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Abstract 

Network coding based applications are notoriously susceptible to malicious pollution attacks. Packets 

authentication schemes have been well-recognized as the most effective approach to address this security 

threat. However, existing packets authentication scheme i. e. the Times keys scheme consumes extra 

bandwidth for transmission of times keys. Also the Time keys can be captured and replay attack can be 

launched by the attacker. This motivates to design a new solution to avoid the problems in Time keys scheme. 

The solution is based on the concept that the source and the destination must agree on the keys along with 

the network coding process. This scheme of agreeing on the keys is known as adaptive TESLA scheme. Using 

this proposed scheme the effect of pollution attack and collusion attack is measured in terms of real packets 

corrupted and dropped. The proposed adaptive TESLA scheme for network coding is also compared with 

times keys in terms of bandwidth usages.  

Keywords: network coding, pollution attack, collusion attack, adaptive TESLA. 

1. Introduction 

The Multi-hop Wireless Networks (MWNs) are 

regarded as such a promising solution for extending 

the radio coverage range of the existing wireless 

networks. System reliability can be improved 

through multi-path packet forwarding, which is 

feasible in MWNs. However, there exist many 

security and privacy issues in MWNs. Due to the 

open-air wireless transmission, MWNs suffer from 

various kinds of attacks, such as eavesdropping, data 

modification/injection, and node compromising; 

these attacks may breach the security properties of 

MWNs, including confidentiality, integrity, and 

authenticity. In addition, some advanced attacks, 

such as traffic analysis and flow tracing, can also be 

launched to compromise the privacy of users, 

including source anonymity and traffic secrecy. 

Network coding refers to a general class of routing 

mechanisms where, in contrast to traditional “store-

and- forward” routing, intermediate nodes modify 

data packets in transit. Network coding has been 

shown to offer a number of advantages with respect 

to traditional routing, the most well-known of which 

is the possibility of increased throughput in certain 

network topologies.  It has also been suggested as a 

means of improving robustness against random 

network failures since, as with erasure codes  the 

destination can recover the original data (with high 

probability) once it has received sufficiently many 

correct packets, even if a large fraction of packets 

are lost. Because of these advantages, network 

coding has been proposed for applications in 

wireless and/or ad-hoc networks, where 

communication is at a premium and centralized 

control may be unavailable; it has also been 

suggested as an efficient means for content 

distribution in peer-to- peer networks and for 

improving the performance of large-scale data 

dissemination over the Internet.  

A major concern in systems that use network coding 

is to provide protection against problem is 

particularly acute because errors introduced into 
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even a single packet can propagate and pollute 

multiple packets making their way to the 

destination; this is a consequence of the processing 

that honest nodes, downstream of any corrupted 

packets, apply to all incoming packets malicious 

modification of packets (i.e., “pollution attacks”) by 

Byzantine nodes in the network. 

 

2. Existing System  

P2P networks with random network coding are 

known to be susceptible to pollution attack. During 

such attacks, malicious peers inject polluted packets 

to their neighbours. Such pollution can rapidly 

propagate in the network, leading to substantially 

degraded performance due to the wasted bandwidth 

of corrupted blocks distribution. 

Furthermore, since network coding allows peers to 

forward packets coded from their received packets, 

as long as a single input packet is corrupted, all 

output packets forwarded by a peer will be 

corrupted. As a result, a single corrupted block will 

pollute the whole network system and prevent peers 

from decoding the original blocks, thus degrading 

the performance of the whole system Therefore, it is 

crucial to check coded packets whether they are 

corrupted before using them for encoding in network 

coding systems, and filter out polluted packets as 

early as possible. 

Time based scheme was proposed to solve this 

problem. But the time based keys can be captured & 

replayed in the network.  

 Time keys can be captured & replay 

attack can be launched by the attacker.  

 Extra bandwidth is consumed for 

transmission of time keys & for the large 

network this will become a critical 

bottleneck.  

 This motivates to design a new solution 

to avoid the problems in time key 

scheme. 

 

3. Problem Definition  

P2P networks with random network coding are 

known to be susceptible to pollution attack. During 

such attacks, malicious peers inject polluted packets 

to their neighbours. Such pollution can rapidly 

propagate in the network, leading to substantially 

degraded performance due to the wasted bandwidth 

of corrupted blocks distribution. Furthermore, since 

network coding allows peers to forward packets 

coded from their received packets, as long as a 

single input packet is corrupted, all output packets 

forwarded by a peer will be corrupted. As a result, a 

single corrupted block will pollute the whole 

network system and prevent peers from decoding the 

original blocks, thus degrading the performance of 

the whole system Therefore, it is crucial to check 

coded packets whether they are corrupted before 

using them for encoding in network coding systems, 

and filter out polluted packets as early as possible.  

Time based scheme [1] was proposed to solve this 

problem. But the time based keys can be captured & 

replayed 

3.1 Solution Strategy 

The Solution is based on the same concept of time 

keys but without transmitting the time keys the 

source & the destination nodes must agree on the 

keys. This scheme is referred as Adaptive TESLA 
[7]. Each node with a seed key generates N number 

of keys using one way hash function. Let seed key 

be S1. Subsequent keys generated by one way hash 

chain is  S2, S3, S4, S5 ….. SN. 

