

Lakshmi urs S M et al www.ijetst.in Page 2686

IJETST- Vol.||02||Issue||06||Pages 2686-2688||June||ISSN 2348-9480 2015

International Journal of Emerging Trends in Science and Technology

A Simple Load Rebalancing algorithm to rebalance the loads in clouds

Authors

Lakshmi urs S M
1
, Dr. C.D Guruprakash

2

1
Dept. of Computer Science and Engineering, Shridevi Institute of Engineering and Technology, Tumkur,

India

Email: lakshmi.0290@gmail.com
2
Professor and Head, Dept of Computer Science and Engineering, Shridevi Institute of Engineering and

Technology, Tumkur, India

Email: cdguruprakash@gmail.com

Abstract

Distributed file systems are key building blocks for cloud computing applications based on the MapReduce

programming paradigm. In such file systems, the nodes are simultaneously serve this computing and storage

functions; a file is partitioned into a number of chunks allocated in distinct nodes so that this MapReduce

tasks can be performed in parallel over the nodes. However, in a cloud computing environment, failure is the

norm, and nodes may be upgraded, replaced, and added in the system. Files can also be dynamically

created, deleted, and appended. This results in load imbalance in a distributed file system; that is, the file

chunks are not distributed as uniformly as possible among the nodes. Emerging distributed file systems in

production systems strongly depend on a central node for chunk reallocation. In this paper, a fully

distributed load rebalancing algorithm is presented to solve with the load imbalance problem. This

algorithm is compared against a centralized approach in a production system and a competing distributed

solution presented in the literature. The simulation results indicate that our proposal is comparable with the

existing centralized approach and considerably outperforms the prior distributed algorithm in terms of load

imbalance factor, movement cost, and algorithmic overhead.

Keywords: Load balance, distributed file systems, clouds,filechunks,load

INTRODUCTION

Cloud computing is a compelling technology. In

these technology, the clients will distribute their

assets in demand without fulfilling employment and

manages the assets. There are some of the main

technologies that is used for clouds that consists the

Map Reduce programming, distributed file system,

virtualizati0n technique and so on. key enabling

technologies includes scalability, so that this can be

used in huge scale, and entities that can be used

randomly that fails and join while maintaining the

system that is free from errors or mistakes.

The MapReduce programming is an method that is

used for generating an large sets of data that is based

on parallel distributed algorithm on clusters. In this

systems, a file is divided into a many of chunks files

that is distributed in the nodes that are distinct so

that this tasks that is map reduce can be achieved

simultaneously over all the nodes.

In this technology, a cloud divides the file interested

in a huge amount of incoherent and constant pieces

or the chunk files and assign these files into varieties

of storage nodes in clouds that is chunk servers.

Each of the storage node in clouds the it will finds

the frequency of each word that is unique by

searching and parsing its chunks files. In these

distributed file system, the load of the nodes is

relative to the amount of files chunks that the node

influences. In this system the files in a cloud can be

vigorously created, removed, and attached, and these

nodes can be upgraded, replaced and allocated in the

file system, the file chunks are not distributed

uniformly among all the nodes.

mailto:lakshmi.0290@gmail.com

Lakshmi urs S M et al www.ijetst.in Page 2687

IJETST- Vol.||02||Issue||06||Pages 2686-2688||June||ISSN 2348-9480 2015

LITERATURE SURVEY

1. IEEE published in 2004: “Simple Efficient

Load Balancing Algorithms for Peer-to-

Peer Systems.

Abstract:

Load balancing is a vital issue of resourceful

function of peer-to-peer system. In this topic an two

new load-balancing protocols that is used to improve

the performance that will proves the performance

that are assurance are inside a invariable factor .this

new load balancing protocols uses the constant

hashing the data structure that will uses the Chord

peer to peer network. This two load balancing

protocols maintain nearest-optimal data migration

cost and Chord's logarithmic query time. the

consistent hashing is an hashing method that uses

the DHT pattern for giving the nodes of the items in

a peer-to-peer network, this objects and nodes are

achieved to a familiar space adress, and this nodes

will accumulate all the items that resided close by in

the address space.

The first protocol steadiness the distribution of the

address space of the key to the nodes, which uses a

balanced system load if the distributed hash table

achieving these items "arbitrarily" into the space

address. so from this knowledge, this will proceeds

to the first peer to peer system concurrently achieve

O(log n) look-up cost, O(log n) degree,and load

balance constant-factor load.

The second protocol that proceeds to balance the

items that is distributed among all the nodes. This

will uses when the allocation of items in the space

address are not randomized.

