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Abstract 

In this paper, Reed Solomon (RS) Encoder and Decoder and their implementation in Spartan 6 Field 

Programmable Gate Array (FPGA) is analyzed. RS codes are non-binary cyclic error correcting block codes. 

Here parity symbols are generated at the encoder end using a generator polynomial and added to the very end 

of the message symbols. Then the locations and magnitudes of errors in the received polynomial are 

determined by the RS decoder. The main objective of this project is to optimize the area used on FPGA which 

in turn minimizes the size and ultimately the cost. The paper covers the RS encoding and decoding algorithm, 

simulations and the implementation details of the encoder and decoder architecture. Register transfer level 

(RTL) of RS encoder and decoder is designed, simulated and implemented using Xilinx in Spartan 6 FPGA kit. 

Keywords: FPGA, Key Equation Solver (KES), Reed Solomon (RS) Decoder, Reed Solomon (RS) Encoder and 

VHDL. 

1. Introduction 

Communication is an important part of our daily 

life. New technologies are being invented every now 

and then to make communication easier. Fast data 

transmission is the need of today’s world. We 

constantly need to increase the flow of transmission 

while maintaining and improving their quality. But 

there is a possibility of our data which we transmit 

may get corrupted due to some errors. So some error 

correcting codes must be used for correcting one or 

several errors in a code word by adding redundant 

symbols to the information, which are also called as, 

parity symbols. 

Many digital signaling application use Forward 

Error Correction, a technique in which redundant 

information is added to the message that is 

transmitted so that receiver should be able to detect 

and correct errors that might have occurred during 

transmission. There are many different types of 

codes used for this purpose but RS codes have 

proved to be the most efficient among all in case of 

efficiency and complexity. 

1.1 RS Codes 

Error correcting codes are classified into two 

categories, the main ones being block codes and 

convolutional codes. A Reed-Solomon codes comes 

in the category of block code, which means that the 

message which is being transmitted is divided into 

separate blocks of data. Each block then has parity 

bit added to it to form a self-contained code word. It 

is also called as a systematic code, which means that 

the encoding process does not alter the message 
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symbols and the parity symbols are added as a 

separate part of the block. This is shown 

diagrammatically in Figure 1. 

 

 
Fig -1: Reed Solomon Codeword 

 

Also, a Reed-Solomon code is a linear code which 

adds two code words and produces another code 

words and it is also a cyclic code which shifts the 

symbols cyclically and produce another code word. 

It belongs to the family of Bose-Chaudhuri-

Hocquenghem (BCH) codes, but is differentiated 

from BCH codes by having multi-bit symbols. This 

makes the code good at dealing with bursts errors 

because, although a symbol may have all its bits in 

error, this counts as only one symbol error in terms 

of the correction capacity of the code. 

Choosing different parameters for a code provides 

different levels of protection and affects the 

complexity of implementation. Thus a Reed-

Solomon code can be described as an ( n, k) code, 

where n is the block length in symbols and k is the 

number of information symbols in the message. 

Also,  

n = 2
m

-1 .... (1) 

where m is the number of bits in a symbol. There are 

n-k parity symbols and t symbol errors can be 

corrected in a block, where  t = ( n-k)/2 for n-k even 

or t = ( n-k-1)/2 for   n-k odd. In this project 

RS(255,239) scheme is used in which,     n = 255, k 

= 239 and number of parity symbols are  255 - 239 = 

16 and its error correcting capability is upto 8 

symbols. The specified code generator polynomials 

are given by: 

- Code Generator Polynomial: 

                           

 

Where µ=02hex 

-Field Generator Polynomial: 

p(x) = x
8
+x

4
+x

3
+x

2
+1 

The symbol width (m) gives the field generator 

polynomial. Table 1 illustrates this statement. 

Table -1: Relation between symbol width and the 

field generator polynomial 

 
Since all new generation standards use eight value 

as symbol width this leads to use x
8
+x

4
+x

3
+x

2
+1 as 

a field generator polynomial. 

