

Dr. Daruri Venugopal www.ijetst.in Page 1923

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

International Journal of Emerging Trends in Science and Technology

Network Security Cryptographic Protocols and Lattice Problems

Author

Dr Daruri Venugopal

M.Sc;B.Ed; M.Sc;M.Phill;M.Tech;Ph.D.(Post.Doct.);LMISTE,PGDCJ,

Dept.of Computer Science & Engineering, Siddhartha Institute of Technology And Sciences

Narapally, Ghatkesar, R.R.Dist.

Email: Profdarurivg.edu@gmail.com

Abstract

In this thesis we present new results in two areas – cryptographic protocols and lattice problems.

 We present a new protocol for electronic cash which is designed to function on hardware with

limited computing power. The scheme has provable security properties and low computational

requirements, but it still gives a fair amount of privacy. Another feature of the system is that there is

no master secret that could be used for counterfeiting money if stolen.

 We introduce the notion of hierarchical group signatures. This is a proper generalization of group

signatures, which allows multiple group managers organized in a tree with the signers as leaves.

For a signer that is a leaf of the sub tree of a group manager, the group manager learns which of its

children that (perhaps indirectly) manages the signer. We provide definitions for the new notion and

construct a scheme that is provably secure given the existence of a family of trapdoor permutations.

We also present a construction which is relatively practical, and prove its security in the random

oracle model under the strong RSA assumption and the DDH assumption.

 We show a weakness in the specification for offline capable EMV payment cards. The weakness,

which applies to cards without RSA capability, enables an attacker to duplicate a card and make

transactions that cannot be tied to the original card.

 We give a method for approximating any n-dimensional lattice with a lattice Λ whose factor group

Z
n
 /Λ has (n – 1) cycles of equal length with arbitrary precision. We also show that a direct

consequence of this is that the Shortest Vector Problem and the Closest Vector Problem cannot be

easier for this type of lattices than for general lattices.

Keywords: Security properties; Counterfeiting; Hierarchical group ; RSA assumption ; DDH

assumption; EMV payment cards; Dimensional lattice ; Arbitrary precision

1 Introduction

1.1 Confidentiality and Authenticity

When the word “cryptography” is mentioned,

what first comes to mind is probably sending

secret messages. This is justified, as hiding

information from eavesdroppers, confidentiality,

is the traditional reason to use cryptography. An

analogy is to send a message in a sealed envelope

(or maybe in a locked safe, although it is

debatable how realistic such an analogy is).

Sometimes we are not primarily interested in

hiding information, but rather in ensuring that

information isn’t modified or counterfeited,

authenticity. By this we mean that the receiver can

be convinced that sender is who he claims to be,

and that the message has not been altered on the

Dr. Daruri Venugopal www.ijetst.in Page 1924

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

way. The analogy here is to sign a paper with the

message on it. Since signatures are assumed to be

hard to forge, a signature identifies the sender.

In an environment where messages are mainly

sent electronically, we need meth-ods to achieve

confidentiality and authenticity by digital means,

and this is one major part of what cryptographic

research is about. The traditional approach is to

set up a key k and define a function E to encrypt

and a function D to decrypt so that Dk(Ek (m)) =

m for any legal message m. We will call m the

plaintext and the encryption Ek (m) the ciphertext.

Since we want the system to be secure, we want it

to be infeasible to compute any useful information

about the plaintext from the ciphertext, provided

that the key k is unknown.

We even want it to be infeasible if certain side

information is known, such as a subset of legal

messages from which m is drawn, or encryptions

of other messages under the same key. Consider

the functions necessary to ensure that a message

isn’t counterfeited or modified. The usual

approach is to define a function S to create a

message authentication code (MAC) and a

function V to verify that a MAC is valid. The

function S takes as input a message m and a key k

and returns a MAC. The function V takes a key, a

message and a MAC, and returns 1 if the MAC is

valid and 0 otherwise. It must hold that Vk (m, Sk

(m)) = 1, and it should be infeasible to compute a

message m and a MAC s such that Vk (m, s)

without knowledge of k. Also here the attacker

may have access to side information such as

MACs on messages of his choice.

1.2 Public Key Cryptography

Asymmetric Encryption Schemes

In the above definition, the same key is used for

encryption and decryption. For a long time, this

was the only known way to perform cryptography.

In the middle of the 1970s, a major breakthrough

was made when methods to perform asymmetric

cryptography were discovered. Asymmetric

systems use two keys, the public key, pk and the

private key (sometimes called secret key), sk .

The public key is used to encrypt, and the private

key to decrypt so that Dsk (Epk (m)) = m. The

public key can be published, since it is used only

for encryption, but the private key must be kept

secret.

Let us now compare this with symmetric

cryptosystems to see what the differences may

mean in practice. Assume ten people work at the

same company, and that they want to be able to

send encrypted messages to each other. First con-

sider a symmetric cryptosystem.

One solution is to have a single common key that

everything is encrypted with, but there are several

drawbacks with this approach. Someone who gets

hold of the key (for example by bribing one of the

employees) is able to read all messages sent. Also

any employee can read any message, even it

wasn’t meant for him. If an employee quits, a new

key has to be set up and distributed in a secure

manner. A second solution is to have one key

between every pair of employees. Then only the

intended recipient can read his messages, and if

one employees sells (or accidently discloses) his

keys, only the messages sent or received by that

employee can be read. However, the number of

keys necessary for such a system is high. Our ten

employees need a total of 45 keys. Although this

number may not seem very high, we must take

into account that agreeing on a symmetric key is a

cumbersome task.

It is not advisable to the keys electronic-ally, since

they can be eavesdropped, and if a key is sent by

mail, there is always the risk that someone opens

the envelope and gets the key. The only safe way

is to meet in person. Now consider a company

with 1000 employees. Then a total of 499, 500

keys are necessary! It is obvious that symmetric

cryptosystems have certain drawbacks.

Now let us consider using asymmetric

cryptography to solve the problem. Each of the ten

employees generates a key pair consisting of a

private and a public key. The public keys are

published, say in the company phone book. If

Dr. Daruri Venugopal www.ijetst.in Page 1925

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

Alice wants to send a message to Bob, she looks

up Bob in the phone book, encrypts using his

public key and sends the message. Bob uses his

private key to decrypt, and no-one else can read

the message. If the company hires new employees,

each of them generates a key pair. No keys have

to be exchanged under secure conditions.

1.3. Building Ccryptographic Protocols

Digital Signatures

Also authenticity can be achieved by asymmetric

means. When a MAC is used, the same key is

used for computing the MAC and and verifying it.

Therefore only the intended recipient can check

the validity of the message. Furthermore, ability

to verify implies ability to compute a MAC,

making it hard to use a signature as proof in case

of a dispute. Therefore, in many situations, it is

desirable to have a scheme in which it is possible

to verify without being able to sign. Using

asymmetric techniques we can construct a scheme

where the signing is performed using the private

key sk and the verification with the public key pk

. Now it must hold that Vpk (m, Ssk (m)) = 1.

This is also what we expect from real-world

signing schemes – anyone can look at a signature

and check whether it has been written by the

putative sender (by comparing it with other

signatures written by the same person), but no-one

but the sender else should be able to produce such

a signature.

A digital signature is in one sense more secure

than a physical signature on paper. When a paper

with the message written on it is signed, it is hard

to ensure that the message is not altered

afterwards. A forger may add new text to a signed

document or combine pages from two or more

signed documents into a new document. A secure

digital signature scheme withstands attacks of this

type, since the signature is tied to the message and

becomes invalid if the message is modified. Two

of the most important building blocks for

cryptographic functions are one-way functions,

i.e., functions that are easy to compute but hard to

invert, trapdoor functions,

i.e., functions that are one-way functions with the

additional property that there is a secret which

makes the function easy to invert. Take, for

example, multiplication. It is easy to multiply two

numbers, but no method is known that factors a

numbers into its prime factors in reasonable time.

It should be noted that the existence of one-way

and trapdoor functions is a classical open

problem, and a proof of their existence would be a

major breakthrough. However, there are functions

that have been subject to intensive research for

more than thirty years, and no evidence

contradicting the hypothesis that they are trapdoor

functions have been found.

It is therefore reasonable to assume that they are

indeed trapdoor functions. From functions that are

assumed to be trapdoor functions, it is possible to

build cryptographic primitives, e.g., encryption

and signature schemes. To achieve more complex

tasks, such as setting up a secure channel between

parties who have not previously met or creating

digital coins, we need to describe how to combine

primitives to get the functionality we need. The

result is called a protocol, and the protocol

describes how the participants should act. A

protocol can be seen as a set of algorithms, one for

each participant.

A protocol may be interactive or non-interactive.

An interactive protocol is used when the parties

can send messages to each other in an interleaved

manner. An example may be a user logging on to

a web-site. In a non-interactive protocol the

sender creates the message on his own, and only

then sends it to the receiver. Encrypting and

signing emails are a typical examples of non-

interactive protocols.

1.4 Efficient vs. Practical Protocols

Naturally we want our protocols to be as efficient

as possible. However, in different contexts

efficiency may have different meanings. The

common definition of an efficient algorithm is that

Dr. Daruri Venugopal www.ijetst.in Page 1926

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

the execution time is bounded by a polynomial in

the size of the input. For example, the grade

school algorithm for multiplication is polynomial

time, since the number of steps needed is less than

2n
2
, where n is the number of digits of each factor.

An example of an algorithm that is not polynomial

is factoring by exhaustive search. To factor an n-

bit number m we may need to check each number

up to
√
m, that is, 2

n/2
 different numbers. Even if

we assume that we can check divisibility in a

single step, we still need an exponential number

of steps before we are guaranteed to have a result.

It is clear that this definition of efficient

algorithms does not cover everything we need

from an algorithm to be usable in practice. If we

design an algorithm that runs in n
30

 steps, it would

still be considered efficient according to the above

definition. However, the algorithm would be

impossible to use in practice except for extremely

small inputs.

In this thesis we focus on protocols that are not

only efficient in the above meaning, but that are

practical. Therefore the protocols must be

specified in such detail that it is possible to

analyze their running time precisely and not only

show that it is bounded by some polynomial.

Also, being practical is not a strict definition. In

some cases, we want a protocol that can be

executed on devices with little computing power

such as smart-cards or mobile phones.

In other cases it is enough if the protocol runs

reasonably fast on a personal computer, and in

still other cases the protocol will run on a server

with large storage capabilities.

1.5 Security of Cryptographic Primitives and

Protocols

Obviously we want the cryptographic primitives

we use to be secure. However, we need to define

precisely what we mean by security of a primitive.

