2015



Open access Journal International Journal of Emerging Trends in Science and Technology

# An Algorithm for 2-Tuple Total Domination Number in Circulant Graphs

Authors

A. Shobana<sup>1</sup>, S. Palaniammal<sup>2</sup>

<sup>1</sup>Department of Science and Humanities, Sri Krishna College of Engineering and Technology, Coimbatore - 641008, TamilNadu, India.

Email: gsakhil@rediffmail.com

<sup>2</sup>Department of Science and Humanities, Sri Krishna College of Technology, Coimbatore- 641 008

#### Abstract

This paper studies perfect 2-tuple total domination number for the circulant graphs Cir(n, A), where

 $A = \{1, 2, \dots, x, n-1, n-2, \dots, n-x\} \text{ and } x \leq \left\lfloor \frac{n-1}{2} \right\rfloor \text{ from an algorithmic point of view.}$ 

**Keywords**: *Circulant graphs, domination ,2-tuple total domination number.* 

#### Introduction

In this paper, we follow the notation of <sup>[3]</sup>. Domination is an important property in the design of efficient computer interconnection networks. We studied the perfect 2-dominating sets for circulant graphs Cir(n, A), where

$$A = \{1, 2, ..., x, n-1, n-2, ..., n-x\} \text{ and } x \le \left\lfloor \frac{n-1}{2} \right\rfloor^{[9]}.$$

A vertex subset of a graph G = (V, E), is called a dominating set if every vertex v not in S, is adjacent to a vertex in S. The domination number of G, denoted by  $\gamma(G)$ , is the minimum cardinality of a dominating set in G and a corresponding dominating set is called a  $\gamma - set[3]$ . A vertex subset S is said to be an efficient dominating set if for every vertex v,  $|N[v] \cap S| = 1$ <sup>[1]</sup>. Let  $k(\geq 1)$  be an integer. A vertex subset S is said to be kdominating(k-tuple total dominating) set if for each vertex  $v \in V - S(v \in V)$ ,  $|N(v) \cap S| \geq k$ . The k-domination number(k-tuple total domination number) of G is the minimum cardinality of a kdominating (k-tuple total dominating) set denoted by  $\gamma_k(G)(\gamma_{\times k,t}(G))$ <sup>[4]</sup>. A k-dominating set S is said to be independent k-dominating set if no two vertices in S are adjacent. A k-dominating set(k-tuple total dominating set) S is said to be perfect if for every vertex  $v \in V - S(v \in V)$ ,  $|N(v) \cap S| = k$ . A perfect and independent k-dominating set is called as efficient k-dominating set.

Cayley graphs have been an important class of graphs in the study of interconnection networks for parallel and distributed computing. Let  $(\Gamma, *)$  be a finite group and e be its identity. Let A be a generating set of  $\Gamma$  such that  $e \notin A$  and  $a^{-1} \notin A$  for all  $a \notin A$ . Then the Cayley graph is defined by G = (V, E), where  $V = \Gamma$  and  $E = \{(x, x * a) / x \notin V, a \notin A\}$ , denoted by  $Cay(\Gamma, A)$ . Circulant graphs are special case of Cayley graphs when  $\Gamma = (Z_n, \oplus_n)$ , where  $\oplus_n$  is the operation addition modulo n <sup>[10]</sup>.

The purpose of the paper to study an algorithm for perfect 2-tuple total domination number for these circulant graphs.

### 2-tuple total domination number

The author studied the perfect 2-dominating sets for the circulant graphs Cir(n, A), where

$$A = \{1, 2, ..., x, n-1, n-2, ..., n-x\} \text{ and } x \le \left\lfloor \frac{n-1}{2} \right\rfloor$$

In this collection of graphs, the perfect 2-tuple total domination number  $\gamma_{\times 2t}$  has been obtained [9].

This section gives some of the results on perfect 2-tuple total domination number of Cir(n, A) <sup>[9]</sup>.

**Lemma: 2.1** Let  $n(\ge 3), x$  be integers. Let G = Cir(n, A) be a circulant graph with  $A = \{1, 2, ..., x, n-1, n-2, ..., n-x\}$  and  $x \le \left\lfloor \frac{n-1}{2} \right\rfloor$ . If

x divides n, then G has a perfect 2-tuple total dominating set.

**Lemma: 2.2** Let  $n(\ge 3), x$  be integers. Let G = Cir(n, A) be a circulant graph with  $A = \{1, 2, ..., x, n-1, n-2, ..., n-x\}$  and

 $4 \le x \le \left\lfloor \frac{n-1}{2} \right\rfloor$ . If G has a perfect 2-tuple total

dominating set, then x divides n.

**Theorem: 2.3** Let G = Cir(n, A) be a circulant graph with  $A = \{1, 2, ..., x, n-1, n-2, ..., n-x\}$  and  $4 \le x \le \left\lfloor \frac{n-1}{2} \right\rfloor$ . Then G has a perfect 2-tuple total

dominating set if and only if x divides n.

**Lemma: 2.4** Let  $H(\neq e)$  be a subgroup of  $Z_n$ . Then *H* is a perfect 2-tuple total dominating set for the circulant graph Cir(n, A) for some suitable generating set A of  $Z_n$ .

