

Aparna Jumde et al www.ijetst.in Page 2753

IJETST- Vol.||02||Issue||06||Pages 2753-2758||June||ISSN 2348-9480 2015

International Journal of Emerging Trends in Science and Technology

An Efficient Dynamic TESLA based Authentication Scheme for Secure

Network Coding

Authors

Aparna Jumde
1
, Shyamsundar Gupta

2

1Siddhant COE, Sudumbare Pune, Savitribai Phule Pune University, Maharashtra India
2Siddhant COE, Sudumbare Pune, Savitribai Phule Pune University, Maharashtra India

Abstract

Network coding based applications are notoriously susceptible to malicious pollution attacks. Packets

authentication schemes have been well-recognized as the most effective approach to address this security

threat. However, existing packets authentication scheme i. e. the Times keys scheme consumes extra

bandwidth for transmission of times keys. Also the Time keys can be captured and replay attack can be

launched by the attacker. This motivates to design a new solution to avoid the problems in Time keys scheme.

The solution is based on the concept that the source and the destination must agree on the keys along with

the network coding process. This scheme of agreeing on the keys is known as adaptive TESLA scheme. Using

this proposed scheme the effect of pollution attack and collusion attack is measured in terms of real packets

corrupted and dropped. The proposed adaptive TESLA scheme for network coding is also compared with

times keys in terms of bandwidth usages.

Keywords: network coding, pollution attack, collusion attack, adaptive TESLA.

1. Introduction

The Multi-hop Wireless Networks (MWNs) are

regarded as such a promising solution for extending

the radio coverage range of the existing wireless

networks. System reliability can be improved

through multi-path packet forwarding, which is

feasible in MWNs. However, there exist many

security and privacy issues in MWNs. Due to the

open-air wireless transmission, MWNs suffer from

various kinds of attacks, such as eavesdropping, data

modification/injection, and node compromising;

these attacks may breach the security properties of

MWNs, including confidentiality, integrity, and

authenticity. In addition, some advanced attacks,

such as traffic analysis and flow tracing, can also be

launched to compromise the privacy of users,

including source anonymity and traffic secrecy.

Network coding refers to a general class of routing

mechanisms where, in contrast to traditional “store-

and- forward” routing, intermediate nodes modify

data packets in transit. Network coding has been

shown to offer a number of advantages with respect

to traditional routing, the most well-known of which

is the possibility of increased throughput in certain

network topologies. It has also been suggested as a

means of improving robustness against random

network failures since, as with erasure codes the

destination can recover the original data (with high

probability) once it has received sufficiently many

correct packets, even if a large fraction of packets

are lost. Because of these advantages, network

coding has been proposed for applications in

wireless and/or ad-hoc networks, where

communication is at a premium and centralized

control may be unavailable; it has also been

suggested as an efficient means for content

distribution in peer-to- peer networks and for

improving the performance of large-scale data

dissemination over the Internet.

A major concern in systems that use network coding

is to provide protection against problem is

particularly acute because errors introduced into

Aparna Jumde et al www.ijetst.in Page 2754

IJETST- Vol.||02||Issue||06||Pages 2753-2758||June||ISSN 2348-9480 2015

even a single packet can propagate and pollute

multiple packets making their way to the

destination; this is a consequence of the processing

that honest nodes, downstream of any corrupted

packets, apply to all incoming packets malicious

modification of packets (i.e., “pollution attacks”) by

Byzantine nodes in the network.

2. Existing System

P2P networks with random network coding are

known to be susceptible to pollution attack. During

such attacks, malicious peers inject polluted packets

to their neighbours. Such pollution can rapidly

propagate in the network, leading to substantially

degraded performance due to the wasted bandwidth

of corrupted blocks distribution.

Furthermore, since network coding allows peers to

forward packets coded from their received packets,

as long as a single input packet is corrupted, all

output packets forwarded by a peer will be

corrupted. As a result, a single corrupted block will

pollute the whole network system and prevent peers

from decoding the original blocks, thus degrading

the performance of the whole system Therefore, it is

crucial to check coded packets whether they are

corrupted before using them for encoding in network

coding systems, and filter out polluted packets as

early as possible.

Time based scheme was proposed to solve this

problem. But the time based keys can be captured &

replayed in the network.

 Time keys can be captured & replay

attack can be launched by the attacker.

 Extra bandwidth is consumed for

transmission of time keys & for the large

network this will become a critical

bottleneck.

