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Abstract

The purpose of this paper is to define (IFS) (intuitionistic fuzzy soft) sequential compact space and to investigate some important
theorems on it. In this view we define (IFS) soft point, (IFS)"¢ [| net, (IFS) totally bounded space and investigate their properties.
In continuation we define Lebesque (IFS) number, uniformly continuous (IFS) mapping and study few theorems.
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1. Introduction

The word, soft set is introduced by Molodtsov!! as an
innovative mathematical tool to handle uncertainties which
occur in the developments and progress of Economics, Social
Science, Environment, Engineering, Medical Sciences etc. Soft
set theory is being applied in many areas such as game theory,
Real Analysis, Functional Analysis and in Topology also. P.K.
Maji, A.R. Roy" have introduced Fuzzy soft sets and Tanay,
Bekir, and M. Burc Kandemir® developed topological
structures in Fuzzy soft theory.Many researchers have been
improving this theory in different areas like information
systems, images, forecasting and more in decision making
etc.In continuation Jiang, Yuncheng and Qimai Chen ™ have
worked on an adjustable approach to intuitionistic fuzzy soft
sets. Later Gunduz, Cigdem and Sadi Bayramov®! studied
Intuioinistic fuzzy soft theory and introduced Intuioinistic
fuzzy soft modules from which Bayramov and Cigdem Gunduz
I have investigated different basic properties and developed
many theorems on topology.

In our paper we try to give an extension of the concept of
Topological spaces in Intuioinistic fuzzy soft theory.We define
(IFS) Sequentially compact space and examine some important
theorems on (IFS) Sequentially compact space.We also
introduce (IFS)"&- net ,totally bounded (ZFS) metric space and
we will study properties of this space.Finally we define

Lebesgue (IFS)” number and uniformly continuous (7FS)”

mapping and investigate some important theorems.

2. Preliminaries

Throughout this paper, X means an initial universe, E is the set
of all parameters for X . These parameters may be attributes,
characteristics or properties of some objects.

Definition 2.1. ™ A pair [f, 4] is called a soft set over X ,
where f is a mapping given by f: A — P(X). i.e The soft setis a
parameterized family of subsets of the set X .

Definition 2.2 ! An Intuitionistic Fuzzy set A over the
universe X can be defined as follows

A={(x pAX),TA(X):x€ X}

where A : X — [0, 1], VA:X — [0, 1] with the property 0 <
WA (X)+V A (x) <1, ¥ X € X. The values LA (x) and v A (X)
represent the degree of membership and nhonmembership of x
to A respectively.

Definition 2.3 ® Let IFS® denote the collection of all
Intuitionistic Fuzzy subsets of X . Let ACE. A pair [(f,A)] is
called an (IFS) set over X where f is a mapping given by f : A
— IFS°. The set of all (IFS) sets over X with parameters from
E is called an (IFS) class and it is denoted by IFS[Xg].

Definition 2.4 P Let [(f,A)] and [(g,B)] be two (IFS) sets
over X . Then [(f,A)] U[(g,B)] = [(h, C)] where C= A UB
and ve € C,

h(e) = f(e) ife € A-B,

h(e) = f(e), ife e B- A,

h(e)=f(e) Uug(e)ifee ANB.
Definition 2.5 ' [(fA)] N [(g.B)] = [(h, C)] where C = A
N Band Ve € C,h(e)= f(e) N g(e).
Definition 2.6 ! [(f,A)] € [(g,B)] where i) A < B, ii) for all
e € A f(e) = g(e).
Definition 2.7 ®! The complement of an (IFS)’set [(f,A)] is
denoted by [(f,A) ]° and is defined by [(f,A) ]° = (f°, A), where
f¢: A — IFY is a mapping given by f () = [f (e)]°for all e €
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A. Thus if £(e) = (x, s @ (X), Ve (X)) 1 X EX, then Ve € A,
(€)= (f(e)°={x, Vi (), Lre (X)) :XEXT

Definition 2.8 P! A soft set [(f,A)] over X is said to be
absolute (IFS) set denoted by X if Ve € A, f (e) is the absolute
intuitionistic fuzzy set i of U wherei(x)=1, vV x € U.

