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Abstract 

In this thesis we present new results in two areas – cryptographic protocols and lattice problems. 

 We present a new protocol for electronic cash which is designed to function on hardware with 

limited computing power. The scheme has provable security properties and low computational  

requirements, but it still gives a fair amount of privacy. Another feature of the system is that there is 

no master secret that could be used for counterfeiting money if stolen.  

 We introduce the notion of hierarchical group signatures. This is a proper generalization of group 

signatures, which allows multiple group managers organized in a tree with the signers as leaves. 

For a signer that is a leaf of the sub tree of a group manager, the group manager learns which of its 

children that (perhaps indirectly) manages the signer. We provide definitions for the new notion and 

construct a scheme that is provably secure given the existence of a family of trapdoor permutations. 

We also present a construction which is relatively practical, and prove its security in the random 

oracle model under the strong RSA assumption and the DDH assumption.  

 We show a weakness in the specification for offline capable EMV payment cards. The weakness, 

which applies to cards without RSA capability, enables an attacker to duplicate a card and make 

transactions that cannot be tied to the original card.  

 We give a method for approximating any n-dimensional lattice with a lattice Λ whose factor group 

Z
n
 /Λ has (n – 1) cycles of equal length with arbitrary precision. We also show that a direct 

consequence of this is that the Shortest Vector Problem and the Closest Vector Problem cannot be 

easier for this type of lattices than for general lattices.  

Keywords: Security properties;  Counterfeiting;  Hierarchical group ;  RSA assumption ;   DDH 

assumption;  EMV payment cards; Dimensional lattice ;  Arbitrary precision 

 

                                                                     

1 Introduction    

1.1   Confidentiality and Authenticity  

When the word “cryptography” is mentioned, 

what first comes to mind is probably sending 

secret messages. This is justified, as hiding 

information from eavesdroppers, confidentiality, 

is the traditional reason to use cryptography. An 

analogy is to send a message in a sealed envelope 

(or maybe in a locked safe, although it is 

debatable how realistic such an analogy is). 

Sometimes we are not primarily interested in 

hiding information, but rather in ensuring that 

information isn’t modified or counterfeited, 

authenticity. By this we mean that the receiver can 

be convinced that sender is who he claims to be, 

and that the message has not been altered on the 
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way. The analogy here is to sign a paper with the 

message on it. Since signatures are assumed to be 

hard to forge, a signature identifies the sender. 

In an environment where messages are mainly 

sent electronically, we need meth-ods to achieve 

confidentiality and authenticity by digital means, 

and this is one major part of what cryptographic 

research is about. The traditional approach is to 

set up a key k and define a function E to encrypt 

and a function D to decrypt so that Dk(Ek (m)) = 

m for any legal message m. We will call m the 

plaintext and the encryption Ek (m) the ciphertext.  

Since we want the system to be secure, we want it 

to be infeasible to compute any useful information 

about the plaintext from the ciphertext, provided 

that the key k is unknown.  

We even want it to be infeasible if certain side 

information is known, such as a subset of legal 

messages from which m is drawn, or encryptions 

of other messages under the same key.  Consider 

the functions necessary to ensure that a message 

isn’t counterfeited or modified. The usual 

approach is to define a function S to create a 

message authentication code (MAC) and a 

function V to verify that a MAC is valid. The 

function S takes as input a message m and a key k 

and returns a MAC. The function V takes a key, a 

message and a MAC, and returns 1 if the MAC is 

valid and 0 otherwise. It must hold that Vk (m, Sk 

(m)) = 1, and it should be infeasible to compute a 

message m and a MAC s such that Vk (m, s) 

without knowledge of  k. Also here the attacker 

may have access to side information such as 

MACs on messages of his choice. 

1.2 Public Key Cryptography  

Asymmetric Encryption Schemes 

In the above definition, the same key is used for 

encryption and decryption. For a long time, this 

was the only known way to perform cryptography. 

In the middle of the 1970s, a major breakthrough 

was made when methods to perform asymmetric 

cryptography were discovered. Asymmetric 

systems use two keys, the public key, pk and the 

private key (sometimes called secret key), sk . 

The public key is used to encrypt, and the private 

key to decrypt so that Dsk (Epk (m)) = m. The 

public key can be published, since it is used only 

for encryption, but the private key must be kept 

secret. 

Let us now compare this with symmetric 

cryptosystems to see what the differences may 

mean in practice. Assume ten people work at the 

same company, and that they want to be able to 

send encrypted messages to each other. First con-

sider a symmetric cryptosystem.  

One solution is to have a single common key that 

everything is encrypted with, but there are several 

drawbacks with this approach. Someone who gets 

hold of the key (for example by bribing one of the 

employees) is able to read all messages sent. Also 

any employee can read any message, even it 

wasn’t meant for him. If an employee quits, a new 

key has to be set up and distributed in a secure 

manner. A second solution is to have one key 

between every pair of employees. Then only the 

intended recipient can read his messages, and if 

one employees sells (or accidently discloses) his 

keys, only the messages sent or received by that 

employee can be read. However, the number of 

keys necessary for such a system is high. Our ten 

employees need a total of 45 keys. Although this 

number may not seem very high, we must take 

into account that agreeing on a symmetric key is a 

cumbersome task.  