All the nodes are assumed to be time synchronized. 

Every time once  nodes use the key from SN,SN-

1,… S2 (ie in the reverse order). The network 

coding vectors are encrypted & also digital signature 

is prepared using the Key S for that time interval. 

After the time interval using S1 & current time 

stamp , second generation keys are prepared.  When 

any corrupt packets are launched in the network, at 

the receiver, the digital signature is verified using 

the Key S for that time interval  & dropped if the 

signature match failed. This way we can avoid the 

pollution & colluding attack without consuming 

extra bandwidth.  

Also replay attack cannot be launched in our 

approach because keys at time instant is not same as 

any, since keys are regenerated at each generation.  
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3.2 Objectives  

The main objectives of the project are as follows: 

1. Measure the effect of pollution attack & 

colluding attack on the proposed solution in 

terms of number of real packets corrupted & 

dropped. 

2. We will also measure the bandwidth 

consumed in our approach. 

3. The proposed Adaptive TESLA scheme is 

compared with time key solution in terms of 

bandwidth usage. 

4. Measure the effect of replay attack in the 

Adaptive TESLA & time key solution in 

terms of number of real packets corrupted & 

dropped. 

3.3  Proposed solution & advantage 

Network coding was first introduced by Ahlswede et 

al [6]. Subsequently, two key techniques, random 

coding and linear coding further promote the 

development of network coding technologies. The 

random coding makes network coding more 

practical, while the linear coding is proven to be 

sufficient and computationally efficient for network 

coding. Currently, network coding has been widely 

recognized as a promising information dissemina-

tion approach to improving network performance. 

Primary applications of network coding include the 

file distribution and multimedia streaming on P2P 

overlay networks, data transmission in sensor 

networks, tactical communications in military 

networks, etc. 

Compared with conventional packet forwarding 

technologies, network coding offers, by allowing 

and encouraging coding/mixing operations at 

intermediate forwarders, several significant 

advantages such as the potential throughput 

improvement, transmission energy minimization, 

and delay minimization. We propose keying based 

on U-Tesla to guard the network against attacks on 

network coding process. In this, SINK node 

distributes seed keys  for all the nodes. Based on this 

seed keys node generate keys for a particular instant 

of time. Both node and sink know the keys at a 

particular instance of time. Node forms the keys 

using the U-Tesla mechanism of hashing subsequent 

keys with time value. Whenever node sends data, it 

also forms the hash of data using the key at that 

particular time and then sends this hash value also to 

the sink in the packet. Sink will verify the hash and 

if it is valid, it will accept the packet for network 

coding. If the hash validation fail sink will drop the 

packet from doing decoding. Since time instance 

and keys are included for forming hash, the message 

corruption attack and message replay attack will fail, 

thereby security is implemented. 

 

3.4 System Architecture 

 
Fig  1 : S ys tem Arch itec ture  

 

System architecture is the conceptual design that 

defines the structure and behavior of a system. An 

architecture description is a formal description of a 

system, organized in a way that supports reasoning 

about the structural properties of the system. It 

defines the system components or building blocks 

and provides a plan from which products can be 

procured, and systems developed, that will work 

together to implement the overall system.  

Packet Queue: This Queue contains the packet that 

is to be sent to the Next Peer.  

Network Coding: Encoding of the packets is done 

in this module. 

Time Synchronization: This module is responsible 

to maintain the time Synchronization between two 

peers while generating the key. 

Tesla Key Generation: The module where actually 

the key is generated for the encryption.  

Key DB: Stores the Key Generated by TESLA key 

generator. 

 

 

http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Behavior
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/System
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4. Working of proposed system: 

This system employ the Paillier cryptosystem as the 

HEF to apply encryption to GEVs. HEF can not 

only keep the confidentiality of GEVs, but also 

enable intermediate nodes to efficiently mix the 

coded messages. In the Paillier cryptosystem, given 

a message m and the public key (n, g), the 

encryption function is described as follows 

E(m) = gm ⋅  rn  (mod n2 ) 

where r is a random factor in the Paillier 

cryptosystem. 

  

 
Fig 2: Random network coding with HEF 

 

With HEFs, intermediate nodes are allowed to 

directly perform linear coding/mixing operations on 

the coded messages and encrypted tags, as shown in 

Fig. 5.11. In other words, due to the homomorphism 

of the HEF, linear network coding can be achieved 

by operating on the encoded messages and the 

ciphertext of GEVs, without knowing the decryption 

keys or performing the decryption operations.  

 

4.1 Steps in the Proposed Scheme 

The proposed scheme primarily consists of three 

phases: source encoding, intermediate random linear 

recoding, and sink decoding. Without loss of 

generality, we assume that each sink acquires two 

keys, the encryption key ek and the decryption key 

dk, from an offline Trust Authority (TA), and the 

encryption key ek is published to all other nodes. 

For supporting multicast, a group of sinks are 

required to obtain from the TA or negotiate the key 

pair in advance then, they can publish the encryption 

key and keep the decryption key private in the 

group.  

