

Harshada L. Borkar, Prof. V.N.Bhonge www.ijetst.in Page 2445

IJETST- Vol.||02||Issue||05||Pages 2445-2451||May||ISSN 2348-9480 2015

International Journal of Emerging Trends in Science and Technology

Design and Implementation of High Performance Reed Solomon Encoder

and Decoder

Authors

Harshada L. Borkar
1
, Prof. V.N.Bhonge

2

1
M.E. Student, Electronics and Telecommunication, Shri Sant Gajanan Maharaj College of Engineering,

Maharashtra, India

Email: harshadaborkar1@gmail.com
2
Associate Professor, Electronics and Telecommunication, Shri Sant Gajanan Maharaj College of

Engineering, Maharashtra, India

Email: vnbhonge@rediffmail.com

Abstract

In this paper, Reed Solomon (RS) Encoder and Decoder and their implementation in Spartan 6 Field

Programmable Gate Array (FPGA) is analyzed. RS codes are non-binary cyclic error correcting block codes.

Here parity symbols are generated at the encoder end using a generator polynomial and added to the very end

of the message symbols. Then the locations and magnitudes of errors in the received polynomial are

determined by the RS decoder. The main objective of this project is to optimize the area used on FPGA which

in turn minimizes the size and ultimately the cost. The paper covers the RS encoding and decoding algorithm,

simulations and the implementation details of the encoder and decoder architecture. Register transfer level

(RTL) of RS encoder and decoder is designed, simulated and implemented using Xilinx in Spartan 6 FPGA kit.

Keywords: FPGA, Key Equation Solver (KES), Reed Solomon (RS) Decoder, Reed Solomon (RS) Encoder and

VHDL.

1. Introduction

Communication is an important part of our daily

life. New technologies are being invented every now

and then to make communication easier. Fast data

transmission is the need of today’s world. We

constantly need to increase the flow of transmission

while maintaining and improving their quality. But

there is a possibility of our data which we transmit

may get corrupted due to some errors. So some error

correcting codes must be used for correcting one or

several errors in a code word by adding redundant

symbols to the information, which are also called as,

parity symbols.

Many digital signaling application use Forward

Error Correction, a technique in which redundant

information is added to the message that is

transmitted so that receiver should be able to detect

and correct errors that might have occurred during

transmission. There are many different types of

codes used for this purpose but RS codes have

proved to be the most efficient among all in case of

efficiency and complexity.

1.1 RS Codes

Error correcting codes are classified into two

categories, the main ones being block codes and

convolutional codes. A Reed-Solomon codes comes

in the category of block code, which means that the

message which is being transmitted is divided into

separate blocks of data. Each block then has parity

bit added to it to form a self-contained code word. It

is also called as a systematic code, which means that

the encoding process does not alter the message

Harshada L. Borkar, Prof. V.N.Bhonge www.ijetst.in Page 2446

IJETST- Vol.||02||Issue||05||Pages 2445-2451||May||ISSN 2348-9480 2015

symbols and the parity symbols are added as a

separate part of the block. This is shown

diagrammatically in Figure 1.

Fig -1: Reed Solomon Codeword

Also, a Reed-Solomon code is a linear code which

adds two code words and produces another code

words and it is also a cyclic code which shifts the

symbols cyclically and produce another code word.

It belongs to the family of Bose-Chaudhuri-

Hocquenghem (BCH) codes, but is differentiated

from BCH codes by having multi-bit symbols. This

makes the code good at dealing with bursts errors

because, although a symbol may have all its bits in

error, this counts as only one symbol error in terms

of the correction capacity of the code.

Choosing different parameters for a code provides

different levels of protection and affects the

complexity of implementation. Thus a Reed-

Solomon code can be described as an (n, k) code,

where n is the block length in symbols and k is the

number of information symbols in the message.

Also,

n = 2
m

-1 (1)

where m is the number of bits in a symbol. There are

n-k parity symbols and t symbol errors can be

corrected in a block, where t = (n-k)/2 for n-k even

or t = (n-k-1)/2 for n-k odd. In this project

RS(255,239) scheme is used in which, n = 255, k

= 239 and number of parity symbols are 255 - 239 =

16 and its error correcting capability is upto 8

symbols. The specified code generator polynomials

are given by:

- Code Generator Polynomial:

Where µ=02hex

-Field Generator Polynomial:

p(x) = x
8
+x

4
+x

3
+x

2
+1

The symbol width (m) gives the field generator

polynomial. Table 1 illustrates this statement.

Table -1: Relation between symbol width and the

field generator polynomial

Since all new generation standards use eight value

as symbol width this leads to use x
8
+x

4
+x

3
+x

2
+1 as

a field generator polynomial.