It is not advisable to the keys electronic-ally, since 

they can be eavesdropped, and if a key is sent by 

mail, there is always the risk that someone opens 

the envelope and gets the key. The only safe way 

is to meet in person. Now consider a company 

with 1000 employees. Then a total of 499, 500 

keys are necessary! It is obvious that symmetric 

cryptosystems have certain drawbacks.   

Now let us consider using asymmetric 

cryptography to solve the problem. Each of the ten 

employees generates a key pair consisting of a 

private and a public key. The public keys are 

published, say in the company phone book. If 
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Alice wants to send a message to Bob, she looks 

up Bob in the phone book, encrypts using his 

public key and sends the message. Bob uses his 

private key to decrypt, and no-one else can read 

the message. If the company hires new employees, 

each of them generates a key pair. No keys have 

to be exchanged under secure conditions. 

1.3.  Building Ccryptographic  Protocols 

Digital Signatures 

Also authenticity can be achieved by asymmetric 

means. When a MAC is used, the same key is 

used for computing the MAC and and verifying it. 

Therefore only the intended recipient can check 

the validity of the message. Furthermore, ability 

to verify implies ability to compute a MAC, 

making it hard to use a signature as proof in case 

of a dispute. Therefore, in many situations, it is 

desirable to have a scheme in which it is possible 

to verify without being able to sign. Using 

asymmetric techniques we can construct a scheme 

where the signing is performed using the private 

key sk and the verification with the public key pk 

. Now it must hold that Vpk (m, Ssk (m)) = 1. 

This is also what we expect from real-world 

signing schemes – anyone can look at a signature 

and check whether it has been written by the 

putative sender (by comparing it with other 

signatures written by the same person), but no-one 

but the sender else should be able to produce such 

a signature. 

A digital signature is in one sense more secure 

than a physical signature on paper. When a paper 

with the message written on it is signed, it is hard 

to ensure that the message is not altered 

afterwards. A forger may add new text to a signed 

document or combine pages from two or more 

signed documents into a new document. A secure 

digital signature scheme withstands attacks of this 

type, since the signature is tied to the message and 

becomes invalid if the message is modified.  Two 

of the most important building blocks for 

cryptographic functions are one-way functions, 

i.e., functions that are easy to compute but hard to 

invert, trapdoor functions,  

i.e., functions that are one-way functions with the 

additional property that there is a secret which 

makes the function easy to invert. Take, for 

example, multiplication. It is easy to multiply two 

numbers, but no method is known that factors a 

numbers into its prime factors in reasonable time. 

It should be noted that the existence of one-way 

and trapdoor functions is a classical open 

problem, and a proof of their existence would be a 

major breakthrough. However, there are functions 

that have been subject to intensive research for 

more than thirty years, and no evidence 

contradicting the hypothesis that they are trapdoor 

functions have been found. 

It is therefore reasonable to assume that they are 

indeed trapdoor functions. From functions that are 

assumed to be trapdoor functions, it is possible to 

build cryptographic primitives, e.g., encryption 

and signature schemes.  To achieve more complex 

tasks, such as setting up a secure channel between 

parties who have not previously met or creating 

digital coins, we need to describe how to combine 

primitives to get the functionality we need. The 

result is called a protocol, and the protocol 

describes how the participants should act. A 

protocol can be seen as a set of algorithms, one for 

each participant. 

A protocol may be interactive or non-interactive. 

An interactive protocol is used when the parties 

can send messages to each other in an interleaved 

manner. An example may be a user logging on to 

a web-site. In a non-interactive protocol  the 

sender creates the message on his own, and only 

then sends it to the receiver. Encrypting and 

signing emails are a typical examples of non-

interactive protocols. 

1.4    Efficient vs. Practical Protocols  

Naturally we want our protocols to be as efficient 

as possible. However, in different contexts 

efficiency may have different meanings. The 

common definition of an efficient algorithm is that 
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the execution time is bounded by a polynomial in 

the size of the input. For example, the grade 

school algorithm for multiplication is polynomial 

time, since the number of steps needed is less than 

2n
2
, where n is the number of digits of each factor. 

An example of an algorithm that is not polynomial 

is factoring by exhaustive search. To factor an n-

bit number m we may need to check each number 

up to 
√
m, that is, 2

n/2
 different numbers. Even if 

we assume that we can check divisibility in a 

single step, we still need an exponential number 

of steps before we are guaranteed to have a result. 