Let us consider an encryption scheme. One

definition of security is that the scheme is secure

if an attacker who sees a ciphertext cannot recover

the plaintext. However, in some scenarios this is

not enough, since the attacker may have access to

additional in-formation. Maybe the attacker

knows that the plaintext is either “yes” or “no”,

and maybe the attacker has seen encryptions of

other plaintexts. Maybe the attacker even has seen

encryptions of “yes” and “no”.

A good cryptosystem should remain secure even

under these circumstances. For example, to

remain secure even if the attacker knows

encryptions of “yes” and “no”, the encryption

must be probabilistic.

1.6. ANONYMITY

Designing protocols that are as secure as the

primitives used is not trivial. It may very well be

the case that a protocol turns out to be insecure

although all components used are secure. Also in

the case of protocols, the term “secure” must be

properly defined. Take, for example, a scheme for

electronic cash involving customers, merchants

and a bank. Naturally a customer should not be

able to counterfeit money, but what happens if a

customer and a merchant collaborates to produce

counterfeit money? Or maybe when two

customers together try to create a coin that

appears to be valid to the merchant but which is

rejected by the bank? Obviously there are many

subtle details when deciding what kind of security

we want from a protocol. Therefore it is important

to make a clear definition of security and to prove

that the protocol fulfills those definition under

some plausible assumptions.

Assume the cash you withdraw had your name on

it. What would that mean? In most cases it

wouldn’t mean anything. No-one would be

interested in knowing that it was you who bought

that pack of chewing gum. You might feel a little

bit uncomfortable if you knew that a curious

trainee working in the pharmacy can keep track of

what medicine you use. If the government can

figure out your political viewpoint by monitoring

what newspapers you purchase and what events

you buy tickets to, you have reason to be really

worried.

Dr. Daruri Venugopal www.ijetst.in Page 1927

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

We often take anonymity for granted. If you

purchase a newspaper with cash, it is not possible

to trace the purchase back to you by looking at the

coins you paid with. If you buy a couple of tokens

for the metro, it is not possible to see if two trips

were paid by tokens purchased at the same time.

The simple reason neither coins nor metro tokens

are traceable is that they don’t have a serial

number.

The reason they don’t have a serial number is that

their low value don’t make them an interesting

target for counterfeiter – the cost of producing a

fake coin or metro token probably exceeds its

value. Now you may argue that these transactions

are not at all anonymous – if you go and buy the

newspaper in person, anyone can see what you

bought. However, the important point here is that

it requires considerable resources to track a person

that way, and it is impossible to do in an

automated way on a large scale.

When the physical coins and metro tokens are

replaced with electronic counterparts, the scenario

is changed. The cost of copying an electronic

coin, which is nothing but a sequence of zeros and

ones, is next to nothing. Therefore even low-value

coins need some kind of serial number to detect

duplicates, and that potentially makes them

traceable. One of the challenges when designing

protocols for transactions that people assume to be

anonymous is to make them anonymous also

when performed electronically.

Before we can design anonymous protocols, we

must decide what we mean by anonymity. One

definition of anonymity is that a transaction

cannot be connected to the identity of any

involved party. This definition, however, is

weaker than the anonymity of real-world

transactions, because it does not say anything

about connecting transactions. Assume, for

example, that you use your electronic coins first to

buy a train ticket that is mailed to your home and

then to buy a political newsletter.

If the coins are anonymous only in the above

sense, the identity of the buyer of the newsletter

may still be revealed if the two purchases can be

connected. Clearly the latter kind of anonymity is

preferable to the former.

If a protocol involves several parties, in the case

of electronic coins a customer, a merchant and the

bank, we may settle for anonymity only towards

the merchant to make the protocol more efficient.

In other words, the merchant cannot link two

purchases, but once the coin reaches the bank, the

bank can see who withdrew the coin. Another

concept is revocable anonymity. Here some

trusted third party (who could, for example, be a

judge) can extract the identity from a coin, but

otherwise the coin is anonymous towards both the

bank and the vendor.

Although anonymity is desirable from the user’s

point of view, protocols that ensure anonymity

tend to be less efficient than non-anonymous

protocols. Also from a legal point of view

anonymity might be problematic. If electronic

coins are achieved through black-mailing or other

illegal activities, anonymity works in favor of the

criminal.

In an anonymous scheme for electronic coins the

bank cannot monitor the flow of coins. It will

detect irregularities only after a long period of

time (if ever). This may be one reason why the

schemes for electronic cash that are in use are

non-anonymous.

1.7 Payment Systems

When making purchases, the most common ways

to pay for the goods is either by using cash or by

using a payment card or check. Cash has the

property that it is anonymous and that it is

possible to verify that it is valid by just looking at

it and without calling the bank. This offline

property of cash is important, and very desirable.

It reduces communication costs, it makes the

scheme more robust since it doesn’t require the

bank to be available, and it is fast. The merchant

can deposit the cash with his bank, use it as

change, buy goods, pay salary etc. Unfortunately

cash also has the not so nice property that it can be

stolen.

Dr. Daruri Venugopal www.ijetst.in Page 1928

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

 A payment card or check, on the other hand, is

not itself a proof that the customer has the money

to pay. The issuer must be contacted to verify that

the customer has the necessary funds, but once the

transaction is completed, it cannot be stolen like

cash. Since the merchant’s name is part of the

payment, no-one else can get credited for the

transaction. Digital payment systems try to mimic

these properties. Systems for digital cash try to

keep the anonymity of the customer, possibly with

a trusted party that can revoke the anonymity.

However, since a digital coin is just a bit-string, it

can be copied and spent twice. The most common

way to deal with this is to design the system so

that the identity of the owner is revealed if the

same coin is spent twice. Another solution is to

make the system online, but then part of the

motivation to use coins is lost.

Systems for digital cash often require that the

merchant deposits the cash with the bank after the

transaction rather than reuse it.

However, digital cash may also have the useful

property that in cannot be stolen while at the

merchant, since the merchant’s name is part of the

transaction. If digital cash does not completely

correspond to cash in the real world, payment card

transactions are easier to make purely electronic.

In many cases this simply means that the physical

signature on the receipt is replaced by a digital

signature by the cardholder. Here, however, we

can ask for more and make payment card

transactions anonymous towards the merchant.

The goal then is to design a system such that two

transactions cannot be linked by the merchants.

The system will still be non-anonymous towards

the issuer, since it must be able to charge the

correct account. A trivial way to achieve

anonymity towards the merchant is to give each

cardholder not just one card number, but several

one-time numbers. The bank keeps a list of which

number belongs to which cardholder, and the

cardholder makes sure each number is only used

once. Provided that the card numbers are

generated randomly, such a system would be

anonymous towards the merchants.

1.8 Group Signatures

In this section we discuss a more general approach

to the problem of creating anonymous credit

cards. We use the concept of group signatures. In

a group signature scheme, there are group

members and a group manager. Group members

can sign documents on behalf of the group, but the

only information that someone other than the

group manager gets is that someone in the group

signed the document. The group manager,

however, is able to determine the identity of a

signer. As the alert reader already has seen, this is

exactly what we need to make payment cards

anonymous. The group members are the

cardholders, and the issuer is the group manager.

When making a payment, the cardholder produces

a group signature on the transaction. The

merchant verifies that the signature is produced by

someone in the group of cardholders, but does not

get any additional information. When the

transaction is passed on to the card issuer, the

issuer, who acts as group manager, extracts the

identity of the cardholder to debit the correct

account.

The scheme described above with group

signatures works for payment cards when there is

just one issuer, and every merchant sends all

transactions directly to that issuer. In reality this is

not the case. There is not just one but several

issuers cooperating within a network. Rather than

sending the transaction directly to the issuer, the

merchant sends it to the network, which routes it

to the issuer. The obvious way to solve the

problem is to set up a group signature scheme for

each issuer. With this solution we lose some

anonymity, since the merchant learns the name of

the issuer, and in some cases this can give quite a

lot of information.

Therefore we would like a variant of group

signatures where there are group managers that

Dr. Daruri Venugopal www.ijetst.in Page 1929

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

only get partial information about the identity of

the signer.

More specifically, in the case of payment cards,

we need a scheme such that the signature is

anonymous to the merchant, the network can see

which issuer the card belongs to, and the issuer

sees the identity of the cardholder. Naturally this

can be generalized so that there are several

intermediate group managers that get more and

more detailed information about the identity. In

this thesis we describe such an extension of group

signatures. Because of the hierarchical way

information about the identity is revealed, we call

the scheme hierarchical group signatures.

1.9 EMV Payment Cards

Still the majority of payment cards are equipped

with a magnetic stripe where the cardholder data

is encoded. Although a convenient and cheap

solution, it has its security problems. The

magnetic stripe can be copied and modified,

making it a good target for counterfeit and fraud.

The transactions made with a magnetic stripe are

not digitally signed, making it possible to modify

the transaction data after the transaction took

place.

One alternative to the magnetic stripe is smart-

cards. A smart-card is a tiny computer placed on

a plastic card. As with any computer, it can store

and process data. It can also have some parts of its

memory protected from direct access. This is a

very useful property to prevent copying and

modification of cards.

Since the amount of money lost on fraud by the

payment networks is growing, there is an on-

going program to switch to smart-cards. The

switch is currently in progress, with some issuers

already issuing smart-cards, and some still using

the magnetic stripe.

With smart-cards, the security is increased

considerably. A smart-card cannot be copied or

modified the same way a magnetic stripe can. It

can hold secret data used only internally by the

card. Smart-cards can sign transactions, thus

ensuring they are sent to the payment network

unmodified. Some smart-cards also contain a

private key for authentication purposes. Since the

private key is accessible only to the internal

smart-card software, such a card cannot be

duplicated.

Cardholder data on a smart-card may be digitally

signed by the issuer, preventing it from being

modified as data on the magnetic stripe.

With the magnetic stripe a cardholder can pay

wherever his brand of card is accepted. He doesn’t

have to worry about who manufactured the

terminal or which bank will process the payment,

since all magnetic stripe cards and all terminals

work according to the same standards. For the

switch to smart-cards to be successful, the same

interoperability is necessary also for smart-cards.

Therefore an international, publicly available

standard called EMV has been developed.

