

V. Krithika et al www.ijetst.in Page 2078

IJETST- Vol.||02||Issue||03||Pages 2078-2083||March||ISSN 2348-9480 2015

International Journal of Emerging Trends in Science and Technology

User Compatibility Checking Model For Cloud

Authors

V. Krithika, I. Soundarya, Mr. A. Sandanakaruppan

SSN Engineering College, Chennai, TamilNadu

Email: venkatkrithi@gmail.com, ss.sowmya2011@gmail.com, sandanakaruppan@ssn.edu.in

ABSTRACT

Cloud computing is the fastest growing technology. It is used as a metaphor for the “Internet”. It is a type of

“Internet-based computing” providing different services such as servers, storage and applicants. This paper

deals with checking the compatibility of the Web Application with the Cloud Service composition and to build

a Virtual Machine (Instance) for Deployment and various Preferences of Users. This paper primary focus is

on creating virtual instance using the OpenStack cloud provider. Setting up such a complex combination of

appliances in traditional hosting environments is costly and error prone. Virtual appliances provide an best

solution for this problem. Previous work have been done to create virtual instance but to our we are the one

among the first to address real time process of virtual Instance in Cloud environment.

Keywords: Cloud computing, Virtual Instance, OpenStack Cloud provider, Virtual appliances, cloud service

composition

1. INTRODUCTION

Cloud Computing is becoming one of the next

emerging IT industry technologies. With cloud,

you no need to maintain the hardware and

software, it is utility where you have to pay for

what you need. To deliver their required solution,

the application service provider can either make

use platform as a service(PaaS) such as GOOLE

ENGINE to build their hosting environment but

PaaS as some restrictions on the programming

language, development Platform. Such restrictions

can be overcome by using IaaS .It encourage

service providers to build their own platforms

using Amazon EC2 or GoGrid.

Service deployment remain biggest challenges in

cloud, If we consider the deployment

requirements of a web application service

provider, it will include security devices (e.g.

firewall), web servers, application servers,

database servers, and storage devices. Setting up

such a complex combination of appliances in

traditional hosting environments is costly and

error prone. Virtual appliances provide an best

solution for this problem. Our system uses

OpenStack Cloud provider which is the best to

build. Virtual Instance. They are built and

configured with a necessary operating system and

software packages to meet software requirements

of a user.

Figure 1: Traditional and Virtual Architecture

Virtual appliances, a set of virtual machines which

includes operating systems, pre-built, preconfigu-

red, ready-to-run applications are to solve the

complexities of service deployment .Virtual

appliances are proved to provide a better service

mailto:venkatkrithi@gmail.com
mailto:ss.sowmya2011@gmail.com

V. Krithika et al www.ijetst.in Page 2079

IJETST- Vol.||02||Issue||03||Pages 2078-2083||March||ISSN 2348-9480 2015

deployment mechanism. It also reduce the cost of

deploying and maintaining the software.

Figure 2: Cloud Service Composition

It is difficult to choose the best composition

because none of the service provider provides

ranking system to user For example, if an

appliance format is Open Virtualization Format

(OVF) it cannot currently be deployed on Amazon

EC2.All the choices of individual cannot simply

put in the traditional hosting environment .

Unskilled users cannot handles all these

complexity and cost.

In this paper, to minimize the process of selecting

the best preferences an approach is introduced in

our system. The non-expert user can make use of

Image format compatibility issue to deploy their

service. For this purpose we have build two

default Instance in the cloud service repository

and advertisement is also provided for those

Instance.

A Cloud service repository is used to provide all

the services automatically, it allows the user to

select their user preferences according to their

requirements. Ranking system is provided to

minimize the complexity in choosing the user’s

preferences.

2. EXISTING SYSTEM

In this section, we are going to see the board

overview on existing work. The main difficulty

lies in setting up complex combination of

appliances in the traditional hosting environment ,

it is also difficult to choose the best instance type

from the cloud pool.To solve this problem virtual

appliance is used.But this system does not provide

effective use of virtual appliances. The non-expert

user are not aware of cloud service composition.

They were not able choose the web dependence

for their task. Without the help of expert

knowledge they were not enable to select the

Instance .Because of this Deployed application

may be misconfigured. user preference is difficult

.There is no ranking system provided.

Combination of appliance, chooses by the

individual cannot simply put in the hosting

environment, because it may not be capable in the

hosting environment.

3. PROPOSED WORK

Proposed system uses OpenStack Cloud provider

which is the best to build Virtual Instance. To

build virtual instance, 4GB of storage is enough.

Our system helps non-expert users with limited or

no knowledge on legal and image format

compatibility issues to deploy their services. User

can build their own instance based on his/her

requirements. Web applications dependencies are

available, the only thing is user has to select their

web application dependencies based on his/her

preferences. User can deploy application. Real

time process can be viewed in OpenStack

Dashboard.

4. PROPOSED SYSTEM

ARCHITECTURE

Proposed system provides whole service

deployment life cycle for users. The main aim of

this system is to provide service for non-expert

user, ranking system for selecting user

preferences. The major components of proposed

system are listed below.

Cloud Service Repository: It is an cloud storage

where the default instances are stored.

Advertisement for the default instances is also

provided. For example, an advertisement of a

computing instance can contain descriptions of its

features, costs, and the validity time of the

advertisements, Then the user have to choose their

instance depend upon their requirements.

Create new Instance: The user can create their

own instance by giving their user preference,

which includes OS, Server, Database, RAM and

Budget. In this system we are providing the

ranking system to select the preferences. The

configuration detail is also provided to the users.