2. REED SOLOMON ENCODER

First of all RS encoder needs to be designed. At the

encoder side RS codes operate on the information by

splitting the message stream into blocks of data. The

Reed Solomon Encoder reads k data symbols,

computes the n–k symbols, attach the parity symbols

to the k data symbols and hence forms the code

word which is also called as code vector V(x). Two

main operations are performed by RS encoder i.e.

shifting and division. Both operations are performed

by using linear-feedback shift registers. Let a

polynomial form of message symbol is represented

as:

M(x) = mk-1 x
k-1

 + mk-2 x
k-2

 + …………m1x + m0

And the generator polynomial is given below:

g(x) = g0 + g1 X + g2 X
2

+………+ g2t-1 X
2t-1

+ X
2t

Parity-check is given by:

CK(x) = x
n-k

M(x) mod g(x)

And codeword is given by:

C(x) = x
n-k

M(x) + CK(x)

Harshada L. Borkar, Prof. V.N.Bhonge www.ijetst.in Page 2447

IJETST- Vol.||02||Issue||05||Pages 2445-2451||May||ISSN 2348-9480 2015

The parity symbols are calculated by performing a

polynomial division using GF algebra. First we have

to multiply the message symbols by x
n-k

. This shifts

the message symbols to the left side to make place

for the parity symbols. Then we have to divide the

message polynomial by the code generator

polynomial using GF algebra. The parity symbols

are the remainder of this division. These steps are

carried out in hardware using a shift register with

feedback. The architecture for the encoder is shown

in Figure 2 below:

Fig -2: Architecture of RS Encoder

3. REED SOLOMON DECODER

The second step is to construct the RS decoder. At

the decoder, to find the coefficients of detected

errors the syndrome of the received codeword is

calculated using the generator polynomial. The

transmission channel, especially in space,

submarine, nuclear introduces a huge amount of

noise into the information message. Thus the input

codeword is received at the receiver end as

codeword, c(x), plus any noise or error, e(x), say

r(x) = c(x) + e(x).Then to correct these errors, it is

important to locate them which can be done through

an error locator polynomial and using error

magnitude polynomial its value is calculated.

Therefore at last a correct codeword is obtained.

When a RS Decoder corrects a symbol, it replaces

the incorrect symbol with the correct one, whether

the error was occurred in one bit or all of the bits.

The general decoding steps are illustrated in Figure

3. The syndrome calculator produces a set of

syndromes from the received codeword polynomial

R(x). From the syndrome values, the key equation

solver computes the error locator polynomial σ(x)

and the error evaluator polynomial Ω(x) which can

be used by the Chien Search and the Error Value

Evaluator to determine the error locations and error

values, respectively. The block diagram for RS

decoder is shown in Figure 3.

Fig -3: Block diagram of RS Decoder

3.1. SYNDROME CALCULATION:

The syndrome computation is the first block in

decoding process. At the decoder side syndromes

are calculated to find out error locations and from

error locations error values are computed. The

syndromes are nothing but the remainders obtained

by dividing the received polynomial with the

generator polynomial.

 = P(x) +

 - (2)

where, P(x) is a quotient and S(x) is the syndrome

polynomial and g(x) is the generator polynomial. If

E(x) is the error caused by the channel, then

R(x) = V(x)+E(x) - (3)

 where V(x) is the transmitted codeword and

 =

 +

 - (4)

Put V(x) = g(x)*D(x) where D(x) is a message

polynomial. Therefore from equation (2) and (4) we

have,

P(x) +

 =

 +

P(x) +

 =

 +

 = P(x) + D(x) +

E(x) = [P(x) + D(x)]g(x) + S(x)

Harshada L. Borkar, Prof. V.N.Bhonge www.ijetst.in Page 2448

IJETST- Vol.||02||Issue||05||Pages 2445-2451||May||ISSN 2348-9480 2015

Therefore syndrome of R(x) i.e. the received

codeword is equal to remainder resulting from

dividing the error pattern by generator polynomial

and the syndrome contains information about error

pattern that can be used for error correction. Figure

4 properly illustrates this statement.

Fig -4: Example showing syndrome values

3.2. KEY EQUATION SOLVER:

The main part of RS-decoder is the key equation

solver block. It solves a set of linearly dependent

equations. It generates the key equations (σ(x):

locator polynomial and Ω(x): evaluator polynomial)

from the syndrome polynomials. The locator

polynomial contains location of error symbols in the

codeword. The evaluator polynomial contains

information about the error magnitude of the bad

symbols. The two polynomials σ(x) and Ω(x) are

defined respectively by the following equations -

The two polynomials are related to S(x) through a

Key equation that can determine the two unknown

polynomials σ(x) and Ω(x) by solving the key

equation given below:

S(x)*σ(x) = Ω(x) mod x
2t

The algorithms which are mostly used to solve this

key equation are the Berlekamp–Massey algorithm

and the Euclidean algorithm. On comparing the

Berlekamp–Massey algorithm with the Euclidean

algorithm, we come to know that BM algorithm has

less hardware complexity. Also it works faster than

the Euclidean algorithm.