1.10. CRYPTOGRAPHY AND LATTICES

 Figure 1.1: A two-dimensional lattice

In this thesis we point out a vulnerability in some

EMV cards. Although the EMV standard builds

on primitives in which no vulnerabilities are

known, we show that certain EMV card

configurations are insecure. The vulnerability

would allow an attacker to use an EMV card to

perform an unlimited number of offline

Dr. Daruri Venugopal www.ijetst.in Page 1930

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

transactions. EMV does allow for offline

transactions, but there is a limit on the maximum

number of consecutive offline transactions stored

on the card. In Chapter 4 we show how to perform

the attack, and also, where it is possible, how to

configure a card to protect against the

vulnerability.

As we have seen, we need an underlying hard

problem to design cryptosystems. One family of

such problems are lattice problems. A lattice is

defined as the set {λ1b1 + λ2b2 + · · · + λnbn} where

λi are integers and bi ∈ R
n
. Put differently, a lattice

is defined by n basis vectors in R
n
. The lattice

consists of points in R
n
 (sometimes called lattice

vectors) generated by adding combinations of the

basis vectors with integral coefficients. In Figure

1.1 a basis for a two-dimensional lattice is shown

together with the lattice points generated by the

lattice.

In SVP, the task is to compute the shortest non-

zero vector in a lattice given a basis for the lattice.

(The zero vector obviously is the shortest vector

for any lattice.) In Figure 1.2 the shortest vector in

the two-dimensional lattice is marked, and here

we see that in general the shortest vector is not

one of the basis vectors, and that the shortest

vector is never unique, since if v is a lattice

vector, then so is −v.

 Figure 1.2: The shortest vector in the lattice

Computing a shortest vector in a two-dimensional

lattice is not difficult, but in lattices of higher

dimension the general consensus is that no

algorithm which efficiently solves SVP exists.

Now, if we can’t expect to find the shortest vector

in reasonable time, it is natural to ask if we can

find a vector which may not be the shortest, but

which isn’t too much longer than the shortest.

It turns out that the answer to this question

depends on what one means by “not too much

longer”. It is known that finding a lattice vector

that is up to a factor k longer than the shortest is

essentially as hard as finding the shortest vector

for any constant k. On the other hand there is an

efficient algorithm that is known to always give a

vector that is at most 2
n/2

 times as long as the

shortest vector, and that in practice often produces

even better results. It is still unknown precisely

where the border lies between what can be

computed efficiently and what cannot.

Lattice problems have cryptographic applications.

It is known that the crypto-system NTRU would

be insecure if short vectors could be found in a

certain type of lattices. Since the NTRU lattices

are of very high dimension, it is believed to be

infeasible to find such short vectors. However, the

NTRU lattices have a certain structure that could

potentially make them weaker. In this thesis we

study this structure and show that SVP isn’t easier

in this type of lattices. Our approach is to show

that given an arbitrary lattice Λ1, it is possible to

compute a lattice Λ2 which has the special

structure and lies very close to Λ1. This is shown

in Figure 1.3. Now we can conclude that if SVP

were easy in Λ2, then it would be easy in Λ1 as

well, since a solution to SVP in Λ2 can be

translated into a solution in Λ1 as well. Therefore

the special structure of Λ2 does not help when

solving SVP.

Dr. Daruri Venugopal www.ijetst.in Page 1931

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

1.11. THESIS OVERVIEW

Figure 1.3: Approximating a lattice with another

lattice

The thesis is organized as follows. In Chapter 2. We describe a protocol for electronic cash that is designed

specifically to be as efficient as possible. In Chapter 3 the protocol for hierchical signatures with proofs of

security can be found. Chapter 3 is joint work with Douglas Wikström. In Chapter 4 the weakness of certain

EMV payment cards is analyzed. In Chapter 5 we give the full details of the lattice result.

Dr. Daruri Venugopal www.ijetst.in Page 1932

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

Chapter 2

An Efficient Protocol for Electronic Cash

2.1 Introduction

Today, a large and growing part of payments are

made by electronic means, but there is still much

room for improvement. Credit cards may be

suitable for large amounts, but for small amounts

the cost of using a credit card is too high. Also, a

credit card is closely tied to the person’s identity,

and we may want a system where the merchant

learns less or even nothing about the identity of

the customer. These are the issues to be addressed

by electronic cash. The purpose of electronic cash

is to give an alternate option for payment which

provides some anonymity to the customer, and

possibly avoids the need for contacting the bank

for every transaction. We present a system for

electronic cash that is based on symmetric

primitives. The advantage of this is that we get a

system where the coins are small and where the

cryptographic functions performed by the

customer requires little processing power.

Previous Work

A system for electronic cash is usually designed

for a situation where the coin is withdrawn from

the bank by the customer, transferred from the

customer to the merchant (as means of payment)

and later deposited by the merchant at the bank.

Sometimes it is desirable to have a system where

the coins can be transferred between customers in

several steps before they are deposited at the bank.

The different security issues that need to be

addressed include forgeability (cre-ating a coin

that the merchant accepts without performing the

withdrawal protocol with the bank first), double

spending (making a copy of the coin and spending

it twice), and revealing of identity (ability for the

bank and the merchant to see who withdrew a

coin used in a purchase).

Previously published systems for electronic cash

include the system presented by Chaum, Fiat and

Naor, which addresses the issues of anonymity

and detection of double spenders. Later systems

have made improvements. We shown how to

make the communication between the merchant

and the customer more efficient. In a proposal for

how to make the coins divisible is introduced. In

the possibility of later revoking the anonymity of

the coins is added, which may be desirable for

legal reasons. Sander and Ta-Shma present a

system where the bank does not have a secret key.

Our system is based on the ideas of that system.

The similarities and differences between our

system and the system introduced by Sander and

TaShma is discussed in more detail in section 2.2.

All these systems use asymmetric encryption or

non-interactive zero-knowledge proofs to achieve

security. The use of asymmetric techniques such

as RSA appears to imply that a coin must include

numbers of size at least 768 bits, and probably at

least 1024 bits. Since a coin often consists of

several such numbers, storing the coins on a smart

card where the storage is limited is problematic.

With non-interactive zero-knowledge proofs,

especially when based on general methods, the

coins get even larger.

We could of course use a handheld computer to

store the coins. This would however make the

system less convenient to use and thus less likely

to be accepted. The cost of such devices would

reduce the likely hood that the system is widely

accepted. Therefore we want the emphasize the

small coin size of the presented system.

Privacy, Coin Sizes and Efficiency

As mentioned before, in the systems presented so

far, anonymity is a major concern. They ensure

that neither the merchant nor the bank can identify

the owner of a coin. This is achieved either by the

use of blind signatures or non-interactive zero-

knowledge proofs of knowledge. Both methods

generate coins that are “large” (meaning having a

size such that a number n of the same size is hard

to factor, or that it is hard to find the discrete

logarithm modulo n).

Dr. Daruri Venugopal www.ijetst.in Page 1933

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

We propose a system that is significantly more

efficient than the previously published systems,

and still provides full anonymity towards the

merchant. The system only uses symmetric

encryption and computation of hash functions,

thus eliminating the need for costly operations like

exponentiation. The emphasis is on efficiency –

the same functionality can easily be accomplished

using public key cryptography, but this would

yield much larger coins.

To get some perspective we can compare the size

of the coins in our system with previously

proposed systems. The system proposed by

Ferguson needs five RSA-sized number per coin,

giving each coin a size of 5 · 1024 = 5120 bits, or

640 bytes. The system has reduced this to three

numbers of 1024 bits, giving each coin a size of

384 bytes.

2.1. INTRODUCTION

Our Solution

In this chapter we describe a simple and efficient

system for electronic cash with provable security

properties. The system relies on symmetric

encryption technologies rather than asymmetric.

This enhances performance, and the system still

gives a fair level of anonymity. Another

advantage is that the bank does not have a master

secret that can be stolen and used for

counterfeiting money. We present two variants of

the system, one that is completely offline and one

that is online. In the online variant, central

databases are used to store information that

otherwise would be stored on the customer’s

smart card.

Previously published systems focus on anonymity,

both from the merchant and from the bank. They

make it impossible for both the merchant and the

bank to trace a payment. This un-traceability may

be desirable in certain cases, and it is certainly in

the customer’s interest. It is however far from

certain that a bank would want (or accept) that

kind of anonymity. There are also law

enforcement aspects – if money is used in

blackmailing, we would like to be able to trace the

money.

The system presented here is semi-anonymous.

The merchant cannot trace a payment. In fact, it

cannot see whether or not two payments have

been made by the same customer. The bank,

however, can see the identity of the customer

when the merchant deposits his money, just as it

would with, for example, a credit card.

By sacrificing anonymity against the bank, we

win a lot in coin size. The technique used to

avoid the need for a signature on every coin is the

use of hash trees as proposed by Merkle [49] and

used by Sander and Ta-Shma [63]. The idea is that

the bank keeps the coins it has issued in hash

trees, where each father is the hash value of the

concatenated values its sons. Creating hash trees

is a one-way process – given the leaves it is easy

to compute the root value, but given only the root

value it is infeasible to construct a matching tree

(except for the trivial tree consisting of only the

root). The roots of the trees are made public, and

any coin which has a path leading to a published

root is regarded as valid. Since the paths are not

secret, it is possible to publish these paths,

removing the need for the paths to be stored on

the smart card. Also, the correctness of these paths

is defined by the fact that they lead to a certified

root. This means that the databases containing the

paths do not need to be in any way secure or

authenticated.

The merchant can himself verify the outcome by

comparing the root with the certified roots he has

received from the bank. How does this system

differ from an ordinary credit card system? When

paying with a credit card, the customer have to

reveal his identity to the merchant, whereas in the

proposed system the customer remains

anonymous to the merchant. In the online version

the purchase must be verified against a database,

but unlike a credit card system, this database does

not need to be authenticated. Also, the

communication does not have to be secure. A

large merchant may even keep a copy of the

Dr. Daruri Venugopal www.ijetst.in Page 1934

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

database locally, to speed up the processing. The

offline version has the obvious advantage that

there is no need for an online connection to an

external database. An implementation of the

scheme is underway.

2.2 Overview of the System

The system uses hash trees to keep track of which

coins should be considered valid. In the online

variant, the hash trees are distributed to local

databases via not necessarily secure lines. In the

offline variant, only the bank keeps a copy of the

hash trees and the customers keep track of the

path of every coin. Only the roots need to be

transmitted on an authenticated line.

All participants have agreed on a parameter k,

which needs to be even. H is a hash function.

Ra(x) is a pseudorandom function with the key a.

In practice we can think of H as SHA-1. As

pseudorandom function we can use a symmetric

cryptosystem (like AES) with a as the key.