2. IEEE published in 2011: Load Balance

with Imperfect Information in Structured

Peer-to-Peer Systems

Abstract:

The conception of an essential servers,the peers will

be execute in an assortment of,structured peer-to-

peer network host that has unusual records of an

essential servers, and by migrating this servers, so

the loads are balanced by peers that are relative to

their capacities.

The presented and decentralized the load balance

algorithms that is considered the networks that are

varied and the organized peer to peer networks that

either by implicitly construct the assisting system to

influence overall information or absolutely insist the

Peer to peer substrates ordered in a organized

manner. In this topic, a load balancing algorithm

that is single in that each participate peer that is

influences on the incomplete facts of the network to

approximate the possibility of the circulation of the

capacities of peers and the virtual servers load, that

will results an inadequate information of the status

of the system network.

LOAD REBALANCING ALGORITHM

The load rebalancing problem in distributed file

systems specialized for large-scale, dynamic and

data- intensive clouds to allocate the chunks of files

as uniformly as possible among tchunks and aims to

reduce network traffic (or movement cost).

We consider a large-scale distributed file system

consisting of a set of chunkservers V in a cloud,

where the cardinality of V is | V |=n. Typically, n

can be 1,000, 10,000, or more. In the system, a

number of files are stored in the n chunkservers.

First, let us denote the set of files as F. Each file f €F

is partitioned into a number of disjointed, fixed- size

chunks denoted by C f . For example, each chunk

has the same size, 64 bytes, in Hadoop HDFS
[4]

.

Second, the load of a chunkserver is proportional to

the number of chunks hosted by the server
[3]

. Third,

node failure is the norm in such a distributed system,

and the chunkservers may be upgraded, replaced and

added in the system. Finally, the files in F may be

arbitrarily created, deleted, and appended. The net

effect results in file chunks not being uniformly

distributed to the chunkservers.

Our objective in the current study is to design a load

rebalancing algorithm to reallocate file chunks such

that the chunks can be distributed to the system as

uniform uniformly as possible while reducing the

movement cost as much as possible. Here, the

movement cost is defined as the number of chunks

migrated to balance the loads of the chunk servers.

Let A be the ideal number of chunks that any

chunkserver i € V is required to manage in a system-

wide load-balanced state,

Lakshmi urs S M et al www.ijetst.in Page 2688

IJETST- Vol.||02||Issue||06||Pages 2686-2688||June||ISSN 2348-9480 2015

A node is light if the number of modules it hosts is

smaller than the threshold as well as, a heavy node

manages the number of modules greater than

threshold. A large-scale distributed file system is in

a load-balanced state if each module server hosts no

more than A modules. In our proposed algorithm,

each server node in module I first estimate whether

it is under loaded (light) or overloaded (heavy)

without global knowledge. This process repeats until

all the heavy nodes in the system become light

nodes.

SYSTEM ARCHITECTURE

CONCLUSION

A novel load-rebalancing algorithm to deal with the

load rebalancing problem in large-scale, dynamic,

and distributed file systems. Proposed System will

balance the loads of nodes and reduce the demanded

movement cost as much as possible, while taking

advantage of physical network locality and node

heterogeneity.

Proposal is comparable to the centralized algorithm

in the Hadoop HDFS production system. Proposed

Load-balancing algorithm exhibits a fast

convergence rate. Our proposal is comparable to the

centralized algorithm in the Hadoop HDFS

production system and dramatically out- performs

the competing distributed algorithm in terms of load

imbalance factor, movement cost, and algorithmic

overhead. Particularly, our load-balancing algorithm

exhibits a fast convergence rate.

REFERENCES

1. J. Dean and S. Ghemawat, “MapReduce:

Simplified Data Processing on Large

Clusters,” Proc. Sixth Symp. Operating

System Design and Implementation (OSDI

’04), pp. 137-150, Dec. 2004.

2. S. Ghemawat, H. Gobioff, and S.-T. Leung,

“The Google File System,” Proc. 19th ACM

Symp. Operating Systems Principles

(SOSP’03), pp. 29-43, Oct. 2003.

3. Hadoop Distributed File System,

http://hadoop.apache.org/hdfs/, 2012.

4. VMware, http://www.vmware.com/, 2012.

5. Xen, http://www.xen.org/, 2012.

6. Apache Hadoop, http://hadoop.apache.org/,

2012.

7. Hadoop Distributed File System

“Rebalancing Blocks,”

http://developer.yahoo.com/hadoop/tutorial/

module2.html#rebalancing,2012.

8. K. McKusick and S. Quinlan, “GFS:

Evolution on Fast-Forward,”Comm. ACM,

vol. 53, no.3, pp. 42-49, Jan. 2010.

9. HDFS Federation, http://hadoop.apache.org

/common/docs/r0.23.0/hadoop-yarn/hadoop-

yarn-site/Federation.html, 2012.