 This motivates to design a new solution

to avoid the problems in time key

scheme.

3. Problem Definition

P2P networks with random network coding are

known to be susceptible to pollution attack. During

such attacks, malicious peers inject polluted packets

to their neighbours. Such pollution can rapidly

propagate in the network, leading to substantially

degraded performance due to the wasted bandwidth

of corrupted blocks distribution. Furthermore, since

network coding allows peers to forward packets

coded from their received packets, as long as a

single input packet is corrupted, all output packets

forwarded by a peer will be corrupted. As a result, a

single corrupted block will pollute the whole

network system and prevent peers from decoding the

original blocks, thus degrading the performance of

the whole system Therefore, it is crucial to check

coded packets whether they are corrupted before

using them for encoding in network coding systems,

and filter out polluted packets as early as possible.

Time based scheme [1] was proposed to solve this

problem. But the time based keys can be captured &

replayed

3.1 Solution Strategy

The Solution is based on the same concept of time

keys but without transmitting the time keys the

source & the destination nodes must agree on the

keys. This scheme is referred as Adaptive TESLA
[7]. Each node with a seed key generates N number

of keys using one way hash function. Let seed key

be S1. Subsequent keys generated by one way hash

chain is S2, S3, S4, S5 ….. SN.

All the nodes are assumed to be time synchronized.

Every time once nodes use the key from SN,SN-

1,… S2 (ie in the reverse order). The network

coding vectors are encrypted & also digital signature

is prepared using the Key S for that time interval.

After the time interval using S1 & current time

stamp , second generation keys are prepared. When

any corrupt packets are launched in the network, at

the receiver, the digital signature is verified using

the Key S for that time interval & dropped if the

signature match failed. This way we can avoid the

pollution & colluding attack without consuming

extra bandwidth.

Also replay attack cannot be launched in our

approach because keys at time instant is not same as

any, since keys are regenerated at each generation.

Aparna Jumde et al www.ijetst.in Page 2755

IJETST- Vol.||02||Issue||06||Pages 2753-2758||June||ISSN 2348-9480 2015

3.2 Objectives

The main objectives of the project are as follows:

1. Measure the effect of pollution attack &

colluding attack on the proposed solution in

terms of number of real packets corrupted &

dropped.

2. We will also measure the bandwidth

consumed in our approach.

3. The proposed Adaptive TESLA scheme is

compared with time key solution in terms of

bandwidth usage.

4. Measure the effect of replay attack in the

Adaptive TESLA & time key solution in

terms of number of real packets corrupted &

dropped.

3.3 Proposed solution & advantage

Network coding was first introduced by Ahlswede et

al [6]. Subsequently, two key techniques, random

coding and linear coding further promote the

development of network coding technologies. The

random coding makes network coding more

practical, while the linear coding is proven to be

sufficient and computationally efficient for network

coding. Currently, network coding has been widely

recognized as a promising information dissemina-

tion approach to improving network performance.

Primary applications of network coding include the

file distribution and multimedia streaming on P2P

overlay networks, data transmission in sensor

networks, tactical communications in military

networks, etc.

Compared with conventional packet forwarding

technologies, network coding offers, by allowing

and encouraging coding/mixing operations at

intermediate forwarders, several significant

advantages such as the potential throughput

improvement, transmission energy minimization,

and delay minimization. We propose keying based

on U-Tesla to guard the network against attacks on

network coding process. In this, SINK node

distributes seed keys for all the nodes. Based on this

seed keys node generate keys for a particular instant

of time. Both node and sink know the keys at a

particular instance of time. Node forms the keys

using the U-Tesla mechanism of hashing subsequent

keys with time value. Whenever node sends data, it

also forms the hash of data using the key at that

particular time and then sends this hash value also to

the sink in the packet. Sink will verify the hash and

if it is valid, it will accept the packet for network

coding. If the hash validation fail sink will drop the

packet from doing decoding. Since time instance

and keys are included for forming hash, the message

corruption attack and message replay attack will fail,

thereby security is implemented.

3.4 System Architecture

Fig 1 : S ys tem Arch itec ture

System architecture is the conceptual design that

defines the structure and behavior of a system. An

architecture description is a formal description of a

system, organized in a way that supports reasoning

about the structural properties of the system. It

defines the system components or building blocks

and provides a plan from which products can be

procured, and systems developed, that will work

together to implement the overall system.