The Participants

There are three participants – the customer, the

merchant and the bank. The cus-tomer is assumed

to have a smart card or similar device with some,

but limited, storage and computational

capabilities. The customer’s identity is id. The

cus-tomer’s smart card is assumed to have a

secret, which we call a. The card also contains a

secret key used to identify the customer with some

signature scheme. The bank has the corresponding

public key. The bank does not have a master

secret key. The bank only needs to be able to, in

an authenticated way, publish roots of the trees of

hash values.

The bank also has a symmetric cryptosystem,

whose encryption we call E, and whose

decryption is called D. The merchant has no

secret. The merchant has to get the root of the

hash tree the bank has published in a secure way,

and it has to have access to a database which

contains the hash tree, although this access does

not have to be authenticated.

The Protocol

The protocol consists of three steps – withdrawal,

payment and deposition. In the withdrawal phase,

the customer receives coins from the bank and the

bank charges the customer’s bank account. In the

payment phase, the customer transfers coins to the

merchant. In the deposition phase, the merchant

deposits the money with the bank, and the bank

credits the amount to the merchant’s account.

Withdrawal

When withdrawing money from his account, a

secure channel is set up between the customer and

the bank. The customer first identifies himself to

the bank in some way (possibly using his private

key). A withdrawal of a coin then proceeds as

follows

1. The bank generates a serial number, s, and

sends c = E(s, id) to the customer.

2. The customer commutes zi = H(Ra(c, i)) for

i = 1, . . . , k, and sends these signed to the

bank.

3. The banks allocates a position in the next

hash tree, and sends the path to

this position (as a {0, 1}-string) to the

customer. Later, when the bank actu-ally

builds the tree, the customer’s coin is

inserted as a leaf in the allocated position.

This is described in Figure 2.1. We call the pair (c,

a) a coin.

After the protocol has finished, the customer has

the coin represented by c, and knows k values that

hash to values in the hash tree. Also, this

information is not known to anyone but the

customer.

Note that the use of a pseudo-random function is

only to save space. The same security would be

achieved if the customer in step 2 generated k

values, say b1, b2, . . . , bk and sent H(bi) to the

bank. In such a setup, the customer would need to

store the values k b1, b2, . . . , bk, whereas he in the

current setup does not need to store any extra

information apart from c.

Dr. Daruri Venugopal www.ijetst.in Page 1935

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

An alternative to having c as an encryption of (s,

id) would be to have c as a unique random

number, and to have the bank store the pair (c, id)

in a private database. The current setup avoids the

need for an extra database with sensitive

information. Such a setup would, on the other

hand, remove the need for a secret key for the

bank.

Payment

In the payment phase, the customer sends the

public part of the coin c together with the

challenges hzi i and the path through the hash tree

to the merchant. In the online variant, the

merchant turns to the database to get the necessary

path. In the offline variant, the user has the path

and sends it to the merchant. All the merchant

needs to check is that one end of the path contains

the hash value of c and the challenges and that the

other end contains the root it has received on a

secure channel. Together with the path, the

merchant receives the zi’s.

The procedure is as follows. From the start the

customer has a coin (c, a).

1. The customer sends c, hzii and the path to

the merchant.

2. The merchant verifies c and hzii with the

database. The merchant picks numbers

3. b1, . . . , bk at random from {0, 1} under the

constraint that
P
 bi = k/2.

3. The customer computes yi = Ra(c, i) for each

i such that bi = 1 and sends the result to the

merchant.

4. The merchant accepts if H (yi) = zi for

every yi. If this is the case, the merchant

stores these values.

5.

Deposition

The merchant deposits the coin at the bank by

sending the yi’s together with c. The bank

decrypts c and marks the coin as used in its

database. Should the coin already be marked as

used, it checks which yi’s were used in the

previous transaction. If the same yi’s were used in

that transaction, it is assumed that the merchant is

trying to deposit the same coin twice, and the

merchant’s account is only credited once. If the

yi’s are different, the customer has tried to double

spend his coin. It is then easy for the bank to

retrieve the identity of the double spender, since

this information is stored in the coin.

Maintaining the Hash Tree

The idea of the hash tree is the idea presented

after a certain period of time t, say one minute, the

bank creates a hash tree where each leaf consists

of a coin c issued during that period and the

corresponding challenges zi. The bank forms the

tree and publishes the root. It then gives the path

to the customers that have withdrawn coins during

that last period.

2.3 Analysis of the System :

For the analysis we want to prove two things. First

we need to prove that for honest participants, the

system gives a fair result. Then we need to prove

that the system is secure. The first part follows

directly from the construction of the system and

that D(E(s, id)) = (s, id) and that H and Ra are

deterministic.

Proof of Security

The setting for the system is that the customer

trusts the bank for anonymity and for providing

fair coins. Both the merchant and the customer

trust the roots of the hash trees. The bank does not

need to trust anyone. The customer does not need

to trust the merchant and the merchant does not

need to trust the customer. No one needs to trust

the hash trees provided by the third party database

providers.

By neglible probability we mean a probability

lower than 1/p(n) for any poly-nomial p and large

enough security parameter n. The relevant security

parameters are the number of challenges, the

length of the customer’s private key, the length of

the bank’s private key and the output length of the

hash function.

Dr. Daruri Venugopal www.ijetst.in Page 1936

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

We start by giving definitions of the tools we

need. Since these definitions are standard

definitions, we only give informal descriptions.

Definition 2.3.1 (Collision resistant hash

function).

A keyed hash function Ha : A → {0, 1 }
n
 with key

a is called collision resistant if a polynomial time

(in |a|) probabilistic Turing machine has negligible

probability of finding x, y ∈ A, x 6= y such that

H(x) = H(y).

Definition 2.3.2 (Pseudorandom functions).

A function Ra : A → B, where a is a parameter, is

called pseudorandom if it indistinguishable from a

uniformly distributed functions f : A → B to a

Turing machine that runs in time polynomial in

|a|.

Definition 2.3.3 (Semantic security).

We call a symmetric cryptosystem (E, D)

semantically secure if no polynomial time

probabilistic Turing machine T can distinguish

between E(m0) and E(m1) with non-negligible

probability, even if T is allowed to pick m0 and m1

itself.

Definition 2.3.4 (Detect identity).

We say that two merchants can detect identity if

they can play the following game and be

successful with a probability non-negligibly

higher than 1/2.

2.4. SOME PRACTICAL DETAILS

there exists an a such that yi
1
 = Ra(c

1
, i) and yi

2
 =

Ra(c
2
, i) for every challenge yi. Otherwise the

output bit is 1 with probability q.

We want to use the oracle to violate the pseudo

randomness of Ra. Assume we have a family of

functions F given as a black box and we want to

decide whether it is pseudorandom or random.

We want to create an algorithm A (which uses O

as an oracle) that with non-negligible probability

outputs 1 if F is pseudorandom and 0 otherwise.

Consider the following four distributions of coins,

where a and b are two different keys for the

pseudorandom function, and B is a random

function.

1. Both coins are withdrawn using Ra.

2. Both coins are withdrawn using B.

3. The first coin is withdrawn using Ra and

the second coin using B.

4. The first coin is withdrawn using Ra and

the second coin using Rb.

Let pi be the probability the oracle O outputs 1 on

in data from distribution i. From the assumption

that O can detect identity it follows that p1 − p4 is

non-negligible. This implies that one of p1 − p2, p2

− p3 or p3 − p4 is non-negligible. We show how to

implement A in each of these cases

• If p1 6= p2 we create both coins using F

and use this as input to O.

• If p2 6= p3 we create one coin using F and

the other using a random function and

execute O with this as input.

• If p3 6= p4 we create one coin using Ra and

the other using F and use this as input to O.

Since for at least one of these inequalities the

difference is non-negligible, our al-gorithm is able

to distinguish the family of pseudorandom

functions from random functions, which was

assumed to be infeasible. This is a contradiction

which proves the theorem.

Choosing the Challenges and Stealing of Coins

As we have seen, the way the challenges are

chosen is very important for the de-tection of

double spending. The simplest would be to choose

the challenges at random. The probability of the

challenges being identical is then very low. One

could, however, imagine legal problems if the

bank tries to prove in court that two merchants

have collaborated to perform fraud against the

bank by both de-positing the same coin. The

merchants can of course argue that they happened

to accidently pick the same random challenge

(maybe due to bad (pseudo-) random number

generators).

Dr. Daruri Venugopal www.ijetst.in Page 1937

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

With this setup, a merchant A could steal coins

from merchant B. If A steals the hard-disk

containing the only copy of B’s coins, the theft

would never be discovered by the bank. Several

practical precautions are of course possible, but

we will see that with a slight modification of the

protocol, stealing coins is impossible.

One way of choosing challenges would be to have

the challenge consist of a hash value of, say, the

merchant’s identity, the time, the amount and

possibly other parameters.

 The problem with this setup is that since k cannot

be very large, it would be possible for the

customer to find a collision. He can then choose to

spend his coin where he has found the collision,

and hence get exactly the same challenge. The

bank would not be able to decide whether it is the

merchants or the customer that is guilty of the

fraud.

Since the only property of randomness we used is

that we have low probability of the same

challenge, we could instead allocate a certain

interval of challenges to each merchant (or rather

to each terminal accepting payments). We would

then have a counter in every terminal to ensure

that no set of challenges is used twice. If a

terminal runs out of queries, it would notify the

bank which would assign a new interval. If we

assume that we want each interval to consist of

10000 queries, and we want 10
9
 such intervals, k

= 50 would be enough.

A feature of this setup is that a merchant A cannot

steal a coin from another merchant B, since this

stolen coin has a challenge that does not

correspond to a valid challenge of A, and the bank

detects that the coin has been stolen. The same is

true if a merchant eavesdrops a purchase or a

deposition of a coin.

The Coin Databases

Another important part of the payment system is

the coin databases. Since every coin issued is to

be stored in these databases, they need quite large

storage capabilities. We can note that the

information in these databases is in no way

sensitive. It does not have to be authenticated or

secure, and with the cost of storage medium being

low (and only getting lower), this is not such big a

problem as it may seem. On the other hand, smart

card memory is expensive, so it is a good thing to

save smart card memory in favor of hard disk

space.

For each coin only the hash value needs to be

stored in the database. To further reduce storage

need we can design the system so that the coins

are issued in a distributed manner. For every

entity with a certain number of customers (e.g.,

every city), the coins would be combined into a

hash tree. These local hash trees would be joined

into national hash trees, which in turn would be

joined on an international level.

With this setup most databases can be designed to

hold only information on coins issued in the same

city or country, and during the last period of time,

say a month. There would probably be a few

complete databases that would be contacted in

case the coin could not be found in the local

database, and these would need to contain every

coin that has been issued.