**Lemma: 2.5** Let G = Cir(n, A) be a circulant graph with  $A = \{1, 2, ..., x, n-1, n-2, ..., n-x\}$  and

$$x \leq \left\lfloor \frac{n-1}{2} \right\rfloor$$
. Then  $\gamma_{\times 2t}(G) = \left\lceil \frac{n}{x} \right\rceil$ .

**Proof:** Suppose G has a 2-tuple total dominating set D.

Let n = gx + j for some integers  $g(\ge 1)$  and j with  $0 \le j \le x - 1$ .

Without loss of generality, assume that  $0 \in D$ . As discussed in Lemma 3.2 [9], we have

$$0, x, 2x \dots gx \in D$$
, where  $g+1 = \left|\frac{n}{x}\right|$ . Hence

 $\gamma_{\times 2t}(G) \ge \left\lceil \frac{n}{x} \right\rceil.$ 

Let  $S = \{0, x, 2x...gx\}$  and  $v \in V(G)$ .

Case 1: ix < v < (i+1)x for some integer *i* with  $0 \le i \le g-1$ .

In this case, v is dominated by ix and (i+1)x.

Case 2:  $gx < v \le n-1$ .

In this case, v is dominated by both 0 and gx.

Case 3:  $v \in D$  and v = ax for some  $1 \le a \le g - 1$ .

In this case, v is dominated by both  $(a-1)x, (a+1)x \in D$ .

Case 4:  $v \in D$  and v = gx or v = 0.

If v = gx, then it is dominated by both  $(g-1)x, 0 \in D$ .

If v = 0, then it is dominated by both  $gx, x \in D$ .

Hence 
$$\gamma_{\times 2t}(G) \leq |S| = \left\lceil \frac{n}{x} \right\rceil$$
 and hence  $\gamma_{\times 2t}(G) = \left\lceil \frac{n}{x} \right\rceil$ .

### Algorithm for 2-tuple total domination number

The main result of this section is an algorithm for the 2-tuple domination number in cir(n, A) based on the lemma 2.5.

### Algorithm

**Input:** A circulant graph G=cir(n,A), integer g,x,j, A={1,2,...x,n-1,n-2,...n-x} and  $x \le \left\lfloor \frac{n-1}{2} \right\rfloor$ 

Output: A 2-tuple total dominating set H of G

#### Begin

initialize n=0 initialize n=gx+j /\*Let( $g \ge 1$ )and( $j \ge 0$ )and( $j \le x-1$ )\*/ if ( $0 \in D$ ) /\*since  $0 \in D, 0, x, 2x, ..., gx$  belongs to  $D^*$ /  $H \ge \left\lceil \frac{n}{x} \right\rceil$  /\* $H = \gamma_{\times t}(G)^*$ / else for v in V(G) do

## IJETST- Vol.||02||Issue||06||Pages 2535-2537||June||ISSN 2348-9480

2015

### Switch

case (v > ix) and (v < (i+1)x)v is dominated by ix and (i+1)x case(v > gx) and  $(v \le n-1)$ v is dominated by 0 and gx case  $(v \in D)$  and (v = ax) $/*1 \le a \le g - 1*/$ v is dominated by both (a-1)x,(a+1)xcase ( $v \in D$ ) and (v = gx) v is dominated by both x and (g-1)x case ( $v \in D$ ) and (v = 0) v is dominated by both x,gx belongs to D /\*x belongs to D\*/ end switch  $\frac{n}{x}$ H<= end if  $(0 \in D \text{ and } v \in V(G))$ 

## References

- D.W.Bange,A. Barkauskas,P.J.Slater,Efficient dominating sets in graphs in: R.D.Ringeisen, F.S.Roberts(Eds),Application of Discrete mathematics, SIAM, Philadelphia, PA (1988), 189-199.
- B.Chaluvaraju and K.A.Vidya,Bounds on perfect domination in trees: An algorithmic approach,Opuscula Mathematica,32(4)(2012), 707-714.
- 3. T.W.Haynes,S.T.Hedetniemi and P.J.Slater, Fundamentals of domination in graphs,Marcel Dekker,2000.
- A.P.Kazemi, K-tuple total domination and Mycieleskian graphs, Transaction on combinatorics. 1(1)(2012), 7-13.
- 5. J.K.Lan and G.J.Chang,On the algorithmic complexity of k-tuple total domination,2013
- J.Lee, independent perfect domination sets in Cayley graphs, J.Graph theory 37(4)(2001), 213-219.

- C.Liao and G.J.Chang, Algorithmic aspect of ktuple domination in graphs, Taiwanese Journal of Mathematics, 6(3), (2002), 415-420.
- A.Shobana,S.Jothimani and S.Palaniammal, Efficient 2-domination number in circulant graphs,Far East Journal of Mathematical Sciences 89(1)(2001)21-30.
- 9. A.Shobana and S.Palaniammal,2-tuple total domination number in circulant graphs, International Journal of Mathematics.
- Sivagnanam Muthuarasu, Domination in Caylay graphs, Ph.D thesis, Manonmaniam Sundaranar university, 2011.