Packet Queue: This Queue contains the packet that

is to be sent to the Next Peer.

Network Coding: Encoding of the packets is done

in this module.

Time Synchronization: This module is responsible

to maintain the time Synchronization between two

peers while generating the key.

Tesla Key Generation: The module where actually

the key is generated for the encryption.

Key DB: Stores the Key Generated by TESLA key

generator.

http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Behavior
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/System

Aparna Jumde et al www.ijetst.in Page 2756

IJETST- Vol.||02||Issue||06||Pages 2753-2758||June||ISSN 2348-9480 2015

4. Working of proposed system:

This system employ the Paillier cryptosystem as the

HEF to apply encryption to GEVs. HEF can not

only keep the confidentiality of GEVs, but also

enable intermediate nodes to efficiently mix the

coded messages. In the Paillier cryptosystem, given

a message m and the public key (n, g), the

encryption function is described as follows

E(m) = gm ⋅ rn (mod n2)

where r is a random factor in the Paillier

cryptosystem.

Fig 2: Random network coding with HEF

With HEFs, intermediate nodes are allowed to

directly perform linear coding/mixing operations on

the coded messages and encrypted tags, as shown in

Fig. 5.11. In other words, due to the homomorphism

of the HEF, linear network coding can be achieved

by operating on the encoded messages and the

ciphertext of GEVs, without knowing the decryption

keys or performing the decryption operations.

4.1 Steps in the Proposed Scheme

The proposed scheme primarily consists of three

phases: source encoding, intermediate random linear

recoding, and sink decoding. Without loss of

generality, we assume that each sink acquires two

keys, the encryption key ek and the decryption key

dk, from an offline Trust Authority (TA), and the

encryption key ek is published to all other nodes.

For supporting multicast, a group of sinks are

required to obtain from the TA or negotiate the key

pair in advance then, they can publish the encryption

key and keep the decryption key private in the

group.

Source Encoding: Consider that a source has h

messages, say x1,x2 …xh , to be sent out. The

source first prefixes h unit vectors to the h messages,

respectively, as illustrated in Fig 5.12. After tagging,

the source can choose a random LEV and then

perform a linear encoding operation on these

messages. Thus, one LEV will generate an encoded

message with the GEV(which is equal to the LEV

temporarily) tagged. To offer confidentiality for the

tags, homomorphism encryption operations are

employed on these tags.

F ig 3 : S ource encod ing

Intermediate Random Linear Recoding: After

receiving a number of packets of the same

generation, an intermediate node can perform

random linear coding on these packets. To

generate an outgoing packet, firstly, a random

LEV is chosen independently; then, a linear

combination of message content of the incoming

packets is computed as the message content of

the outgoing packet

Sink Decoding: After receiving a packet, the sink

first decrypts the packet tag using the

corresponding decryption key dk. Once enough

packets are received, a sink can decode the

packets to get the original messages.

4.2 Algorithm of Proposed Scheme

Assume that there are four source nodes and all are

ready to send the data to sink node relayed through

two routers

Step 1: Display the network setup with all four

source nodes and two router and the destination

Step 2: Generate packets from each node, now

assume that each node is sending 100 packets of

data

Aparna Jumde et al www.ijetst.in Page 2757

IJETST- Vol.||02||Issue||06||Pages 2753-2758||June||ISSN 2348-9480 2015

Step 3: The packets from source node are send to the

router 1

Step 4: Router 1 will take 25 packets of data from

each node. When all 4 blocks are received at router

1 it starts performing random network coding and

forms the four generation of messages.

Step 5: With each generation of message a Global

encoding vector (GEV) is send which is generated

using paillier cryptography.

Step 6: Paillier cryptosystem works as follows

Pick two large prime p and q and let n=p*q. Let

lambda (n) =lcm(p-1,q-1). Pick random g ϵ Ẓ*n2

such that L (g lambda mod n2) is invertible modulo

n (where L(u) = (u-1) /n. where n and g are public p

and q are private. For plaintext x and resulting

ciphertext y, select a random r ϵ Ẓ *. Then

ek(x,r) = gm *rn mod n2

dk=(L(y lambda mod n2)/L(g lambda mod n2))*

mod n2.