2.5 CONCLUSIONS

If we assume that a person spends 100 coins per

day, one million customers would spend

approximately 3 × 10
9
 coins per month. Since

every coin needs 160 bit in the database

(assuming we use SHA-1 as hash function) the

total storage need would be 60 GB, which is far

from infeasible, especially as the security

requirements of the database are low. The central

databases would need to hold more information.

Values of Coins

The system as described here assumes all coins

have the same value. It is easy to adopt the system

to handle coins of different values. When the bank

issues the coin, it can simply add the value of the

coin to the leaf in the database. The value does

Dr. Daruri Venugopal www.ijetst.in Page 1938

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

not have to be added explicitly – it suffices to

have the hash value stored in the database include

the value of the coin.

The Size of a Coin

We now calculate the size of a coin (c, a). The

secret a is common to all coins, so the size of it

does not have to be counted. The variable c

consists of the encryption of a serial number s and

the identity id. If we want the system to scale for

world-wide use, we need to reserve, say, 64 bits

for the identity. We can then use 64 bits for the

serial number, and still be able to fit the coin in

128 bits. We only need the serial number to be

unique per customer. Using a symmetrical

cryptosystem with a key-length of 128 bits, we get

an output of 128 bits.

In the online variant, we need to store the path in

the hash tree. If we assume that the system

globally has 10
10

 users and every user uses 100

coins per day for 100 years, no path needs more

than 60 bits. This gives a total coin size of less

than 200 bits, or 25 bytes, which is a major

improvement compared to the asymmetric cash

systems described in the introduction.

In the offline variant, the path needs to be stored

by the customer. This is more than can be stored

on a smart card, which means we need some

means of secondary storage.

Assuming a tranfer rate of 9600 bps between the

card and the terminal, the most costly phase of the

payment phase, transfer of the responses to the

challenges, requires less than half a second,

assuming that 25 challenges have to be answered.

We have presented a system for electronic cash

that is both practical and provably secure. The

privacy properties are such that banks are likely to

accept the system, and the system still protects the

customer’s identity against the merchants. The

coins are small enough to fit on smart cards.

Dr. Daruri Venugopal www.ijetst.in Page 1939

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

Chapter 3

Hierarchical Group Signatures

3.1 Introduction

Consider the notion of group signatures

introduced by Chaum and van Heyst [21]. A

group member can compute a signature that to an

outsider reveals nothing about the signer’s identity

except that he is a member of the group. On the

other hand the group manager can always reveal

the identity of the signer.

An application for group signatures is anonymous

credit cards. The cardholder wishes to preserve his

privacy when he pays a merchant for goods, i.e.,

he is in-terested in unlinkability of payments. The

bank must obviously be able to extract the identity

of a cardholder from a payment or at least an

identifier for an account, to be able to debit the

account. To avoid fraud, the bank, the merchant,

and the cardholder all require that a cardholder

cannot pay for goods without holding a valid card.

To solve the problem using group signatures we

let the bank be the group manager and the

cardholders be signers. A cardholder signs a

transaction and hands it to the merchant. The

merchant then hands the signed transaction to the

bank, which debits the cardholder and credits the

merchant. Since signatures are unlikeable, the

merchant learns nothing about the cardholder’s

identity. The bank on the other hand can always

extract the cardholder’s identity from a valid

signature and debit the correct account.

The above scenario is somewhat simplified since

normally there are many banks that issue cards of

the same brand and which are processed through

the same payment network. The payment network

normally works as an administrator and routes

transactions to several independent banks. Thus,

the merchant hands a payment to the payment

network which hands the payment to the issuing

bank. We could apply group signatures here as

well by making the payment network act as the

group manager. The network would then send the

extracted identity to the issuing bank. Another

option is to set up several independent group

signatures schemes, one for each issuer. In the

first approach, the payment network learns the

identity of the customer, and in the second

approach the merchant learns which bank issued

the customer’s card. A better solution would

reveal nothing except what is absolutely necessary

to each party. The merchant needs to be convinced

that the credit card is valid, the payment network

must be able to route the payment to the correct

card issuer and the issuer must be able to

determine the identity of the cardholder.

A solution that comes to mind is to use ordinary

group signatures with the modification that the

customer encrypts his identity with his bank’s

public key. Then we have the problem of showing

to the merchant that this encryption contains valid

information. However, the customer cannot reveal

the public key of the bank to the merchant,

making such a proof far from trivial.

 In this chapter we introduce and investigate the

notion of hierarchical group signatures. These

can be employed to solve the above problem.

When using a hierarchical group signature scheme

there is not one single group manager.

Instead there are several group managers

organized in a tree, i.e., each group manager either

manages a group of signers or a group of group

managers. In the original notion the group

manager can always identify the signer of a

message, but nobody else can distinguish between

signatures by different signers. The corresponding

property for hierarchical group signatures is more

complicated. If a manager directly manages a

group of signers, it can identify all the signers that

it manages, but the signatures of all other signers

are indistinguishable to it. This corresponds

directly to the original notion. If a manager

manages a group of managers, it cannot identify

the signer, but it can identify the manager directly

below it which (perhaps indirectly) manages the

signer. Thus, a manager that does not manage

signers directly get only partial information on the

identity of the signer.

Dr. Daruri Venugopal www.ijetst.in Page 1940

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

When we use hierarchical group signatures to

construct anonymous credit cards for the more

realistic setting we let the payment network be the

root manager that manages a set of group

managers, i.e., the issuing banks, and we let the

cardholders be signers. The credit card application

also demonstrates what kind of responsibility

model is likely to be used with a hierarchical

group signature scheme. With a valid signature on

a transaction, the merchant has a valid demand on

the payment network. If the payment network has

a signature that can be shown to belong to a

certain bank, the network has a valid demand on

that bank. Thus, it is in the network’s interest to

open the signatures it receives from merchants,

and it is in the issuing banks’ interest to open the

signatures they receive from the network.

3.2 HIERARCHICAL GROUP

SIGNATURES :

In Section 3.5 we consider the issue of existence

of such primes. We use QRN to denote the

subgroup of squares in Z∗
N , i.e., the quadratic

residues. We write ∅ to denote both the empty set

and the empty string.

We say that a distribution ensemble D = {Dκ} is

efficiently sampleable if there exists a polynomial

time Turing machine TD that on input 1
κ
 outputs a

random sample distributed according to Dκ. All

adversaries in this chapter are modeled as

polynomial time Turing machines with non-

uniform auxiliary advice string. We denote the

set of such adversaries by PPT∗.

A public-key cryptosystem is said to be CCA2-

secure if it is infeasible for an attacker to

determine which one of two messages of his

choice that a given cryptotext is the encryption of,

even if the attacker has access to a decryption

oracle both before the choice is made and after the

cryptotext is received [60]

In Section 3.2 we formalize the notion of

hierarchical group signatures and give definitions

of security. We also briefly discuss why it is not

trivial to transform a non-hierarchical group

signature scheme into a hierarchical scheme. In

Section 3.3 we introduce the concept of cross-

indistinguishability, which we use in both the

general construction and the explicit construction.

Our construction under general assumptions is

presented in Section 3.4 and in Section 3.5 we

give the explicit construction. The zero-

knowledge proofs used in Section 3.5 can be

found in Section 3.6. Finally in Sections 3.7 and

3.8 we discuss possible modifications and

extensions of the current scheme.

Contributions

We introduce and formalize the notion of

hierarchical group signatures. We give a

construction that is provably secure under the

existence of a trapdoor permutation family. As

part of our investigations we introduce a new

property of cryptosystems, which we call cross-

indistinguishability. This property may be of

independent in-terest.

Then we consider how a practical hierarchical

group signature scheme can be constructed under

specific complexity assumptions. We show that

by a careful selection of primitives one can

construct a relatively practical hierarchical group

signature scheme that is provably secure under the

DDH assumption and the strong RSA assumption

in the random oracle model. For reasonable

security parameters a few hundred

exponentiations are required to produce a

signature.

3.3.CROSS-INDISTINGUISHABILITY

of such a scheme are complex and involves many

subtle issues, e.g. should all group managers

(indirect and direct) of a signer get information on

its identity, or should the signer decide on a path

from a root and only reveal information to group

managers along this path? Although we believe

that the techniques we use for our construction

would be useful also for this type of scheme we

do not investigate such schemes further.

Dr. Daruri Venugopal www.ijetst.in Page 1941

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

On Constructing Hierarchical Group

Signatures

All known group signatures are based on the idea

that the signer encrypts a secret of some sort using

the group manager’s public key, and then proves

that the resulting cryptotext is on this special

form. The security of the cryptosystem used

implies anonymity, since no adversary can

distinguish crypto texts of two distinct messages if

they are encrypted using the same public key.

Suppose we wish to generalize this approach to

construct a hierarchical group signature scheme.

In the hierarchical setting protecting the identity

of the signer implies protecting the identity of the

group managers along the path of to the signer.

On the other hand these group managers (and

nobody else) must be able to extract partial

knowledge on the identity on the identity of the

signer. Thus, it seems that hierarchical group

signatures must somehow contain embedded

crypto texts. To ensure anonymity, signatures with

embedded crypto texts corresponding to distinct

public keys must be indistinguishable, since

otherwise the crypto texts embedded in a signature

would reveal information on the identity of the

signer.

This type of in distinguishability does not follow

from the in distinguishability of a cryptosystem.

We say that a cryptosystem that has this property

is cross-indistinguishable. This property is

investigated in detail in Section 3.3 below.

On the other hand, to ensure traceability, the

signer must prove that a signature contains the

identity of the signer encrypted with public keys

corresponding to the path to the signer. In

principle this is not a problem, since there is a

non-interactive zero-knowledge proof system for

any language in NP, but the details must be

resolved. It is far from obvious how to construct a

practical proof system.

It turns out that the cryptosystem we use must not

only be indistinguishable (semantically secure),

but it must also have an incomparable security

property which we call cross-in

distinguishability.

3.4 A CONSTRUCTION UNDER

GENERAL ASSUMPTIONS:

In this section we show how hierarchical group

signatures can be constructed under general

assumptions. Our focus is on feasibility and

conceptual simplicity. We prove the following

theorem.

Theorem 3.4.1. If there exists a family of trapdoor

permutations, then there exists a secure

hierarchical group signature scheme.

To prove the theorem we construct a hierarchical

group signature scheme by augmenting the group

signature scheme of [7] with additional crypto

texts and a non-interactive zero-knowledge proof.

