to determine whether an implementation is a

refinement of an abstract model. Many model-

checker based test-case generation methods adhere

to this idea. On the other hand, if a requirements

specification is available, then testing should

concentrate on showing that the implementation is

correct with regard to the specification. This

approach is integrating the automated test-case

generation and specification analysis. This approach

is based on mutation of an abstract model and the

specification. It is shown that analysis of the mutants

that are used for test-case generation can reveal

interesting information about the specification For

Example. How thoroughly is the specification

tested? And How much of the possible behaviors are

covered by the specification?

Erroneous human behavior wherever the human

operator doesn’t follow the normative procedures

for interacting with a system, is commonly related to

failures in Human Automation interaction

surroundings. Human operator will create following

mistakes.

 Omission of activities.

 Erroneous repetition of activity.

 Erroneous execution of activity.

Formal systems area unit required to spot human

behaviors on system states and handle the errors to

create the system safe for the users of the system [1].

Manisha Umak et al www.ijetst.in Page 2925

IJETST- Vol.||02||Issue||07||Pages 2924-2930||July||ISSN 2348-9480 2015

Human error are generated and tested on state model

to find the unsafe states in the existing system In the

proposed solution we will use Mutation based

method to generate the Human error test scenarios

and used this scenarios to test the state models of the

system to find the erroneous behavior. Mutation

based test case generation method have been used in

many software testing environment method to

automate test case generation jobs. Here also, for the

case of human errors test suite generation we will

use mutation test case generation. Advantage is that

mutation test automation will increase the test case

coverage of FSM models and it will able to identify

more unsafe states compared to existing solution.

2. Literature Survey

2.1 Verifying and Evaluating Human -Automation

Interaction

P. Curzon et. al. [6] - Failures in complex systems

controlled by human operators can be difficult to

anticipate because of unexpected interactions

between the elements that compose the system,

including human-automation interaction (HAI). HAI

analyses would benefit from techniques that support

investigating the possible combinations of system

conditions and HAIs that might result in failures.

M. L. Bolton et al [2][- Formal Verification Model:

Formal verification of program correctness hinges

on the use of mathematical logic. A program is a

mathematical object with well-defined, although

possibly complex and intuitively unfathomable,

behavior. Mathematical logic can be used to

describe precisely what constitutes correct behavior.

This makes it possible to contemplate

mathematically establishing that the program

behavior conforms to the correctness specification.

In most early work this involved constructing a

formal proof of correctness. In contradistinction,

model checking avoids proofs.

M. L. Bolton et al -Temporal Logics: In view of the

difficulties in trying to construct program proofs it

seemed like there ought to be a better way. The way

was inspired by the use of Temporal Logic (TL),

formalism for describing change over time. If a

program can be specified in TL, it can be realized as

a finite state system. This suggested the idea of

model checking-to check if a finite state graph is a

model of a TL specification.

2.2 Models for types and levels of Automation

R. Parasuraman et. al. [10] - Technical developments

in computer hardware and software now make it

possible to introduce automation into virtually all

aspects of human machine systems.

 Information Acquisition: Information is

gathered and extract the exact information

that is required.

 Information Analysis: Data which is required

is fully understand and analyze all the

details.

 Decision and Action Selection: According to

the data and activity need to be performed,

the decision and action selection should be

done.

 Action Implementation: Appropriate action

execution will be done in Action

Implementation,

2.3 Task Analytic Models To Visualize Model

Checker Counterexamples

M. L. Bolton and E. J. Bass [4]- Model checking may

be a form of machine-controlled formal verification

that searches a system model’s entire state house so

as to mathematically prove that the system will or

doesn’t meet desired properties. Associate degree

output of most model checkers may be a

counterexample associate degree execution trace

illustrating precisely however a specification was

profanes. In most of the analysis environments, this

output may be a list of the model variables and their

values at every step within the execution trace.

A. Blandford, R. Butterworth et. al. [8]- have

developed a language for modeling human task

behavior and automatic methodology that interpret

instantiated models into proper system model

enforced within the language of Symbolic Analysis

Laboratory(SAL).

2.4 Enhanced Operator Function Model: Syntax and

Formal Semantics

L. De Moura et. al. [9] - introduce the hierarchy

where in goals decompose into lower level activities

Manisha Umak et al www.ijetst.in Page 2926

IJETST- Vol.||02||Issue||07||Pages 2924-2930||July||ISSN 2348-9480 2015

and ultimately atomic actions. Further, conditions

specify constraints below those activities and actions

will execute. Logical operator won’t to management

what number activities or actions can execute and

what temporal relationship exists between them.