Definition 2.9 ©: A soft set [(f,A)] over X is said to be null
(IFS) set denoted by @ if Ve € A, f (e) is the null intuitionistic
fuzzy set & of U where 6 (x) =0, vV x € U.

Definition 2.10 [ Let X < IFS(X¢ ), then X is said to be a
(IFS) topology on X if the following conditions hold.

i @, Xpbelong to X .
i. The union of any number of (IFS) sets in X
belongs to tX .

iii. The intersection of any two (IFS)sets in tX
belongs to tX .

Note: tX is called a (IFS) topology over X and the ordered pair
(X, X)) is called a (IFS) topological space over X. The
members of tX are said to be (IFS)open sets in X. A
(IFS)set [(f, E) ] over X is said to be a (IFS) closed set in X, if
its complement [(f, E) ] © belongs to 1 .

Definition 2.11 [ Let (X¢ , tX ) be a (IFS)topological space
over Xe and ¥ be a non-empty subset of X. Then 1Y =
{(Ye, E) : [(f, E)] € T }is said to be the (ZFS)topology on Y
and (Ye, 1Y ) is called a (7FS) subspace of (Xe , T ). Where (Y,
E)=Y: N[(f, E)] . Here 1Y is, in fact, a (IFS) topology on Y.

Definition 2.12 ' A family {[(fi, A)Y] };ea (IFS) sets is said to
be a cover of a (IFS)set [(f,A) ] if

[(AY] € U[(fi, AY]. Itis a (IFS) open cover if each member
of {[(fi,A)] }iza s a (IFS)open set.A finite collection of
[(f,A)] is a subfamily of {[(fi, A)"] };za if is also a cover.

Definition 2.13 [7] Let (X, t) be (IFS) topological space and
[(£,A)] E IFS[XE).(IFS)set [(fA)] is called (7FS)compact if
each (7FS)open cover of [(f,A)] has a finite subcover.Also
(IFS)topological space (Xe , ) is called (ZFS) compact space
if each (IFS) open cover of X¢ has a finite subcover.

Intuitionistic Fuzzy Soft Real numbers

Definition 3.1 An (IFS)set A = {(x, KA (x), VA (X)) : X € X }
over the universe X is said to bounded if there is a real number
rwhere 0<r<1suchthat fA(x)<I-randvA (X)<r.

Definition 3.2. Let R be the set of all real numbers and IF® be
the collection of all non-empty bounded IF subsets of R and E
taken as a set of parameters.Then a mapping f: E — IF} s
called an (IFS)" real set.It is denoted by [f, E]R.If specifically
[f, E]" is a singleton (IFS)set, then identifying [f, E]® with the

corresponding (7FS)"element, it will be called an (IFS)real
number and denoted by #,3,f etc.

Note: (1) 0 = {(0,0,1) : 0 € R}
1= {(110):1€R}
@) 7#={(r, ua(r), 94(r):r € R}
(4) s = {(5, us(s),9,(s): s € R} where A <
E.etc.
Definition 3.3 For two (IFS) real numbers

sif 7 (e)
Sif 7 (e)

$(e)Ve €E.
$(e)Ve €E.
$(e)Ve €E.
4). ¥ < 3if ¥(e) < S(e) Ve €E.
Definition 3.4 A (IFS)set [(f,A)] is said to be a (IFS) point,
denoted by egx, if there is one e € E, such that f(e) = {x} for
some x € X and f(e’) = ¢, V e’ € E-{e}.

=
<

Definition 3.5 Two (IFS) points epx, e’y corresponding to
the (IFS) sets [(f,A)] and [(g,E) ] respectively(i.e. F(e) = {x};
G(e’)={y}), are said to be equal if e = ¢’ and F(e) = G(¢"). i.e.
X=y. Thus epx # e'ry iffx =yore#e’.