Assumptions and Primitives Used

Before we give our construction we review some

constructions and results on which our

construction is based.

Group Signature Scheme

The first building block we need is a group

signature scheme secure under the assumption that

trapdoor permutations exists. As shown by Bellare

et al. such a scheme exists.

Theorem 3.4.2 (cf. [7]). If there exists a family of

trapdoor permutations, then there exists a secure

group signature scheme GS = (GKg, GSig, GVf ,

Open).

Public Key Cryptosystem

The probabilistic cryptosystem of Goldwasser and

Micali [34] is indistinguishable, but we are not

aware of any proof of cross-indistinguishability.

We prove that their construction is also cross-

indistinguishable, but first we recall their

construction.

Their construction is based on the existence of

non-approximable trapdoor predicates. This

concept can be captured in modern terminology as

Dr. Daruri Venugopal www.ijetst.in Page 1942

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

follows. A family of trapdoor permutations is a

triple of polynomial time algorithms F = (Gen,

Eval, Invert). The instance generator Gen(1
κ
)

outputs a description f of a permutation of {0, 1}
κ

and a trapdoor f
−1

. The evaluation algorithm

Eval(1
κ
, f, x) evaluates the permutation on input x

∈ {0, 1}
κ
. The the corresponding inversion

algorithm Invert(1
κ
, f

−

1
, y) evaluates the inverse

permutation on input y ∈ {0, 1}
κ
. We abuse

notation and write f (x) and f
−1

(y) for the

evaluation of the permutation and inverse

permutation as described above.

The last requirement on the family of trapdoor

permutations is that it must be infeasible for any A

∈ PPT∗ given f and y = f (x), where x ∈ {0, 1}
κ
, to

compute x = f
−1

(y). A hard-core bit for F is a

family of functions B = {Bκ : {0, 1}
κ
 → {0, 1}}

such that it is infeasible to compute Bk(x), given

only f and f (x) for a random x ∈ {0, 1}
κ
.

Goldreich and Levin [33] show how to construct a

family of trapdoor permutations F with a hard-

core bit B from any family of trapdoor

permutations.

The cryptosystem GM = (GMKg, E, D) of

Goldwasser and Micali [34] using F and B can be

defined as follows (using modern terminology).

The key generator GMKg(1
κ
) simply outputs (pk ,

sk) = (f, f
−1

) = Gen(1
κ
).

3.5 CONCLUSION

We have introduced and formalized the notion of

hierarchical group signatures and given two

constructions. The first construction is provably

secure under general assumptions, whereas the

second is provably secure under the DDH

assumption, the strong RSA assumption and the 4-

Cunningham chain assumption in the random

oracle model.

Although the latter construction is practical, i.e., it

can be implemented and run on modern

workstations, it is still relatively slow. Thus, an

interesting open problem is to find more efficient

constructions of hierarchical group signatures.

cards based on M/Chip cannot be configured in

the proposed way, and are therefore always

susceptible to the attack. Here the only solution is

to move to (more expensive) DDA cards.

One possibility to solve the problem is the change

the EMV specification so that a terminal always

goes online when a non-DDA EMV card is used.

Although the consequence is that issuers using

low-cost card cannot benefit from the advantages

of offline transaction, from a security perspective

this approach would be the most efficient.

Dr. Daruri Venugopal www.ijetst.in Page 1943

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

CHAPTER - 4

On the Security of Non-RSA EMV

Payment Cards :

4.1 Introduction

A large part of today’s electronic purchases are

made with different kinds of pay-ment cards. The

majority of the cards used today have a magnetic

stripe where the card data is stored. Over the last

years, card skimming, where the content of the

magnetic stripe is copied, has become a major

problem. The countermeasure is to move from the

magnetic stripe to smart-cards where the data is

stored on a chip instead. To make sure also smart-

card based payment cards will have the same

global acceptance as the magnetic stripe, Europay,

MasterCard and Visa have together developed the

EMV specification.

The preparations for moving from payment cards

based on magnetic stripe to smart-card based

cards have been going on for more than ten years.

Some card issuers have already converted their

card base to EMV smart-cards, and more are

about to make the switch.

The base for EMV smart-cards is the EMV

specifications [29], which define the protocol

between the card and the terminal. Payment

organizations, in particular Visa and MasterCard,

have developed their own extensions to the EMV

specifica-tions [48, 47, 73].

In this chapter we will examine a potential

problem in the configuration of an EMV card. In

particular we will show how to avoid this problem

with a card based on Visa’s VSDC specification,

and that it cannot be avoided when using

MasterCard’s M/Chip specification. EMV

specifies two possible security levels for cards,

Static Data Authentication (SDA) and Dynamic

Data Authentication (DDA). The difference lies in

that DDA cards must support RSA, whereas an

SDA card does not. The issue we discuss in this

chapter relates only to SDA cards.

4.2 SMART-CARDS

A smart-card is a tiny computer with its own CPU

and storage. The data stored on the card cannot be

read or written directly but only through certain

functions. This means that a smart-card may have

keys that can be used for encryption but cannot be

read in clear. Another possilibity is to have a PIN

that must be entered before certain functions can

be used. More information about smart-cards can

be found in [38].

The fact that the data on the card can only be

accessed through predefined functions means that

we can define data to be public when it can be

accessed in clear and private when it is used only

for internal processing by the card. When

analyzing protocols involving smart-cards, a

reasonable security model is to assume the data

can only be accessed and modified using the

predefined functions. The weakness analyzed in

this chapter follows that security model.

4.3 THE EMV SPECIFICATION

The EMV specification describes in detail the data

flow between the card and the terminal during a

transaction. The outcome of an execution the

protocol is one of the following

1. Transaction is approved offline.

2. Transaction is denied offline.

3. ransaction is sent to the issuer for online

authorization Since most transaction are

either approved offline or sent online, we

will consider only these two cases here.

The principle is that a transaction can be

approved offline only if both the card and

the terminal agrees on it, but is sent online

if at least one of them requests it.

Both Visa and MasterCard have written their own

extensions to EMV. Here they define which of the

public EMV parameters that can be used, and also

what the internal behavior of the card should be.

Visa calls their application VSDC [73].

MasterCard has published two separate

documents, one giving the external interface in the

form of minimum requirements [47] and one

defining the internal behavior by describing the

Dr. Daruri Venugopal www.ijetst.in Page 1944

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

application M/Chip [48]. However, also

MasterCard is moving towards a unified

document giving both internal and external

details.

Card-Issuer Authentication

During a transaction, the card may generate one or

two MACs. These MACs are generated with a

symmetric key known only to the issuer and the

card. Therefore the MAC can only be verified by

the issuer and not by the terminal or the acquirer.

Card Configuration

SDA and DDA.

EMV gives the option of using low-cost cards

without RSA capabilities as well as more

expensive RSA enabled cards. Cards without RSA

capabilities support only Static Data

Authentication (SDA) whereas cards with RSA

support can handle also

Dynamic Data Authentication (DDA).

For both SDA and DDA, the issuer receives a

certificate from the payment organization. The

issuer certificate and the issuer public key, IPK,

are stored publicly on the card. For SDA, the

issuer signs a set of card parameters of his choice

with his private key and places the signature on

the card. The signature is called Signed Static

Application Data, SSAD. In the case of DDA the

card is given its own RSA key pair. The card

private key is stored internally on the card, but the

card public key is signed by the issuer. (Even if

the card supports DDA, an SDA signature is

usually still put on the card.)

Card parameters

Apart from the keys and certificates mentioned

above, several parameters describing under which

circumstances to allow offline transactions are

stored on the card. In this thesis we are only

interested in one parameter, namely Lower

Consecutive Offline Limit (LCOL). The LCOL

gives the number of transactions that can be

performed offline, i.e., without contacting the

issuer.

Also the parameters Application Transaction

Counter (ATC) and Last Online Application

Transaction Counter (LATC) are stored on the

card. The ATC con-tains the number of

transaction the card has performed and the LATC

holds the index of latest transaction that executed

online. They are both initialized to zero.

Symmetric keys

When a card is issued, the issuer generates a

symmetric key that is stored on the card and used

to generate MACs transaction messages.
2
 The key

is also stored by issuer, but not disclosed to the

merchants or the acquirers.

4.4 THE PROBLEM

In this section we will describe the potential

problem, and also how to avoid it wh ere possible.

Making a Pure Online Card

In many cases, it is desirable to have a card that

can only function online. There are two ways to

achieve this:

• Set the LCOL to zero. This way the

terminal will always make a transaction go

online.

• Make the internal risk analysis of the card

such that it always makes the decision to go

online, regardless of what the terminal’s

decision is.

The most obvious reason to make a card online-

only is to make sure the card-holder does not

spend money he does not have. However, for an

SDA card there is also another reason. Since the

MAC cannot be verified offline, someone might

copy the card, keeping the original SDA signature,

but replace the symmetric key.

Then a terminal would accept the card (since the

SDA signature is valid), and when (and if) the

issuer detects that the MAC is invalid, it is already

too late. The essence of the attack described here

Dr. Daruri Venugopal www.ijetst.in Page 1945

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

is to copy the card and modify the copy in such a

way that it will allow offline transactions.

Copying an SDA Card

If we assume that the hardware is secure, the

adversary can copy all the public data on a card,

but not the internal data. Also, when the card is

copied, he can modify data that has not been

signed by the issuer, but if he changes the data

included in the SDA signature the card will not be

accepted. When a card is copied the adversary can

change the internal behavior of the card by

replacing the original program code by his own.

Making an Online Card Work Offline

As mentioned above, there are two ways to make

a card online-only. Here we will discuss different

attack scenarios depending on what method is

used.

If the LCOL parameter is set to zero, then it may

either be signed or not be signed with the SDA

signature. If it is not signed, the adversary can

simply copy the card and modify the LCOL to

contain a non-zero value. The card will be

accepted offline, since the SDA signature is still

valid. He will not be able to copy the symmetric

key, so the copy cannot be used online, but as

long as the card only is used offline, it will work.

In case the LCOL is signed, it cannot be changed

and the attack does not work.

If the LCOL is not present on the card, but the

internal risk analysis of the card is used to make

all transaction go online, then the attack is a little

bit different. When the adversary copies the card,

he replaces the card application with an ap-

plication that always accepts to make the

transaction offline. Also here he cannot copy the

symmtric key, but he will be able to use the card

offline.

Note that for any of these attacks, the adversary

only needs access to the card for a few seconds so

that he can read all the public data. Since the

commands for doing this are standardized, any

card-reader could be used for this.