 

2. REED SOLOMON ENCODER 

First of all RS encoder needs to be designed. At the 

encoder side RS codes operate on the information by 

splitting the message stream into blocks of data. The 

Reed Solomon Encoder reads k data symbols, 

computes the n–k symbols, attach the parity symbols 

to the k data symbols and hence forms the code 

word which is also called as code vector V(x). Two 

main operations are performed by RS encoder i.e. 

shifting and division. Both operations are performed 

by using linear-feedback shift registers.  Let a 

polynomial form of message symbol is represented 

as: 

 

M(x) = mk-1 x
k-1

 + mk-2 x
k-2

 + …………m1x + m0  

 

And the generator polynomial is given below: 

 

g(x) = g0 + g1 X + g2 X
2 

+………+ g2t-1 X
2t-1 

+ X
2t

  

 

Parity-check is given by:  

 

CK(x) = x
n-k

M(x) mod g(x) 

 

And codeword is given by: 

 

C(x) = x
n-k

M(x) + CK(x)  
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The parity symbols are calculated by performing a 

polynomial division using GF algebra. First we have 

to multiply the message symbols by x
n-k

. This shifts 

the message symbols to the left side to make place 

for the parity symbols. Then we have to divide the 

message polynomial by the code generator 

polynomial using GF algebra. The parity symbols 

are the remainder of this division. These steps are 

carried out in hardware using a shift register with 

feedback. The architecture for the encoder is shown 

in Figure 2 below: 

 
Fig -2: Architecture of RS Encoder 

 

3. REED SOLOMON DECODER 

The second step is to construct the RS decoder. At 

the decoder, to find the coefficients of detected 

errors the syndrome of the received codeword is 

calculated using the generator polynomial. The 

transmission channel, especially in space, 

submarine, nuclear introduces a huge amount of 

noise into the information message. Thus the input 

codeword is received at the receiver end as 

codeword, c(x), plus any noise or error, e(x), say 

r(x) = c(x) + e(x).Then to correct these errors, it is 

important to locate them which can be done through 

an error locator polynomial and using error 

magnitude polynomial its value is calculated. 

Therefore at last a correct codeword is obtained. 

When a RS Decoder corrects a symbol, it replaces 

the incorrect symbol with the correct one, whether 

the error was occurred in one bit or all of the bits.  

The general decoding steps are illustrated in Figure 

3. The syndrome calculator produces a set of 

syndromes from the received codeword polynomial 

R(x). From the syndrome values, the key equation 

solver computes the error locator polynomial σ(x) 

and the error evaluator polynomial Ω(x) which can 

be used by the Chien Search and the Error Value 

Evaluator to determine the error locations and error 

values, respectively. The block diagram for RS 

decoder is shown in Figure 3. 

 
Fig -3: Block diagram of RS Decoder 

 

3.1. SYNDROME CALCULATION: 

The syndrome computation is the first block in 

decoding process. At the decoder side syndromes 

are calculated to find out error locations and from 

error locations error values are computed. The 

syndromes are nothing but the remainders obtained 

by dividing the received polynomial with the 

generator polynomial. 

 
    

    
 = P(x) + 

    

    
   - (2) 

 

where, P(x) is a quotient and S(x) is the syndrome 

polynomial and g(x) is the generator polynomial. If 

E(x) is the error caused by the channel, then                                                                                                                                                                                                                  

 

R(x) = V(x)+E(x)              - (3) 

    where V(x) is the transmitted codeword and 

 
    

    
 = 

    

    
 + 

    

    
  - (4) 

Put V(x) = g(x)*D(x) where D(x) is a message 

polynomial. Therefore from equation (2) and (4) we 

have,        

P(x) + 
    

    
 = 

    

    
 + 

    

    
 

 

P(x) + 
    

    
  = 

         

    
 + 

    

    
 

 
    

    
 = P(x) + D(x) + 

    

    
 

E(x) = [P(x) + D(x)]g(x) + S(x) 
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Therefore syndrome of R(x) i.e. the received 

codeword is equal to remainder resulting from 

dividing the error pattern by generator polynomial 

and the syndrome contains information about error 

pattern that can be used for error correction. Figure 

4 properly illustrates this statement. 

 
Fig -4: Example showing syndrome values 

 

3.2. KEY EQUATION SOLVER: 

The main part of RS-decoder is the key equation 

solver block. It solves a set of linearly dependent 

equations. It generates the key equations (σ(x): 

locator polynomial and Ω(x): evaluator polynomial) 

from the syndrome polynomials. The locator 

polynomial contains location of error symbols in the 

codeword. The evaluator polynomial contains 

information about the error magnitude of the bad 

symbols. The two polynomials σ(x) and Ω(x) are 

defined respectively by the following equations - 

            

 

   

  

                     

 

       

 

   

 

 

The two polynomials are related to S(x) through a 

Key equation that can determine the two unknown 

polynomials σ(x) and Ω(x) by solving the key 

equation given below: 

S(x)*σ(x) = Ω(x) mod x
2t 

The algorithms which are mostly used to solve this 

key equation are the Berlekamp–Massey algorithm 

and the Euclidean algorithm. On comparing the 

Berlekamp–Massey algorithm with the Euclidean 

algorithm, we come to know that BM algorithm has 

less hardware complexity. Also it works faster than 

the Euclidean algorithm. 