2.5 A Knowledge -Based Monitor that Facilitate

Incremental Knowledge-Based Development

E. J. Bass, S. T. Ernst-Fortin et. al. [7] - Being able to

incrementally outline and take a tool at information

basis for intelligent systems is fascinating. However,

as a lot of information is superimposed, the

information engineer should make sure that

unwanted interactions between the present and extra

information don’t occur. One knowledge- based

observance system, Hazard Monitor (HM), provides

the power to feature information incrementally.

HM’s design includes tailorable parts enable the

information interactions. Metric linear unit

conjointly includes knowledge-base development

tools to facilitate initial and progressive knowledge-

base development. This paper describes HM’s

design and information structures and its

information-base development tools that facilitate

the knowledge engineering method.

 2.7 Using a Multi-method Approach to formalize

Human to Automation Interaction

Human to Automation Interaction: E. J. Bass et. al.
[5] - Human communication processes, including

human-human communication and human

automation interaction, are important to the

operation of safety critical systems but have

contributed to failures in domains including

aviation, medical. The use of task behavior as part of

a larger, formal system model is potentially useful

for analyzing such safety-critical systems as the

potential ramifications of human behaviors can be

verified in relation to other aspects of the system.

Human to Human Communication: E. J. Bass et. al.-

are extending EOFM as part of a multi-method

approach where analyses via theorem proving and

model checking are linked through a top- level XML

description of human task behavior. Our model of

cooperative systems functioning within specified

roles.

2.8 Phenotypical Erroneous Human Behavior

M. L. Bolton, E. J. Bass et. al. [3] - Model-driven

design and analysis techniques provide engineers

with formal methods tools and techniques capable of

evaluating how human behavior can contribute to

system failures. This paper presents a unique

technique for mechanically generating task analytic

models encompassing each normative and human

behavior from normative task models. The generated

inaccurate behavior is capable of replicating

Hollnagel’s zero order phenotypes of inaccurate

action for omissions, jumps, repetitions, and

intrusions. Multiple makeup acts will occur in

sequence, therefore providing the generation of

upper order phenotypes.

3. Proposed System

While considering the previous paper, which

identify erroneous human behavior and avoid that

transaction. It also replaces that value with its proper

value but yet it does not provide the proper solution

that will solve in proposed system with some

modification. We are going to apply this proposed

solution on coma medication system data. Existing

system drawback that will analyze in given proposed

system:

A) Scalability: Mutation based testing method

increase the system scalability by increasing the

state space for identifying human behavior.

B) Does not identify higher order failure: It does not

identify complicated erroneous human behavior. In

this paper defined the modification that will help to

identify complicated human erroneous activity.

However, our new method is capable of generating

these types of higher order failures without

considering all of the complex combinations of

extraneous actions that would be required to

generate similarly ordered erroneous behaviors

using the technique from. While mutation testing

model checker method presented in this paper could

be used to explore higher order erroneous behaviors

based on attentional failures.

In this paper we are combining the human behavior

with mutation testing method which will increase

the system scalability by identifying more complex

error from the system.

Manisha Umak et al www.ijetst.in Page 2927

IJETST- Vol.||02||Issue||07||Pages 2924-2930||July||ISSN 2348-9480 2015

Mutation Testing Method

Mutation testing is a structural testing method aimed

at improving the accuracy of the test suit, and

estimating the number of faults present in systems

under test.

The process, given program P and test suite T, is as

follows:

1. We systematically apply mutations to the

program P to obtain a sequence P1, P2 ,... Pn of

mutants of P. Each mutant is derived by

applying a single mutation operation to P.

2. We run the test suite T on each of the mutants, T

is said to kill mutant Pi if it detects an error.

3. If we kill k out of n mutants the adequacy of T is

measured by the quotient k=n. T is mutation

adequate if k = n.

The main benefit of mutation testing approach is

that it can be almost completely automated.

Structural test suites are directed at identifying

defects in the code. One goal of mutation testing is

to assess or improve the efficiency of test suites in

discovering defects [12].

In proposed solution we use the model checker with

mutation testing model which increase the state

space for identifying the erroneous human behavior

which will cause to generate all invalid actions from

the system. Formal Model and model checker is a

software tool which will help to identify erroneous

human behavior. In this we generate the following

algorithm:

Algorithm

MODELCHECKER (INPUT, OUTPUT): Preparing

the sample input program X.

INPUT: No. of events Ei:={E1,E2,…….En} to be

passed such as E1 := Set Dose, E2 := Set Delay,

En := Set Limit etc.

OUTPUT: Generate all types of high order errors

“Err” from

 complex system.