Definition 3.6 A (IFS) point exx is said to be in a (IFS) set
[, Al,denoted by exx €[g, A] if for the element e € A;

f(e) < g(e).

Definition 3.7 Let (Xt , ©X )be a (IFS) topological space over
X.Then (IFS)interior of [(f,A)] denoted by [(f,A) ]° is defined
as the union of all (ZFS) opensets contained in [(f,A) ].

Definition 3.8 Let (Xe , X )be a (IFS) topological space over
X.Then (IFS) closure of [(f,A) ], denoted by (F, E), is defined
as the intersection of all (7FS) closed super sets of [(f,A) ].

Definition 3.9 Let (Xg, ©X )be a (IFS) topological space and
[(f,A)] be a (IFS)"set in (Xg , ©X). A (IFS)set [(g.B) ] in (Xg,
X ) is said to be a (IFS) neighbourhood of [(f,A)] if there
exists a (IFS) open set [(h, C)] € ©X such that [(f,A)] € [(h,
1€ [(eB)].

Definition 3.10 Let (X¢ , ©X ) and (Y¢ , ©Y ) be two
(IFS)topological spaces, f: (Xg , ©X )— (V¢ , 1Y ) be a
mapping. For each (IFS) neighbourhood [h, E] of (f (X)e,E), if
there exists a (IF'S) neighbourhood [(f,A) ] of (x,E) such that f
([(fAY]) €h, E], then f is said to be (IFS) continuous
mapping at (Xe,E).

Let Xz be the (IFS)absolute set i.e., f(e)=1 Ve € E,Where
[(f,A)]= 1 and (IFSP)"(X) be the collection of all (IFS) points
of Xe and IFR(E) denote the set of all non negative (IFS)real
numbers.

Definition 3.11 A mapping d: (IFSP)(Xg) X (IFSP) (Xg) —
IFR(E), is said to be (IFS)metric on the (IFS)set Xg if d
satisfies the following conditions.
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(i). d(epx ,ery ) 20,

(ii). d(epx , ery ) = 0 if and only if ezx = epy.

(iii). c?(epx vepy ) = d(epy , epx)

(iv). d(epx , epy) < d(epx ,epz) + d(epz , ery) for all epx
, ery, epz € (IFSP) (Xg).

The (IFS)set (IFSP)(Xe) with the (IFS)metric d on
(IFSP)"(Xg) is called a (IFS) metric space and denoted by
(IFSP) (Xe), d, E).

Definition 3.12 Let (IFSP) (Xg) be a (IFS) metric space and &
be a non negative (ZFS) real number.

Then (IFSB) (epx, &)= { e'ry € (IFSP)(Xg); d(epx , e'ry) <
&} c (IFSP)" (Xe) is called the (ZFS) open ball with center e.x
and radius £ and

(IFSB) (epx, &)= {(epx € (IFSP) (Xe); d(epx ,e'py) < &}
(IFSP)"(Xg) is called the (IFS)closed ball with center center
epx and radius &.

Definition 3.13 Let {erx, ,}n be a sequence of (IFS) points in
a (IFS)metric space ((IFSP)(Xg),d, E).The sequence
{erxgn}tn is said to be convergent in ((IFSP)(Xe), d, E) if
there is a (IFS) point exy,, € (IFSP) (Xg) such that

d( epXgn, €rYe) —0asn — oo,

This means for every & S 0, chosen arbitrarily, there exists
anatural number N =N(&), suchthat 0 < d( epXgn, €rYe) <
&, whenever n > N.

Theorem3.14 Limit of a sequence in a (IF'S) metric space , if
exists is unique.