3.2.1. BERLEKAMP MASSEY ALGORITHM :

BM stands for Berlekamp-Massey algorithm and it

is used for solving key equations. It is the fastest and

hence often preferred algorithm. The technique used

in this project is the BM algorithm because it has

less hardware complexity where as the euclidean

algorithm is very time consuming. In BM algorithm

we just need to construct the LFSR which is

hardware efficient whereas in Euclid’s algorithm

there are many iterations and matrix multiplications

are carried out. BM algorithm solves,

where w≤t is the number of errors that have

occurred. The algorithm aims to find an LFSR of

minimal length such that the first (2t) elements in

the LFSR output sequence are the (2t) syndromes.

The taps of this shift register are the coefficients of

the desired error locator polynomial, σ(x). If one

knows the syndrome values, we can compute σ(x)

polynomial by the flow chart given in figure 5.

Fig -5: Flow Chart for BM algorithm

Harshada L. Borkar, Prof. V.N.Bhonge www.ijetst.in Page 2449

IJETST- Vol.||02||Issue||05||Pages 2445-2451||May||ISSN 2348-9480 2015

3.3. SEARCH AND ERROR EVALUATOR

BLOCK:

If the error locator polynomial is known it is

possible to determine the error locations by checking

whether the error locator polynomial equals zero or

not. The inverse of roots of the error locator

polynomial are the error locations of the codeword.

To find the roots of the polynomial, a Chien Search

(CS) method is used. It uses all possible input values

and then checks if the outputs are zeroes or not. This

happens only when an error occurs. For each

element that is substituted in the polynomial that

equates to zero is stored into memory, as these

elements are the roots of the polynomial and hence,

the inverse error locations.

Fig -6: Chein search for t = 8

3.4. FORNEY ALGORITHM:

Once the errors are located, the next step is to use

the syndrome values and the error polynomial roots

to derive the error values. Forney method is

generally used for this purpose. It is an efficient way

of performing a matrix inversion. First the error

evaluator polynomial ω(x) is calculated. This is

done by convolving the syndromes with the error

polynomial σ (x) as shown in this equation -

This calculation is carried out at each zero location,

which gives the error symbol at the corresponding

location. The error magnitude at each error location

is given by

If the error symbol has any set bit, it means that the

corresponding bit in the received symbol is at error,

and must be inverted.

4. PROJECT FLOW

Fig -6: Program Flow

5. SIMULATION RESULTS

Fig -7: Output of RS Decoder

This fig. 7 shows the user data as 00, 01, 02 and so

on, the encoded data i.e. data signal, syndrome data

i.e. syn_data signal and corrected data is yet zero

here because not all encoded data is fed to the

encoder.

Fig -8: Output of RS decoder

This fig.8 shows an error occurred in one of the

symbol. At one place the data signal shows ‘eb’ data

and syn_data shows ‘14’ data, since both of them

differ this indicates error.

Fig -9: Output of RS decoder

This fig.9 shows the corrected data occurring at the

decoder output after 255 cycles.

Harshada L. Borkar, Prof. V.N.Bhonge www.ijetst.in Page 2450

IJETST- Vol.||02||Issue||05||Pages 2445-2451||May||ISSN 2348-9480 2015

6. RTL DIAGRAM:

RTL stands for register transfer level. It gives a

black box view of our design circuit.

Fig -10: RTL diagram for encoder

Fig -11: RTL diagram for decoder

Table -2 and Table -3 gives a comparison between

RS encoder and decoder on Spartan 3E and Spartan

6 FPGA kits. Here it shows that Spartan 6 on which

we have worked used less area as compared to

Spartan 3E kit. This fulfills our goal of obtaining the

optimized area.

Table -2: Comparison of RS encoder on Spartan 3E

and Spartan 6

Table -3: Comparison of RS decoder on Spartan 3E

and Spartan 6

7. CONCLUSIONS

In this paper, error detection and correction

techniques have been used which are essential for

reliable communication over a noisy channel. The

effect of errors occurring during transmission is

reduced by adding redundancy to the data prior to

transmission. The redundancy enables a decoder to

detect and correct errors. Cyclic linear block codes

are used efficiently for error detection and

correction. The encoder splits the incoming data

stream into blocks and processes each block

individually by adding redundancy according to the

prescribed algorithm. Likewise, the decoder

individually processes each block and it corrects

errors by using the redundancy present in the

received data. An important advantage of cyclic

codes is that they are easy to encode. Also they

possess a well defined mathematical structure which

has lead to very efficient decoding schemes for

them. Hence at last the design written in VHDL is

successfully implemented on Spartan 6 FPGA.