 Err := {Err1,Err2…………..Errn}

Step1: Calculate the Equivalent mutants

Mt:={X1,X2,……Xn} from input program X and

Determine transaction states set S:= {Tx1,

Tx2,……Txn}.

 Mutants are calculate by using function: Mt :=

split(X).

Step2: Determine unexecutable transition from

existing EOFM.

Unexecutable transition using Existing EOFM=

UnExec(Txi)/S

Step3: Determine unexecutable transition from

mutation Testing method.

Unexecutable transition= UnExec(Txi)/S

Provide more scalable result by using mutation

based method.

Step4: Generate valid transition test set ‘T’ that

satisfies all properties.

Step5: For all valid transition ‘T’:

Compute Mutation score:= Valid mutants(Vm)

/total(T).

In Model checker with mutation testing algorithm

where we consider that we have system of coma

patient. In this system doctor identify the sequence

of actions based on their knowledge and that actions

is to be passed to the system as input. So number of

events should be passed as input to the system and

all invalid human actions will generate as output

which identify the all actions which are harmful for

system. For performing this action we apply

mutation testing method

In first step of algorithm calculate the mutants from

the program mean we split the program into parts.

then in second step identify the all invalid actions

performed by user using existing method. . In step 3

generate erroneous behavior by using mutation

testing method and then we calculate mutation score

which is count as original valid transaction upon

total actions performed by user

Architecture

Complex safety critical applications like Automated

Medication systems for Coma patients involve both

Manisha Umak et al www.ijetst.in Page 2928

IJETST- Vol.||02||Issue||07||Pages 2924-2930||July||ISSN 2348-9480 2015

human operators and automated devices. In this

environment, human operator can make some error

in operation of systems which will affect the safety

of patients. In this project, we propose a verification

mechanism which automatically generated the

erroneous behaviors of humans and test it on the

formal models of the system to evaluate the security.

With this verification system, human errors can be

identified and system can be made more robust to

failures.

Figure 1 shows the overview for the functions

defined in coma patient recognition system. In

figure 1, input is passing the EOFM (Enhanced

operator function model) language used for model

the operator as input/output system. Inputs may

come from several sources including: the human

device interface, mission goals, environment, and

other human operators. Output variables are human

actions. The system consists of 3 modules

Figure 1: System Architecture

 FSM Parser: This module will create the

FSM (Finite State Model) model from the

EOFM language specification which

consists of state and transition.

 FSM Execution Engine: This module will

execute the FSM state machine and generate

all possible output states and also

summarizes the number of safe state and

number of unsafe states.

 Mutation testing Approach: This module

will generate the different combination of

erroneous human behaviors.

Final outcome shows the system is in safe state or

not and if system is not in safe state then we

translate that value and convert unsafe state into the

safe state.

4. Implementation Details

The implementation of this project is run on jdk 1.6

platform with the coding language in java. For this

project, Netbeans IDE 6.9.1 use as a tool in for

supporting the java language. Specifically its

graphical user representation is done using swings in

java. This execute on the Pentium processor with the

feature of 1 GB RAM, 20 GB Hard Disk and SVGA

Monitor.

5. Result

In the proposed system we are using the mutation

based testing approach to improve scalability and to

find out the complex error from the automated

system. The main aim of our project is to maintain

the human interaction with the system.

Following snapshot show the graphical user

interface of our system where we some actions in

two list box.

In list1: system off, set dose, set delay, set limit,

admin etc

In list2: press on, press enter, press off, press stop

etc

These actions are provided to admin for generating

the sequence of flow. Admin selects this action in

proper execution sequence. And it pass as a input by

clicking on upload button. On main screen we have

two options existing and validate where existing

button shows the result of existing system and

validate button shows the result of proposed method.

Figure 2: Main gui of the system

Manisha Umak et al www.ijetst.in Page 2929

IJETST- Vol.||02||Issue||07||Pages 2924-2930||July||ISSN 2348-9480 2015

When admin click on validate or existing button

then it will generate the flow sequence diagram as

shown below.

Figure 3: Flow sequence of activity

When we click on the validate button it will generate

the state transition table and erroneous actions as the

output using the using the mutation testing

approach.

Figure 4(1): state transition table and erroneous

activities.

Figure 4(2): state transition table and erroneous

activities

In our project we are using the EOFM (Enhanced

operator Function Model) method which will

provide the formal methods to identify the

incomplete transition state and that will generate the

erroneous transition within the automated system.

But it has some limitations that it does not find

complex errors and also it find errors from limited

state space. So the state space is increment by using

mutation testing approach.