Definition 3.15 (Cauchy Sequence). A sequence {erx, ,}n Of
(IFS) points in ((IFSP)"(Xg), d, E) is considered as a cauchy
sequence in (IFSP) (Xg) if corresponding to every & S 0, there
exists n € N such that d(epx,; . erxy;) < & Vi j=m,ie,

d(ean,i ’ ean,j) —0as 1>J — 0.

Definition 3.16 Let ((IFSP) (Xg), d, E) be a (IFS) metric space.
((IFSP) (Xe), d, E) is called (IFS) Sequentially compact space
if every (IFS) sequence has a (IFS) sequence that converges in
(IFSP) (Xg).

i.e., Suppose {epx, . }n is a (IFS) sequence in (IFSP) (Xg) then
there exists a subsequence {erx, 5 x }n from {erx, , }n such that
limy,_,0o €pXgni = €rX.

Theorem 3.17 A (IFS) metric space ((IFSP)(Xg),d, E) is
(IFS) sequential compact sapce if and only if every infinite
(IFS) subset of (TFSP)"(X¢), has a limit point.

Proof. Let ((IFSP)(Xg), d, E) be a (IFS) metric space.
Let (TFSP) (Xg) be a (IFS) sequential compact space.

A. Sreedevi et al

www.ijetst.in

Now we show that every infinite (IFS) subset of (IFSP) (Xg),
has a limit point.

Let (IFSP)"(A) be an infinite subset of (IFSP)"(X¢).

Since (IFSP)(A) is infinite,a sequence {epx,,}n of distinct
points can be extracted from (IFSP)"(A).By definition of
(IFS) sequential compact space has a convergent subsequence.

i.e., There exists {exx, ,, .} such that lim, o, €pXy i = erx.
And clearly egx is a limit point of {egx, , }n.

Therefore is a limit point of the set (ZFSP)"(A) of (IFS) points
of {erxgntn

Conversely suppose that every infinite IFsoft subset of
(IFSP) (Xg), has a limit point.

Now we show that ((IFSP)(Xg),d, E)
compact sapce.

is (IFS) sequential

Consider an arbitrary (IFS) sequence {erx, ,}n in (IFSP) (Xg).

If {erxyn}n has a point which is repeated infinite times, then
possesses a constant convergent sub sequence .

If {erxs,}n has no (IFS) point which is repeated then the set
(IFSP)"(A) of infinite (IFS) points of this sequence is infinite.

By hypothesis (IFSP) (4) contains a limit point in (IFSP) (Xg),
say epx .

And easily we can find a subsequence of {erx,,}» Which
converges to egx.
Hence ((IFSP) (Xg), d, E) is (IFS) sequential compact space.

Theorem 3.18 Let ((IFSP)"(Xe), d, E) be (IFS) compact metric
space.Then every infinite subset of (IFSP)(Xg) has a limit
point.

Proof. Suppose ((IFSP) (Xg), d, E) is a (IFS)compact metric
space.

Let (IFSP) (A) be an infinite subset of (IFSP) (Xg).

In a contrary way suppose that (ZFSP)"(A4) has no limit point in

Let epx € (IFSP)(Xe).
Then epx is not a limit point of (IFSP)"(A).

So there a (IFS)neighbourhood (IFSB) (ezx,&) such that
(IFSB) (epx, &) & (IFSP)(A)

This can be done for each (IFS) point epx in (IFSP) (Xg).
Consider the class { (IFSB) (erx, &) epx € (IFSP) (Xg)}.

Trivially (IFSP) (Xg) = U (IFSB) (erx, £).
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Since each is (IFS)open set, { (IFSB)(epx,&) epx €
(IFSP)"(Xg)} forms an (IFS) open cover for (IFSP) (Xg) and
this open cover contains a finite subcover (Since (IFSP) (Xg) is
a (IFS) compact space).

(IFSP)(Xg) =  (IFSB)(epx1,&) U (IFSB) (epx2,&) U
(IFSB) (epx3, &)... U (IFSB) (epxk, ), finite union.