ACKNOWLEDGEMENT

The author would like to thank Shri Sant Gajanan

Maharaj College of Engineering for providing this

opportunity to do work in this field and also want to

thank faculty members for continuous guidance and

encouragement.

REFERENCES

[1] Abhinav Agarwal, Man Cheuk Ng, and

Arvind, “A Comparative Evaluation of High-

Level Hardware Synthesis Using Reed–

Solomon Decoder”, IEEE Embedded

Harshada L. Borkar, Prof. V.N.Bhonge www.ijetst.in Page 2451

IJETST- Vol.||02||Issue||05||Pages 2445-2451||May||ISSN 2348-9480 2015

Systems Letters, VOL. 2, No. 3, September

2010.

[2] G. C. Cardarilli, S. Pontarelli, M. Re, and A.

Salsano, “Concurrent Error Detection in

Reed–Solomon Encoders &Decoders”, IEEE

Transactions on very large scale integration

(VLSI) systems, VOL. 15, No. 7, July 2007

[3] Rajeev Kumar Patial and Priyanka Dayal,

“FPGA Implementation of Reed-Solomon

Encoder and Decoder for Wireless Network

802.16”, Int. Journal of Computer Appl’s

(0975–8887) Vol 68– No.16,April 13.

[4] G. C. Cardarilli, S. Pontarelli, M. Re, and A.

Salsan, “Analysis of Errors and Erasures in

Parity Sharing RS Codecs”, IEEE

transactions on computer VOL. 56, No. 12,

December 2007.

[5] Diplaxmi Chaudhari, Mayura Bhujade and

Pranali Dhumal, “VHDL Design and FPGA

Implementation of Reed Solomon Encoder

and Decoder for RS (7, 3)”, International

Journal of Science, Engineering and

Technology Research (IJSETR), Volume 3,

Issue 3, March 2014 563.

[6] Aqib Al Azad and Md Imam Shahed, “A

Compact and Fast FPGA Based

Implementation of Encoding and Decoding

Algorithm Using Reed Solomon Codes”,

International Journal of Future Computer and

Communication, Vol. 3, No. 1, Feb. 2014.

[7] Sandeep Kaur, “VHDL implementation of

Reed Solomon Codes”, Thapar Institute of

Engineering and Technology, Patiala, 2006.

[8] Hazem Abd Elall Ahmed Elsaid, “Design

and Implementation of Reed Solomon

Decoder using Decomposed Inversion less

Berlekamp-Massey Algorithm”, Faculty of

Engineering, Cairo University Giza,

Egypt,2010.

[9] Harikishore Kakarla, Madhavi Latha and

Habibulla Khan, “Optimal Self Correcting

Fault Free Error Coding Technique in

Memory Operation”, International Journal of

Computer Science & Information Technol-

ogy (IJCSIT), Vol.3, No.3,June 2011.

[10] Zi-Yi Lam, Wai-Leong Pang, Chee-Pun

Ooi, Sew-Kin Wong and Kah-Yoong Chan,

“VHDL Modelling of Reed Solomon

Decoder”, Research Journal of Applied

Sciences, Engineering and Technology

4(23): 5193-5200, 2012 ISSN: 2040-7467©

Maxwell Scientific Organization, 2012.

[11] S. Reed and G. Solomon, “Polynomial

Codes Over Certain Finite Fields", SIAM

Journal of Applied Maths, vol.8, pp.300–304

[12] R. J. McEliece, “Finite Fields for Computer

Scientists and Engineers”, Boston, MA:

Kluwer Academic, 1987.

[13] S. B. Wicker, “Error Control Systems for

Digital Communication and Storage”,

Englewood Cliffs, N.J.:Prentice-Hall, 1994.

[14] M. Kaur and V. Sharma, “Study of

Forward Error Correction using Reed—

Solomon Codes”, International Journal of

Electronics Engineering, vol. 2, pp. 331 –

333, 2010.

[15] M. Purser, “Introduction to Error

Correcting Codes”, Artech House, Boston-

London, 1995.

[16] K. Sam. Shanmugam, “Digital and Analog

Communication System”, The University of

Michigan, Wiley, 1979.

[17] C. K. P. Clarke, ”Reed-Solomon Error

Correction”, BBC Research & Development,

White Paper WHP 031.

Author Profile

Harshada L. Borkar , is born on 16

th
 Dec 1989 in

Nagpur, Maharashtra. She received the B.E. degree

in Electronics and Telecommunication Engineering

from Datta Meghe Institute of Engineering

Technology and Research and M.E. degree in

Digital Electronics Engineering from Sant Shri

Gajanan Maharaj College of Engineering in 2012

and 2015, respectively.

	PointTmp