Step 7: The value of lambda is taken as Global

encoding vector and send with each generation of

message

Step 8 a: Calculate Seed Key which is pseudo-

random function(PRF) and it is calculated as follows

Seedkey= Any random number *100 +1000

Step 8 b: Seed Key distribution: Sink distributes

seed key for all the nodes as follows

Seedkey = Seedkey * node number *3 + 2 *

Seedkey + 5

Step 9: Key generation: Using the seed key, each

node will generate the keys for generation of time as

 K1 = H(S,Time1);

 K2 = H(K1,Time2);

 K3 = H(K2,Time3);

 K4 =H(K3,Time4);

Both node and sink will generate this keys for some

generation and store in them.

Message signing: Whenever node sends data , it

forms a cryptographic hash of data with the key at

that particular instant of time and send this hash

value also in the packet to sink.

Message authentication: When sink receives

packet it will again form cryptographic hash of the

data and check with original hash in the packet. If

both are same, the message is valid, else the

message is considered as corrupted and dropped.

Step 10: When the Sink node receives all the

generations of composite packets along with the

hash keys, sink node starts authenticating each

generation of composite packets with the help of

seed key

Step 11: Sink node first calculates the hash key of

second generation of composite packets using the

seed key, authenticate it and then with computed

hash key of the second generation it stats recursively

calculating the hash key of third generation of

composite packets.

Step 12: In this way by recursively calculating the

hash value for each generation of composite packets

all generations are authenticated

Step 13: Now the Sink node stars decrypting the

encoded composite packets

Step 14: It decode all the generation of messages

one by one, get the order of blocks in which they

were encoded and then stats decoding the packets

from each source node

Step 15: All packets are re-assembled and original

message is constructed at sink node.

5. Results

The performance of system is calculated under two

parameters for all the three scenarios

 Computational overhead

 Network overhead

As the number of packets increases the

computational overhead is goes on decreasing as

Aparna Jumde et al www.ijetst.in Page 2758

IJETST- Vol.||02||Issue||06||Pages 2753-2758||June||ISSN 2348-9480 2015

well as the network overhead also decreases so more

number of packets we can send without collusion.

Fig 4: network overhead

As number of packets increases the rate that is MB

per second goes on decreases in all three scenarios.

Fig 5: Computational overhead

6. Conclusions

Although the time keys scheme, which is a in-

network security scheme based on time and space

properties of network coding, is not a efficient

scheme . As attacker can capture the times keys and

may introduce an replay attack into the network. The

proposed scheme use network coding along with the

encryption of times keys. It saves the bandwidth of

the network as well as it reduces total corrupted

packet. Thus the network coding increases the

throughput of network and the TESLA technique

that generates the seed keys both at source and sink

makes the system more efficient.

References

1. Ming He· Zhenghu Gong · Lin Chen ·

HongWang · Fan Dai · Zhihong Liu “Securing

network coding against pollution attacks in

P2P converged ubiquitous networks” Springer

Science , Published online 26 June 2013

2. Frédérique Oggier and Hanane Fathi “An

Authentication Code Against Pollution Attack”

in Network Coding, Proc. IEEE/ACM

TRANSACTIONS ON NETWORKING,

VOL. 19, NO. 6, DECEMBER 2011.

3. Jing Dong, Reza Curtmola, Cristina Nita-

Rotaru, “Practical Defenses Against Pollution

Attacks in Intra-Flow Network Coding for

Wireless Mesh Networks” WiSec’09, March

16–18, 2009, Zurich, Switzerland.

4. F. Oggier and H. Fathi, “Multi-receiver

authentication codes for network coding,” in

Proc. 46th Annu. Allerton Conf. Commun.,

Control, Comput., 2008, pp. 1225–1231.

5. P. Chou, Y. Wu, and K. Jain, “Practical

network coding,” in Proc. Allerton Conf.

Commun., Control, Comput., 2003, pp. 40–49.

6. R. Ahlswede, N. Cai, S. Li, and R. Yeung,

“Network Information Flow,” IEEE Trans.

Information vol. 46, no. 4, pp. 1204-1216,

July 2000.

7. A.Perrig Ran Canetti, J. D. Tygar, D, “The

TESLA Broadcast Authentication Protocol” in

CrypoBytes, 5:2, Summer/ Fall 2002, pp 2-13.

0

200000

400000

600000

800000

1000000

1200000

No Attack

No Attack +
TESLA

Attack +TESLA

0

50000

100000

150000

200000

250000

300000

350000

No Attack

NO Attack

+ TESLA

Attack +

TESLA

	PointTmp