Source Encoding: Consider that a source has h 

messages, say x1,x2 …xh , to be sent out. The 

source first prefixes h unit vectors to the h messages, 

respectively, as illustrated in Fig 5.12. After tagging, 

the source can choose a random LEV and then 

perform a linear encoding operation on these 

messages. Thus, one LEV will generate an encoded 

message with the GEV(which is equal to the LEV 

temporarily) tagged. To offer confidentiality for the 

tags, homomorphism encryption operations are 

employed on these tags. 

 

 
F ig 3 : S ource encod ing  

Intermediate Random Linear Recoding: After 

receiving a number of packets of the same 

generation, an intermediate node can perform 

random linear coding on these packets. To 

generate an outgoing packet, firstly, a random 

LEV is chosen independently; then, a linear 

combination of message content of the incoming 

packets is computed as the message content of 

the outgoing packet 

Sink Decoding: After receiving a packet, the sink 

first decrypts the packet tag using the 

corresponding decryption key dk. Once enough 

packets are received, a sink can decode the 

packets to get the original messages.  

 

4.2 Algorithm of Proposed Scheme 

Assume that there are four source nodes and all are 

ready to send the data to sink node relayed through 

two routers 

Step 1: Display the network setup with all four 

source nodes and two router and the destination 

Step 2: Generate packets from each node, now 

assume that each node is sending 100 packets of 

data 
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Step 3: The packets from source node are send to the 

router 1 

Step 4: Router 1 will take 25 packets of data from 

each node. When all 4 blocks are received at router 

1 it starts performing random network coding and 

forms the four generation of messages.  

Step 5: With each generation of message a Global 

encoding vector (GEV) is send which is generated 

using paillier cryptography. 

Step 6: Paillier cryptosystem works as follows  

Pick two large prime p and q and let n=p*q. Let  

lambda (n) =lcm(p-1,q-1).  Pick random g ϵ Ẓ*n2 

such that L (g lambda mod n2) is invertible modulo 

n (where L(u) = (u-1) /n. where n and g are public p 

and q are private. For plaintext x and resulting 

ciphertext y, select a random r ϵ Ẓ *. Then 

ek(x,r) = gm *rn mod n2 

dk=(L(y lambda mod n2)/L(g lambda mod n2))* 

mod n2. 

Step 7: The value of lambda is taken as Global 

encoding vector and send with each generation of 

message 

Step 8 a:  Calculate Seed Key which is pseudo-

random function(PRF) and it is calculated as follows 

Seedkey= Any random number *100 +1000 

Step 8 b:  Seed Key distribution: Sink distributes 

seed key for all the nodes as follows  

Seedkey = Seedkey * node number *3 + 2 * 

Seedkey + 5 

Step 9: Key generation: Using the seed key, each 

node will generate the keys for generation of time as 

       K1 = H(S,Time1);  

       K2 = H(K1,Time2); 

       K3 = H(K2,Time3);  

       K4 =H(K3,Time4);  

Both node and sink will generate this keys for some 

generation and store in them.  

Message signing: Whenever node sends data , it 

forms a cryptographic hash of data with the key at 

that particular instant of time and send this hash 

value also in the packet to sink. 

Message authentication: When sink receives 

packet it will again form cryptographic hash of the 

data and check with original hash in the packet. If 

both are same, the message is valid, else the 

message is considered as corrupted and dropped.  

Step 10: When the Sink node receives all the 

generations of composite packets along with the 

hash keys, sink node starts authenticating each 

generation of composite packets with the help of 

seed key 

Step 11: Sink node first calculates the hash key of 

second generation of composite packets using the 

seed key, authenticate it and then with computed 

hash key of the second generation it stats recursively 

calculating the hash key of third generation of 

composite packets. 

Step 12: In this way by recursively calculating the 

hash value for each generation of composite packets 

all generations are authenticated 

Step 13: Now the Sink node stars decrypting the 

encoded composite packets  

Step 14: It decode all the generation of messages 

one by one, get the order of blocks in which they 

were encoded and then stats decoding the packets 

from each source node 

Step 15: All packets are re-assembled and original 

message is constructed at sink node.  

 

5. Results 

The performance of system is calculated under two 

parameters for all the three scenarios 

 Computational overhead 

 Network overhead 

As the number of packets increases the 

computational overhead is goes on decreasing as 
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well as the network overhead also decreases so more 

number of packets we can send without collusion.  

 

 

Fig 4: network overhead 

As number of packets increases the rate that is MB 

per second goes on decreases in all three scenarios.  

 

  

Fig 5: Computational  overhead 

6. Conclusions 

Although the time keys scheme, which is a in-

network security scheme based on time and space 

properties of network coding, is not a efficient 

scheme . As attacker can capture the times keys and 

may introduce an replay attack into the network. The 

proposed scheme use network coding along with the 

encryption of times keys. It saves the bandwidth of 

the network as well as it reduces total corrupted 

packet. Thus the network coding increases the 

throughput of network and the TESLA technique 

that generates the seed keys both at source and sink 

makes the system more efficient.  
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