Copying an Offline-enabled Card

If the card has LCOL non-zero, but not in the

SDA signature, the adversary can of course use a

similar method to get an arbitrary number of

offline transactions (with invalid MACs, making it

impossible to tie the transaction to the card).

However, even if LCOL is signed, the adversary

can issue an attack similar to those described

above. He can copy all the parameters on the card,

but modify the card application to that it always

responds that no offline transactions have been

performed prior to the current. That way the

terminal will always accept to make the

transaction offline (since the number of offline

transactions is lower than the LCOL) and the

issuer will not be able to detect that the MAC is

invalid.

Protecting Against the Attack

As we can see, the only way to make the card

secure against the proposed attack is to set the

LCOL to zero and include it in the SDA signature.

In other words, there is no way of making a secure

offline SDA card.
3

However, the specifications for M/Chip [48] (used

for MasterCard) don’t allow the use of LCOL,

leaving only card-based risk analysis for making a

card online-only. As we have seen, such an

approach is always susceptible to the attack by

modifying the application. (The M/Chip

specifications do define the LCOL, but only as

private parameter used internally by the card.)

3
This attack does not work for DDA cards.

It can be noted that inclusion of LCOL in the data

signed with SDA is not in the published

recommendations. One step for reducing the

potential threat is to update the recommendations

to include the LCOL and also note that it should

be set to zero.

Conclusions and Recommendations

We have demonstrated how EMV cards with a

certain configuration can be at-tacked, and we

Dr. Daruri Venugopal www.ijetst.in Page 1946

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

have also pointed out how to configure a card

correctly to avoid this attack. We have seen that

cards based on M/Chip cannot be configured in

the proposed way, and are therefore always

susceptible to the attack. Here the only solution is

to move to (more expensive) DDA cards.

One possibility to solve the problem is the change

the EMV specification so that a terminal always

goes online when a non-DDA EMV card is used.

Although the consequence is that issuers using

low-cost card cannot benefit from the advantages

of offline transaction, from a security perspective

this approach would be the most efficient.

Dr. Daruri Venugopal www.ijetst.in Page 1947

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

Chapter 5

Lattices With Many Cycles Are Dense

5.1 Introduction

The interest in the computational complexity of

lattice problems started in the beginning of the

1980s, when van Emde Boas published the first

NP-completeness result for lattice problems [71].

Several hardness results for different variants of

this problems and for different subsets of lattices

have followed. One such way of classifying

lattices is according to the cycle structure of

Abelian group Z
n
/Λ, which is the main focus of

this chapter. Previous results on the complexity of

lattice problems that either explicitly or implicitly

consider lattices with a certain cycle structure

include [1, 13, 56, 67].

The group Z
n
/Λ is finite if Λ ⊆ Z

n
 and full-

dimensional. One way to visu-alize this group is

to divide Z
n
 into the parallelepipeds spanned by a

basis and consider two points equivalent if they lie

in the same position in their respective

parellelepipeds. In Figure 5.1 one such

equivalence class of points is shown. Note how

this can be considered a generalization of

reduction modulo an integer over Z. It is easy to

see that Z
n
/Λ is a group under addition, and since

addition is commutative, the group is abelian.

As with any abelian group, it is isomorphic to the

cartesian product of cyclic groups. By writing the

cycle lengths in increasing order so that the length

of cycle i divides the length of cycle i + 1, we get

a unique representation. For example, instead of

writing Z3 × Z5 we write Z15, and instead of Z2 ×

Z3 × Z3 we write Z3 × Z6.

There are two reasons to study the hardness of

certain lattice problems in dif-ferent subclasses of

lattices rather than for general lattices. The first

reason is purely theoretical – it gives us a better

understanding of how the computational

complexity of lattice problems behaves if we

restrict ourselves to certain lattice classes. The

second reason is more practical – most hardness

results are worst-case results for general lattices.

Figure 5.1: Points that are equivalent modulo a

lattice certain structural properties. It would be

desired to have results that show that these

properties cannot be used to solve lattice problem

more efficiently.

The first result on the cycle structure was

published by Paz and Schnorr [56]. In their paper

it is shown that any lattice can be approximated

arbitrarily well by a lattice with one cycle. In

other words, the lattices with one cycle form a

hard core. On the other hand, the lattices Cai and

Nerurkar [13] prove to be hard in the improved

version of Ajtai [1] have up to n/c cycles.

Although the results are diff erent in nature (the

latter is not an NP-hardness result), it is

interesting to note that they give hardness results

for lattices with diff erent cycle structure. This

gives rise to the question of the role of the cycle

structure in the complexity of lattice problems.

The influence of the cycle structure on the

hardness of lattice problems has practical

implications.

For some crypto systems (e.g., NTRU [37]) there

are attacks based on finding short vectors in

certain lattices. The lattices used in some of these

attacks have a cycle structure that diff ers from the

cycle structure of the lattices that previously have

been shown to be NP-hard.

Since a lattice with n cycles always can be

transformed into a lattice with fewer cycles by a

simple rescaling, the maximum number of cycles

that is meaningful to analyze is n − 1. Trolin

showed that the exact version SVP under the max-

Dr. Daruri Venugopal www.ijetst.in Page 1948

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

norm is NP-complete for n-dimensional lattices

with n − 1 cycles of equal length [67].

In this chapter we investigate the importance of

the cycle structure further. Our main result is a

polynomial-time transformation that with arbitrary

precision approximates any n-dimensional lattice

with a lattice that has n − 1 cycles of equal length,

showing that these lattices form a hard core. A

consequence of this is that short vectors and close

vectors cannot be computed more efficiently in

this class of lattices than in general lattices, except

possibly for a polynomial factor. As our

transformation only changes the size of the

coordinates of the basis vectors and not the

dimension of the lattice, the transformation is

rather tight.

5.2. BACKGROUND

We also give a theorem showing a connection

between the subdeterminants of a lattice and its

Smith Normal Form. An i-minor of B is an i × i

matrix formed by taking i rows and i columns of

B.

Theorem 5.2.4. Let B be an integral square matrix.

Then the diagonal elements of the Smith Normal

Form, s1, s2, . . . , sn can be computed as where di

is gcd of the determinants of all i-minors of B, and

d0 = 1.

Although this method of computing the Smith

Normal Form and hence the cycle structure is

quite inefficient (we need consider all the i-

minors, not only the principal), it turns out to be

useful in certain proofs in this chapter. There are

other, more efficient methods to compute the

Smith Normal Form [39].

Another way to describe the number of cycles of a

lattice is to use a diff erent representation of the

lattice, namely as a set of modular equations.

Every lattice can be described in this way.

Theorem 5.2.5. Let Λ ⊆ Z
n
 be a lattice. Then there

exist n-dimensional vectors a1, a2, . . ., am and

integers b1, b2, . . . , bm, bi > 1, such that

Λ = {x : ha1 , xi ≡ 0 mod b1 ∧ ha2, xi ≡ 0 mod b2

∧ . . . ∧ ham, xi ≡ 0 mod bm} .

The essence of this theorem is that any lattice can

be expressed as a system of modular linear

equations whose solutions form the lattice.

The connection to the cycle structure is that the

number of nontrivial cycles is m, and the length of

cycle i is bi, provided that the system of equations

has been reduced to minimize the number of

equations and that the gcd of the coefficients and

the modulus is 1 in each equation.

In the transformations we approximate lattices in

Z
n
 with lattices in Q

n
. The standard definition of

cycle structure cannot be applied to general

lattices in Q
n
. Since multiplication by a constant

does not aff ect lattice problems such as SVP and

CVP, we will define the cycle structure of a lattice

Λ ⊂ Q
n
 as the cycle structure of kΛ, where k is

the smallest integer such that kΛ ⊆ Z
n
.

5.3 The Approximation

Let Λ ⊆ Z
n
 be an arbitrary lattice. To adapt this

into a lattice with n − 1 cycles that is arbitrarily

close to the original lattice we go through the

following five steps:

1. Inflate the lattice by a factor k and perturb

to achieve a lattice with Hermite Normal

Form of a certain form.

2. Reduce the sublattice spanned by the first

n−1 vectors of the Hermite Normal Form

using the LLL algorithm.

3. Factor the partly reduced basis matrix into

two matrices, where the second has its

determinant equal to one.

4. Multiply the two matrices to get a basis for

an (n − 1)-cyclic lattice that is close to the

original lattice.

5. Perform modifications to the first matrix to

give it n−1 cycles of equal length.

5.5. CONCLUSIONS

Lemma 5.4.3. Let (Λ ⊆ Z
n
, y ∈ Z

n
) be an instance

of CVP such that 0 ≤ yi < det(Λ). Then x ∈ Λ is a

Dr. Daruri Venugopal www.ijetst.in Page 1949

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

solution if and only if k
1
 σΛ,ε(x) is a solution of the

instance

k
1
 σε(Λ), k

1
 σΛ,ε(y)

_
 for k and ε

−1
 polynomial in

det(Λ) and n.

Proof. The lemma follows directly from Theorem

5.4.1. Using the two lemmas, we can construct the

reduction by first reducing the target vector

modulo det(Λ) and then apply the transformation

with the appropriate value of ε.

Obviously the same technique can be used to

achieve a similar result for SVP. The following

lemma follows directly from the above lemmas.

Lemma 5.4.4. Let Λ ⊆ Z
n
 be an instance of SVP.

Then x ∈ Λ is a solution if and only if k
1
 σΛ,ε(x) is

a solution of the instance k
1
 σε(Λ) for k and ε

−1

polynomial in det(Λ) and n.

From this we can conclude that the

inapproximability results for SVP and CVP from

[41] and [27] hold also for lattices with n − 1

cycles.

Theorem 5.4.5. SVP in ℓp-norm is NP-hard to

approximate within any constant factor for n-

dimensional lattices with n − 1 non-trivial cycles

of equal length.

Theorem 5.4.6. There exist constants cp such that

CVP is NP-hard to approximate within n
log log

n
 in

ℓp-norm for n-dimensional lattices with n − 1 non-

trivial cycles of equal length.

We have constructed a transformation that given

an n-dimensional lattice of any cycle structure

produces a lattice with n − 1 cycles that is

arbitrarily close to the original lattice. This closes

the question of whether SVP and CVP can be

easier to solve in lattices with many cycles. Using

the presented result, such a solution would give a

solution for the general case that is at most a

polynomial factor slower in running time. Also

the known inapproximability results for SVP and

CVP extend to lattices with n − 1 cycles.

By previous results, we know that any lattice can

be approximated arbitrarily well by a cyclic

lattice, and hence that SVP and CVP cannot be

easier to solve in cyclic lattices than in general

lattices, except possibly for a polynomial factor.