But (IFSP) (A) € (IFSP) (Xg).
Which is not possible as (ZFSP) () is infinite.

This is a contradiction.

Hence the theorem is proved.

Definiton 3.19 Suppose ((IFSP)(Xg), d, E) is a (IFS) metric
space and (IFSP)(A) & (IFSP)(Xg).Then diameter of
(IFSP) () is denoted by Diam((ZFSP) (A)) or D((IFSP) (A))
and is defined as Diam((ZFSP)(A)) = Sup { d(ezx ,epy ):
erx, , epy € (IFSP) (4)}.

Definition 3.20 Suppose ((IFSP)(Xg),d, E) is a

(IFS) topological space and

Q = { (IFSP)(B,) : n € A} be a (IFS)open cover for
(IFSP)"(Xg).Then a (IFS)real number # > 0 is called a
Leabegue’s IFS number (LIFSN in short) if every subset
(IFSP)"(A) of (IFSP)(Xg) with diameter less than # and
(IFSP)"(A) is contained in atleast one member of the
(IFS) open cover Q.

Definition 3.21 A subset (IFSP) (4) of (IFSP)(X¢) is said to
be bounded if its diameter is finite.

In particular a (IFS) metric space ((IFSP)(Xg),d, E) s
bounded if Diam((IFSP) (Xg)) <oo.

Lemma 3.22 In a (IFS) Sequentially compact space every open
cover has a (IFS) Lebesgue’s number.

Proof. Let ((IFSP) (Xg), d, E) be a (IFS) Sequentially compact
space.

Let Q = { (IFSP) (B,) : n € A} be a (IFS) open cover for .
We show that this open cover has a IFSL number.
In a contrary way suppose that Q has no IFSL number.

Then 3 (IFSP)(C,) from (IFSP)(Xg) such that
Diam((ZFSP) (C,)) < % and (IFSP)(C,) & (IFSP)(B,) for any

Now choose (IFS) point epx,, from (IFSP)(C,) and construct
the sequence {erx, }.

Since (IFSP)(Xg) is (IFS)sequential compact, the above
sequence has a convergent subsequence,say {erx,  }.

= {erxyy } — epxasn — o,

epx belongs to atleast one member of Q, say
(IFSP) (Bpo).Since (IFSP) (Byo) is IS soft open set there is a
(IFS) open ball (IFSB) (erx, &) with center at epx such that
(IFSB) (epx, &) € (IFSP) (Byg)......(ii)

Now we consider (IFSB)N(eFxE), a concentric circle of
(IFSB) (ezx, &).

Clearly (IFSB) (ex,5) € (IFSB) (ep X, &)........ (iif)

 {epxny } converges to erx,3 n0 € N such that nk > n0,
erXy . € (IFSB) (epx, E).

Now choose an integer kO such that ki < g
0

= Diam((IFSP) (Cry)) ki < E
0

= (IFSP) (Cio) E (IFSB) (5 %,5) oo (iv)

= ((IFSP) (Co) € (IFSP) (B,,,) from (ii), (iii) and (iv).

Which contradicts (i).

Hence the Lemma is proved.

Definition 3.23 Suppose ((IFSP) (Xg), d, E) is a (IFS) metric
space, then a subset (IFSP)(A) of (IFSP) (Xg) is said to be
(IFS)¢- net for (IFSP)(Xe) if (IFSP)(A) is finite and
(IFSP) (Xe) € Uepaeirspa)(IFSBY (epx, €).

i.e., IFSP) (A)={ eral, era2,....... epan}

= (IFSP) (Xg) = (IFSB) (epal, &) U (IFSB) (era2,&) U ....... U
(IFSB) (epan, ).

Definition 3.24 A (IFS)'metric space ((IFSP)(Xg),d, E) is
said to be totally bounded (ZFS)” metric space if it has (IFS) &-
net.

Theorem 3.25 If (IFSP)"(Xg) is totally bounded (IFS)” metric
space (IFS) metric space,then it is bounded.