The comparison between this two methods shown in

following graph where red rectangle shows

proposed system result and blue circle shows

existing system result. Fig.3 shows the result using

EOFM method and mutation based method. In all

plots, the number of visited states is reported on the

left y-axis and number of erroneous transaction is

reported on the right x-axis.

fIg.5: Plot of the verification results (number of

erroneous transition and the number of visited

states)

Acknowledgement

The authors would like to thank the researchers as

well as publishers for making their resources

available and teachers for their guidance. We are

thankful to the authorities of Savitribai Phule

University, Pune and concerned members of

cPGCON2015 conference, for their valuable

guidelines and support. We are also thankful to the

reviewer for their valuable suggestions. We also

thank the college authorities for providing the

required infrastructure and support. Finally, we

would like to extend a heartfelt gratitude to friends

and family members.

Manisha Umak et al www.ijetst.in Page 2930

IJETST- Vol.||02||Issue||07||Pages 2924-2930||July||ISSN 2348-9480 2015

References

1. Matthew L. Bolton and Ellen J. Bass,

”Generating Erroneous Human Behavior

From Strategic Knowledge in Task Models

and Evaluating Its Impact on System Safety

With Model Checking”, IEEE Transaction

On Systems, Man, And Cybernetics:

Systems, Vol. 43, No. 6, November 2013.

2. M. L. Bolton, E. J. Bass, and R. I.

Siminiceanu, “Using formal verification to

evaluate human-automation interaction: A

review,”, IEEE Trans. Syst., Man, Cybern.

Syst., vol. 43, no. 3, pp. 488-503, May 2013

3. M. L. Bolton, E. J. Bass, and R. I.

Siminiceanu, ”Generating Phenotypical

erroneous human behavior to evaluate

human-automation interaction using model

checking,” Int. J. Human-Comput. Stud.,

vol. 70, no. 11, pp. 888-906, 2012. 5, pp.

961-976, Sep. 2011.

4. M. L. Bolton and E. J. Bass,”Using task

analytic models to visualize model checker

counterexamples,” in Proc. IEEE Int. Conf.

Syst. Man, Cybern., Oct. 2010, pp. 2069-

2074.

5. E. J. Bass, M. L. Bolton, K. Feigh, D.

Griffith, E. Gunter, W. Mansky, and J.

Rushby, ”Toward a multi-method approach

to formalizing human automation interaction

and human-human communications,” in

Proc. IEEE Int. Conf. Syst., Man, Cybern.,

Oct. 2011, pp. 1817-1824.

6. P. Curzon, R. Ruksenas, and A. Blandford,”

An approach to formal verification of

human-computer interaction,” Formal

Aspects Comput., vol. 19, no. 4, pp. 513-

550, 2007.

7. E. J. Bass, S. T. Ernst-Fortin, R. L. Small,

and J. Hogans, ”Architecture and

development environment of a knowledge-

based monitor that facilitate incremental

knowledge-based development ,” IEEE

Trans. Syst.,Man, Cybern. A, Syst. Humans,

vol. 34, no. 4, pp. 441-449, Jul. 2004.

8. A. Blandford, R. Butterworth, and P.

Curzon, ”Models of interactive systems: A

case study on programmable user

modelling,” Int. J. Human-Comput. Stud.,

vol. 60, no. 2, pp. 149-200, 2004.

9. L. De Moura, S. Owre, and N. Shankar, ”The

SAL language manual,” Computer Science

Laboratory, SRI International, Menlo Park,

Tech. Rep. CSL-01-01, 2003.

10. R. Parasuraman, T. Sheridan, and C.

Wickens,”A model for types and levels of

human interaction with automation,” IEEE

Trans. Syst., Man,Cybern. A, Syst., Humans,

vol. 30, no. 3, pp. 286-297, May 2000.

11. P. Ammann, P. E. Black, and W. Ding,

“Model Checkers in Software Testing.

Technical report, National Institute of

Standards and Technology, 2002.

12. D. Javaux, “A method for predicting errors

when interacting with finite state systems.

How implicit learning shapes the user’s

knowledge of a system,” Reliab. Eng. Syst.

Safety, vol. 75, no. 2, pp. 147–165, 2002.

13. P. Ammann, W. Ding, and D. Xu. Using a

Model Checker to Test Safety Properties. In

Proceedings of the 7th International

Conference on Engineering of Complex

Computer Systems, pages 212–221, June

2001.

14. P. Curzon and A. Blandford, “From a formal

user model to design rules,” in Design,

Specification and Verification of Interactive

Systems. Berlin, Germany: Springer, 2002,

pp. 1–15.

15. J. M. Wing, “A specifier’s introduction to

formal methods,” Computer, vol. 23, no. 9,

pp. 8–23, Sep. 1990.

	PointTmp