 

3.2.1. BERLEKAMP MASSEY ALGORITHM : 

BM stands for Berlekamp-Massey algorithm and it 

is used for solving key equations. It is the fastest and 

hence often preferred algorithm. The technique used 

in this project is the BM algorithm because it has 

less hardware complexity where as the euclidean 

algorithm is very time consuming. In BM algorithm 

we just need to construct the LFSR which is 

hardware efficient whereas in Euclid’s algorithm 

there are many iterations and matrix multiplications 

are carried out. BM algorithm solves,   

           

    

 

 

where w≤t is the number of errors that have 

occurred. The algorithm aims to find an LFSR of 

minimal length such that the first (2t) elements in 

the LFSR output sequence are the (2t) syndromes. 

The taps of this shift register are the coefficients of 

the desired error locator polynomial, σ(x). If one 

knows the syndrome values, we can compute σ(x) 

polynomial by the flow chart given in figure 5. 

 
Fig -5: Flow Chart for BM algorithm 
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3.3. SEARCH AND ERROR EVALUATOR 

BLOCK: 

If the error locator polynomial is known it is 

possible to determine the error locations by checking 

whether the error locator polynomial equals zero or 

not. The inverse of roots of the error locator 

polynomial are the error locations of the codeword. 

To find the roots of the polynomial, a Chien Search 

(CS) method is used. It uses all possible input values 

and then checks if the outputs are zeroes or not. This 

happens only when an error occurs. For each 

element that is substituted in the polynomial that 

equates to zero is stored into memory, as these 

elements are the roots of the polynomial and hence, 

the inverse error locations.  

 
Fig -6: Chein search for t = 8 

 

3.4. FORNEY ALGORITHM: 

Once the errors are located, the next step is to use 

the syndrome values and the error polynomial roots 

to derive the error values. Forney method is 

generally used for this purpose. It is an efficient way 

of performing a matrix inversion. First the error 

evaluator polynomial ω(x) is calculated. This is 

done by convolving the syndromes with the error 

polynomial σ (x) as shown in this equation - 

                     

This calculation is carried out at each zero location, 

which gives the error symbol at the corresponding 

location. The error magnitude at each error location 

is given by  

    
     

      
 

If the error symbol has any set bit, it means that the 

corresponding bit in the received symbol is at error, 

and must be inverted.  

 

 

 

4. PROJECT FLOW 

 
Fig -6: Program Flow 

 

5. SIMULATION RESULTS 

 
Fig -7: Output of RS Decoder 

This fig. 7 shows the user data as 00, 01, 02 and so 

on, the encoded data i.e. data signal, syndrome data 

i.e. syn_data signal and corrected data is yet zero 

here because not all encoded data is fed to the 

encoder. 

 

 
Fig -8: Output of RS decoder 

This fig.8 shows an error occurred in one of the 

symbol. At one place the data signal shows ‘eb’ data 

and syn_data shows ‘14’ data, since both of them 

differ this indicates error. 

 

 
Fig -9: Output of RS decoder 

This fig.9 shows the corrected data occurring at the 

decoder output after 255 cycles. 
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6. RTL DIAGRAM: 

RTL stands for register transfer level. It gives a 

black box view of our design circuit.  

 

 
Fig -10: RTL diagram for encoder 

 

 
Fig -11: RTL diagram for decoder 

 

Table -2 and Table -3 gives a comparison between 

RS encoder and decoder on Spartan 3E and Spartan 

6 FPGA kits. Here it shows that Spartan 6 on which 

we have worked used less area as compared to 

Spartan 3E kit. This fulfills our goal of obtaining the 

optimized area. 

 

Table -2: Comparison of RS encoder on Spartan 3E 

and Spartan 6 

 
 

 

 

Table -3: Comparison of RS decoder on Spartan 3E 

and Spartan 6 

 
 

7. CONCLUSIONS 

In this paper, error detection and correction 

techniques have been used which are essential for 

reliable communication over a noisy channel. The 

effect of errors occurring during transmission is 

reduced by adding redundancy to the data prior to 

transmission. The redundancy enables a decoder to 

detect and correct errors. Cyclic linear block codes 

are used efficiently for error detection and 

correction. The encoder splits the incoming data 

stream into blocks and processes each block 

individually by adding redundancy according to the 

prescribed algorithm. Likewise, the decoder 

individually processes each block and it corrects 

errors by using the redundancy present in the 

received data. An important advantage of cyclic 

codes is that they are easy to encode. Also they 

possess a well defined mathematical structure which 

has lead to very efficient decoding schemes for 

them. Hence at last the design written in VHDL is 

successfully implemented on Spartan 6 FPGA. 
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