V. Krithika et al www.ijetst.in Page 2080

IJETST- Vol.||02||Issue||03||Pages 2078-2083||March||ISSN 2348-9480 2015

Compatibility Checking: It checks the service

provided user with the cloud service composition,

if the checking is done successfully, it gets the

detail about the user application, it compares the

complexity of the application with the RAM size

provided by the user, if it is enough to run the

application, then the user can buy the instance.

Figure 3: Architecture for User Compactibibity Checking Model For Cloud

5. PROPOSED SYSTEM METHODS

 5.1. CLOUD SERVICE COMPOSITION

The user has to register his/her details. The server

in turn stores the user information in its database.

User can modify their information and updated

information stored in database. Advertisement of

two default instances of service provider is

available in this module. User buys instances

based on their requirements. The user checks their

bought instances in launching an Instance module.

User owned instances details are stored in

database.

5.2. BUILD AND CONFIGUREINSTANCE

User can create new instance based on his/her

requirements. In this module, user can select their

Web application dependency which includes

Operating Systems, RAM, and Database etc.

Compatibility checking of cloud services is done

in this module. If the cloud services are

compatible, user redirects into GSVC Internet

Banking. After successful transaction, the amount

will be debited from his/her account. The user

checks their newly created instances in launching

an Instance module.

Request
 User

Cloud Service

Repository

Advertisement of

Virtual Instance

File

Transfer

Launch and Stop

Instances

OpenStack

Dashboard

Create New

Instance

Buy

Available Virtual

Instance

GSVC Internet

Banking

Web Application

dependency and

configuration

Requirements

Compatibility

checking

False

Success

Transaction
Success

True

Failed

True

False

Deploy

applications

True True True True

V. Krithika et al www.ijetst.in Page 2081

IJETST- Vol.||02||Issue||03||Pages 2078-2083||March||ISSN 2348-9480 2015

5.3. LAUNCH AND DEPLOY INSTANCES

In this module, instances owned by the user and

running instances are displayed. Now user can

launch any instances. Instance launched using

jclouds, based on specified RAM and instance

name. Start and end execution time of the instance

will be noticed. Instance will be created in

OpenStack Dashboard. A separate IP will be

created for each instance. Now user can view their

virtual instance in OpenStack. Using putty, user

connects to IP assigned for the virtual instance.

Now user connects into Virtual Instance. Giving

file transfer command, user transfer their web

application to Virtual instance. User can also

transfer data base files to Virtual Instance. Now

user can deploy their web applications in Virtual

Instance. Real time process is shown in Open

Stack Dashboard.

User Buliding Instances Selecting User Preferences compatibility checking

 File Transfer Launch User’s Home Page

Figure 4: Configure And Deploy Model In Cloud

V. Krithika et al www.ijetst.in Page 2082

IJETST- Vol.||02||Issue||03||Pages 2078-2083||March||ISSN 2348-9480 2015

6. SAMPLE SCREENSHOTS

V. Krithika et al www.ijetst.in Page 2083

IJETST- Vol.||02||Issue||03||Pages 2078-2083||March||ISSN 2348-9480 2015

7. CONCLUSION

In this paper, we proposed a method of

compatibility checking algorithm to check the

compatibility of web service with the cloud

service composition. This algorithm allow the user

to select their preferences depends upon the

requirements. In addition, it will display the real

time process of the virtual instance. In future, the

deployment time of the process can be reduced.

The number of real time servers can also be

increased.

REFERENCES

1. C. Sun, L. He, Q. Wang, and R.

Willenborg, “Simplifying service

deployment with virtual appliances,” in

Proceedings of the IEEE International

Conference on Services Computing

(SCC),2008.

2. J. De Bruijn, H. Lausen, A. Polleres, and

D. Fensel, “The web service modeling

language wsml: An overview,” in

Proceedings of the 3rd European

conference on The Semantic Web:

research and applications, 2006.

3. A. Dastjerdi, S. Tabatabaei, and R. Buyya,

“An effective architecture for automated

appliance management system applying

ontology-based cloud discovery,” in

Proceedings of the 10
th

 IEEE/ACM

International Conference on Cluster, Cloud

and Grid Computing, 2010.

4. A. Dastjerdi and R. Buyya, “An

autonomous reliability-aware negotiation

strategy for cloud computing

environments,” in Proceedings of 12th

IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing. IEEE,

2012.

5. DMTF, “Open virtualization format,”

http://www.dmtf.org/standards/ovf.

6. A. Dastjerdi, S. Tabatabaei, and R. Buyya,

“A dependencyaware ontology-based

approach for deploying service level

agreement monitoring services in cloud,”

Software: Practice and Experience, vol.

42, no. 4, pp. 501–518, 2011.

7. I. Foster, Y. Zhao, I. Raicu, and S. Lu,

“Cloud computing and grid computing

360-degree compared,” in Proceedings of

the Grid Computing Environments

Workshop (GCE), 2008.

8. J. Kopeck` y, D. Roman, T. Vitvar, M.

Moran, and A. Mocan, “Wsmo grounding.

wsmo working draft v0. 1, 2007.”

9. D. Lambert, N. Benn, and J. Domingue,

“Integrating heterogeneous web service

styles with flexible semantic web services

groundings,” in Proceedings of the 1st

International Future Enterprise Systems

Workshop, 2010.

10. R. Barth and C. Smith, “International

regulation of encryption: technology will

drive policy,” Borders in Cyberspace:

Information Policy and Global Information

Infrastructure, pp. 283–299, 1999.