Proof. Assume that (ZFSP)"(Xg) is totally bounded (IFS)”
metric space.

Then it possess 1-net.
Let (IFSP) (A)={ eral, era2,....... epan} finite set.

= (IFSP) (Xg) = (IFSB) (eral, &) U (IFSB) (era2,&) U ....... U
(IFSB) (eran, &).

For any epx, ezy € (IFSP) (Xg), epx € (IFSB) (epai, 1), ery €
(IFSB) (eraj, 1) for some i,j €{1,2,....n}.
1.
d(epai, epaj) ¥ d(ery,

d(epx, epai) Z 1 and d(ery, eraj

)<
Now d(epx, exy) < d(epx, epai) ¥
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2 ¥ d(epai, epaj)
2 ¥ Diam((IFSP) (A)) < « ( Since (IFSP)(A) is finite).
This is true for all ezx, ey € (IFSP) (Xg).

Hence (IFSP) (Xg) is bounded.

Theorem 3.26 A (IFS) Sequentially compact space is totally
bounded (ZFS)” metric space.

Proof. Assume that (IFSP) (Xg) is (IFS) Sequentially compact
space.

We show that (ZFSP) (Xe) is totally bounded (IFS)” metric
space.

Let eral € (IFSP) (Xe) and consider the (ZFS) neighbourhood
of epal, say (IFSB) (epal, &) for & > 0.

If (IFSP) (Xg) € (IFSB) (epal, &), then (IFSP)(A)= {eral}
forms a (IFS) &- net for (IFSP) (Xg).

If (IFSP)(Xg) € (IFSB)(eral,£) then we can find epa2 €
(IFSP)"(Xg) - (IFSB) (eral, &).

And consider (IFSB) (eral, &) U (IFSB) (era2, £).

If (IFSP)(Xe) € (IFSB) (eral,&) U (IFSB)(era2,£), then
(IFSP)"(A)= {eral, epa2} forms a (IFS)"&- net for (IFSP) (Xg).

If (IFSP) (Xe) € (IFSB) (eral, &) U (IFSB) (epa2, £),

then we can find eza3 € (IFSP) (Xg) — {(IFSB) (eral, &) U
(IFSB) (era2, &)}.

If the process continued indefinitely we get a sequence {era,, \
}in (IFSP)"(Xe) such that d(erai, epaj) > &.

Whcih shows that the sequence {era,, } has no convergent
subsequence.
Which is a contradiction to the hypothesis.

So this process must terminate after a finite stage.
& we must have (IFSP)(Xg) € (IFSB) (eral, &) U (IFSB)
“(era2, &)......... U (IFSB) (epan, &) for some n.

Hence  (IFSP)(A) ={ eral,
(IFS)"&- net.

epa,...... epan} forms a

Hence (IFSP)(X¢) is totally bounded (IFS)” metric space.

Theorem 3.27 A (IFS)sequential
(IFS) compact.

compact space is

Proof. Assume that (IFSP) (Xg) is (IFS) Sequentially compact
space.

We show that (IFSP)"(Xg) is(IF'S) compact space.
Let {(IFSPY (Ag)}ac a be a (IFS) open cover for (IFSP) (Xe).

Then by Lemma 3.22 this (IFS)open cover has a LIFSN
number, Say d.

= For any (IFSP) (A)E (IFSP) (Xg) with Diam((IFSP) (4)) <

8

(IFSP)(A)  lies in member  of

{UFSPY (Aa)}ae arrrrnn-(1)

exactly  one

space.
~ it has a (IFS)"&- net.
(IFSP) (A) ={ eral, epa2,...... epan} be a (IFS) - net.

~ (IFSP) (Xg) € (IFSB) (epal, &) U (IFSB) (epa2, é).......... U
(IFSB) (epan, &)........ (i)

= Diam((IFSB) (epai, &) < 2¢ < dfori=1,2,...n.