We now have the two extremes, for one cycle and

for n − 1 cycles.

From the results by Ajtai and the improvement by

others we have a hardness result also for lattices

with n/c cycles. Together with our result this gives

evidence for the general hypothesis that the cycle

structure have little importance in deciding the

hardness of SVP and CVP in a certain lattice.

Although it does seem likely that also lattices with

m non-trivial cycles form a hard core for 2 ≤ m ≤

n − 2, we don’t have a proof for this. The current

proof does not easily extend to these cycle

structures. Since our method relies on inflating the

lattice by a factor d
t
 to get a lattice with

determinant d
nt+1

 and then making changes to

achieve m cycles, the length of each cycle is

d
(nt+1)/m

 . Naturally t must be chosen so that (nt +

1)/m is an integer. In our case, we achieve this by

setting t = n − 2 and m = n − 1. Since the value of

t would depend on m and for certain relations

between m and n no such t exists at all, our

method cannot directly be generalized to create

any cycle structure where the non-trivial cycles

have equal length.

Even if a transformation into m cycles of equal

length for 1 ≤ m ≤ n − 1 were found it would still

be an open question whether other cycle

structures, where the cycles have diff erent

lengths, remain easy. Still the current result seems

to be a strong indication that the cycle structure

does not play an important role for the

computational complexity of lattice problems.

the lattice by a factor d
t
 to get a lattice with

determinant d
nt+1

 and then making changes to

achieve m cycles, the length of each cycle is

d
(nt+1)/m

 . Naturally t must be chosen so that (nt +

1)/m is an integer. In our case, we achieve this by

setting t = n − 2 and m = n − 1. Since the value of

t would depend on m and for certain relations

Dr. Daruri Venugopal www.ijetst.in Page 1950

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

between m and n no such t exists at all, our

method cannot directly be generalized to create

any cycle structure where the non-trivial cycles

have equal length.

Even if a transformation into m cycles of equal

length for 1 ≤ m ≤ n − 1 were found it would still

be an open question whether other cycle

structures, where the cycles have diff erent

lengths, remain easy. Still the current result seems

to be a strong indication that the cycle structure

does not play an important role for the

computational complexity of lattice problems.

Bibliography

1. M. Ajtai. Generating hard instances of lattice

problems. In 28th ACM Sym-posium on the

Theory of Computing (STOC), pages 99–

108. ACM Press, 1996.

2. M. Ajtai. The shortest vector problem in ℓ2 is

NP-hard for randomized reduc-tions. In 30th

ACM Symposium on the Theory of

Computing (STOC), pages 10–19. ACM

Press, 1998.

3. G. Ateniese, J. Camenisch, M. Joye, and G.

Tsudik. A practical and provably secure

coalition-resistant group signature scheme.

In Advances in Cryptology

– CRYPTO 2000, volume 1880 of Lecture

Notes in Computer Science, pages 255–270.

Springer Verlag, 2000.

4. G. Ateniese and G. Tsudik. Some open

issues and directions in group signa-tures. In

Financial Cryptography ’99, volume 1648 of

Lecture Notes in Com-puter Science, pages

196–211. Springer Verlag, 1999.

5. L. Babai. Trading group theory for

randomness. In 17th ACM Symposium on

the Theory of Computing (STOC), pages

421–429. ACM Press, 1985.

6. Bellare and O. Goldreich. On defining proofs

of knowledge. In Advances in Cryptology –

CRYPTO’92, volume 740 of Lecture Notes

in Computer Science, pages 390–420.

Springer Verlag, 1992.

7. M. Bellare, D. Micciancio, and B. Warinschi.

Foundations of group signatures: Formal

definitions, simplified requirements, and a

construction based on gen-eral assumptions.

In Advances in Cryptology – EUROCRYPT

2003, volume 2656 of Lecture Notes in

Computer Science, pages 614–629. Springer

Verlag, 2003.

8. M. Blum, P. Feldman, and S. Micali. Non-

interactive zero-knowledge and its

applications. In 20th ACM Symposium on

the Theory of Computing (STOC), pages

103–118. ACM Press, 1988.

9. F. Boudot. Efficient proofs that a committed

number lies in an interval. In Advances in

Cryptology – EUROCRYPT 2000, volume

1807 of Lecture Notes in Computer Science,

pages 431–444. Springer Verlag, 2000.

10. F. Boudot and J. Traoré. Efficient publicly

veriable secret sharing schemes with fast or

delayed recovery. In 2nd International

Conference on Information and

Communication Security (ICICS), volume

1726 of Lecture Notes in Computer Science,

pages 87–102. Springer Verlag, 1999.

11. S. Brands. Untraceable off -line cash in wallets

with observers. In Advances in Cryptology –

CRYPTO’93, volume 773 of Lecture Notes

in Computer Science, pages 302–318.

Springer Verlag, 1994.

12. E. Brickell, P. Gemmell, and D. Kravitz.

Tracing extensions to anonymous cash and

the making of anonymous change. In 6th

Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 457–466. ACM

Press, 1995.

13. J-Y. Cai and A. Nerurkar. An improved worst-

case to average-case connection for lattice

problems. In 38th IEEE Symposium on

ACM Symposium on the Theory of

Computing (STOC), pages 468–477. IEEE

Computer Society Press, 1997.

14. J. Camenisch. Efficient and generalized group

signature. In Advances in Cryptology –

EUROCRYPT’97, volume 1233 of Lecture

Notes in Computer Science, pages 465–479.

Springer Verlag, 1997.

Dr. Daruri Venugopal www.ijetst.in Page 1951

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

15. J. Camenisch and M. Michels. A group

signature scheme with improved effi-ency. In

Advances in Cryptology – ASIACRYPT’98,

volume 1514 of Lecture Notes in Computer

Science, pages 160–174. Springer Verlag,

1999.

16. J. Camenisch and M. Michels. Separability

and efficiency for generic group signature

schemes. In Advances in Cryptology –

CRYPTO’99, volume 1666 of Lecture Notes

in Computer Science, pages 413–430.

Springer Verlag, 1999.

17. J. Camenisch and M. Stadler. Efficient group

signature schemes for large groups. In

Advances in Cryptology – CRYPTO’97,

volume 1294 of Lecture Notes in Computer

Science, pages 410–424. Springer Verlag,

1997.

18. R. Canetti, O. Goldreich, and S. Halevi. The

random oracle model revisited. In 30th ACM

Symposium on the Theory of Computing

(STOC), pages 209–218. ACM Press, 1998.

19. D. Chaum, A. Fiat, and M. Naor. Untraceable

electronic cash. In Advances in Cryptology –

CRYPTO’88, volume 403 of Lecture Notes

in Computer Science, pages 319–327.

Springer Verlag, 1990.

20. D. Chaum, E. van Heijst, and B. Pfitzmann.

Cryptographically strong undeni-able

signatures, unconditionally secure for the

signer. In Advances in Crypto-logy –

CRYPTO’91, volume 576 of Lecture Notes

in Computer Science, pages 470–484.

Springer Verlag, 1991.

21. D. Chaum and E. van Heyst. Group signatures.

In Advances in Cryptology –

EUROCRYPT’91, volume 547 of Lecture

Notes in Computer Science, pages 257–265.

Springer Verlag, 1991.

22. L. Chen and T.P. Pedersen. New group

signature schemes. In Advances in

Cryptology – EUROCRYPT’94, volume 950

of Lecture Notes in Computer Sci-ence,

pages 171–181. Springer Verlag, 1994.

23. R. Cramer, I. Damgård, and B. Schoenmakers.

Proofs of partial knowledge and simplified

design of witness hiding protocols. In

Advances in Cryptology – CRYPTO’94,

volume 839 of Lecture Notes in Computer

Science, pages 174– 187. Springer Verlag,

1994.

24. R. Cramer and V. Shoup. A practical public

key cryptosystem provably se-cure against

adaptive chosen ciphertext attack. In

Advances in Cryptology – CRYPTO’98,

volume 1462 of Lecture Notes in Computer

Science, pages 13–25. Springer Verlag,

1998.

25. R. Cramer and V. Shoup. Signature schemes

based on the strong RSA as-sumption. In 6th

ACM Conference on Computer and

Communications Security (CCS), pages 46–

51. ACM Press, 1999.

26. D. Chaum and E. van Heyst. Group signatures.

In Advances in Cryptology –

EUROCRYPT’91, volume 547 of Lecture

Notes in Computer Science, pages 257–265.

Springer Verlag, 1991.

27. L. Chen and T.P. Pedersen. New group

signature schemes. In Advances in

Cryptology – EUROCRYPT’94, volume 950

of Lecture Notes in Computer Sci-ence,

pages 171–181. Springer Verlag, 1994.

28. R. Cramer, I. Damgård, and B. Schoenmakers.

Proofs of partial knowledge and simplified

design of witness hiding protocols. In

Advances in Cryptology – CRYPTO’94,

volume 839 of Lecture Notes in Computer

Science, pages 174– 187. Springer Verlag,

1994.

29. R. Cramer and V. Shoup. A practical public

key cryptosystem provably se-cure against

adaptive chosen ciphertext attack. In

Advances in Cryptology – CRYPTO’98,

volume 1462 of Lecture Notes in Computer

Science, pages 13–25. Springer Verlag,

1998.

30. R. Cramer and V. Shoup. Signature schemes

based on the strong RSA as-sumption. In 6th

ACM Conference on Computer and

Communications Security (CCS), pages 46–

51. ACM Press, 1999.

Dr. Daruri Venugopal www.ijetst.in Page 1952

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015

AUTHOR PROFILE

Dr. Daruri Venugopal Received the Bachelors

and Masters degrees from Osmania University, in

1995 and 1997, respectively. He done his M.Phil

Mathematics from Algappa University in the year

2003. He done his M.Tech Computer Science

Engineering from JRN Deemed University. He

Done his Doctorate in Computer Science

Engineering. He has over 110 Research Paper to

his Credit. He is Editorial Board Member and

Reviewer for four Reputed International Journals

in Mathematics & Computer Science Areas. He

is a Advisory Board Member of Reputed

Technical Institutions. He is a Life Member of

ISTE, He is a Recognized Ph.D Supervisor in the

Areas of Mathematics and also in Computer

Science and Network Engineering. Presently

working as Professor in Siddhartha Institute of

Technology and Sciences, Ghatkesar, Hyderabad.

	page12
	page14
	page15
	page16
	page18
	page20
	page21
	page26
	page28
	page31
	page34
	page38
	page42
	page51