= By (i) there is exactly one «,i € A such that
(IFSB) (epai, &) C IFSP(Ay;) fori=1,2, ... n......(jii)

From (ii) and (iii) (IFSP)(Xe) € IFSP(Ag.) U IFSP(A,>)

U..... U IFSP(Agn)-

= {(IFSPY (Aq1) » AFSPY (Ag.5) .., IFSPY (Ag )} forms a
(IFS) open cover for (IFSP) (Xg).

Hence (IFSP) (Xg) is (IFS) compact space.

Definition 3.28 Let ((IFSP) (Xe), d1, E) and ((IFSP)(Y), d2,
E) be two (IFS) metric spaces. A mapping f : ((IFSP) (Xe), d1,
E) — ((IFSP)(Y),d2, E) is said to be (IFS)uniformly
continuous on (IFSP)(X) if for each & =0 36 = 0 such
that d1(epx, epy) < 8 = d2(f (epx), f(ery)) < &.This is true
forevery epx, exy € (IFSP)"(X).

Theorem 3.29 Suppose ((IFSP)(Xg), d, E) is a (IFS) compact
space and f : ((IFSP)(Xg), d1, E) — ((IFSP)(Y),d2, E) is
(IFS)continuous where ((IFSP)(Y), d2, E) is any arbitrary
(IFS)"space then f (IFS) uniformly continuous.

Proof. Given ((IFSP)(Xg), d, E) is a (IFS) compact space and

f . (UFSP)(Xe),d1, E) — ((IFSP)(Y),d2, E) s
(IFS) continuous.

Now we prove that f is (ZFS) uniformly continuous.

For given & = 0 and for any epx € (IFSP) (Xg).
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Let (IFSP)(Vx) = (IFSB) (f (epx), )

Since f is (IFS)continuous the inverse
f~Y(FSP) (Vx)) of (IFSP)(Vx) is in (IFSP) (Xg).

image

Let (IFSP) (Gx) = f ~Y((IFSP) (Vx)).

= For any epx € (IFSP)(X) we have a (IFS)open set
(IFSP) (Gx) in (IFSP)"(Xg).

So {IFSP(EEc)}eFxg,FSP(g) forms a (IFS)open cover for
(IFSP) (Xg).

And (IFSP)(Xg) is (IFS)compact = (IFSP)(Xe) is
(IFS) sequential compact space by Theorems 3.17 and 3.18.

= The (IFS)open cover has a IFSL number by Lemma
3.22,Letitbe 8.

= For any (IFSP) (A)E (IFSP) (Xg) with Diam((IFSP) (4)) <
5.

(IFSP)"(A) lies exactly in one (IFSP)(Gx) such that epx €
(IFSP) (Xg).

Let epx , ey € (IFSP) (Xe) with d1(epx, epy) < 6.

Then the two elements set (IFSP) (A) = { epx ,epy} with
Diam((IFSP)(4)) < 8.

= (IFSP)"(A) lies exactly in one (IFSP) (Gx0).
= (IFSP)(A) € (IFSP) (Gx0).

= epx , epy € (IFSP)(Gx0).

= epx, epy € fY((IFSP) (Vx0)).

= f(erx), f(ery) € (IFSP)(Vx0).
= f(erx), Flery) € AFSB)(f (£x0),5).

= d2(f (erx), f(erx0)) < E and d2(f (ery), f (erx0)) < §
Now  d2(f(erx), f(ef)’))v < d2(f(epx), f(epx0))
d2(f(erx0), f(ery)) X5 ¥5=7

Hence the theorem.

+

Conclusion

In this paper we have defined (IFS) sequential compact space,
(IFS) soft real number, (IFS) point.This study contributes some
important theorems and properties on the concepts of Lebesgue
(IFS)” number, (IFS)é- net ,totally bounded (IFS) metric
space.At the end the concept of (ZFS) uniformly continuous
mapping is defined and an important theorem is proved.
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