It is clear that this definition of efficient 

algorithms does not cover everything we need 

from an algorithm to be usable in practice. If we 

design an algorithm that runs in n
30

 steps, it would 

still be considered efficient according to the above 

definition. However, the algorithm would be 

impossible to use in practice except for extremely 

small inputs. 

In this thesis we focus on protocols that are not 

only efficient in the above meaning, but that are 

practical. Therefore the protocols must be 

specified in such detail that it is possible to 

analyze their running time precisely and not only 

show that it is bounded by some polynomial. 

Also, being practical is not a strict definition. In 

some cases, we want a protocol that can be 

executed on devices with little computing power 

such as smart-cards or mobile phones. 

In other cases it is enough if the protocol runs 

reasonably fast on a personal computer, and in 

still other cases the protocol will run on a server 

with large storage capabilities.  

1.5   Security of Cryptographic Primitives and 

Protocols  

Obviously we want the cryptographic primitives 

we use to be secure. However, we need to define 

precisely what we mean by security of a primitive. 

Let us consider an encryption scheme. One 

definition of security is that the scheme is secure 

if an attacker who sees a ciphertext cannot recover 

the plaintext. However, in some scenarios this is 

not enough, since the attacker may have access to 

additional in-formation. Maybe the attacker 

knows that the plaintext is either “yes” or “no”, 

and maybe the attacker has seen encryptions of 

other plaintexts. Maybe the attacker even has seen 

encryptions of “yes” and “no”. 

A good cryptosystem should remain secure even 

under these circumstances. For example, to 

remain secure even if the attacker knows 

encryptions of “yes” and “no”, the encryption 

must be probabilistic. 

1.6.  ANONYMITY 

Designing protocols that are as secure as the 

primitives used is not trivial. It may very well be 

the case that a protocol turns out to be insecure 

although all components used are secure. Also in 

the case of protocols, the term “secure” must be 

properly defined. Take, for example, a scheme for 

electronic cash involving customers, merchants 

and a bank. Naturally a customer should not be 

able to counterfeit money, but what happens if a 

customer and a merchant collaborates to produce 

counterfeit money? Or maybe when two 

customers together try to create a coin that 

appears to be valid to the merchant but which is 

rejected by the bank? Obviously there are many 

subtle details when deciding what kind of security 

we want from a protocol. Therefore it is important 

to make a clear definition of security and to prove 

that the protocol fulfills those definition under 

some plausible assumptions. 

Assume the cash you withdraw had your name on 

it. What would that mean? In most cases it 

wouldn’t mean anything. No-one would be 

interested in knowing that it was you who bought 

that pack of chewing gum. You might feel a little 

bit uncomfortable if you knew that a curious 

trainee working in the pharmacy can keep track of 

what medicine you use. If the government can 

figure out your political viewpoint by monitoring 

what newspapers you purchase and what events 

you buy tickets to, you have reason to be really 

worried. 
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We often take anonymity for granted. If you 

purchase a  newspaper with cash, it is not possible 

to trace the purchase back to you by looking at the 

coins you paid with. If you buy a couple of tokens 

for the metro, it is not possible to see if two trips 

were paid by tokens purchased at the same time. 

The simple reason neither coins nor metro tokens 

are traceable is that they don’t have a serial 

number.  

The reason they don’t have a serial number is that 

their low value don’t make them an interesting 

target for counterfeiter – the cost of producing a 

fake coin or metro token probably exceeds its 

value.  Now you may argue that these transactions 

are not at all anonymous – if you go and buy the 

newspaper in person, anyone can see what you 

bought. However, the important point here is that 

it requires considerable resources to track a person 

that way, and it is impossible to do in an 

automated way on a large scale. 

When the physical coins and metro tokens are 

replaced with electronic counterparts, the scenario 

is changed. The cost of copying an electronic 

coin, which is nothing but a sequence of zeros and 

ones, is next to nothing. Therefore even low-value 

coins need some kind of serial number to detect 

duplicates, and that potentially makes them 

traceable. One of the challenges when designing 

protocols for transactions that people assume to be 

anonymous is to make them anonymous also 

when performed electronically. 

Before we can design anonymous protocols, we 

must decide what we mean by anonymity. One 

definition of anonymity is that a transaction 

cannot be connected to the identity of any 

involved party. This definition, however, is 

weaker than the anonymity of real-world 

transactions, because it does not say anything 

about connecting transactions. Assume, for 

example, that you use your electronic coins first to 

buy a train ticket that is mailed to your home and 

then to buy a political newsletter.  

If the coins are anonymous only in the above 

sense, the identity of the buyer of the newsletter 

may still be revealed if the two purchases can be 

connected. Clearly the latter kind of anonymity is 

preferable to the former. 

If a protocol involves several parties, in the case 

of electronic coins a customer, a merchant and the 

bank, we may settle for anonymity only towards 

the merchant to make the protocol more efficient. 

In other words, the merchant cannot link two 

purchases, but once the coin reaches the bank, the 

bank can see who withdrew the coin. Another 

concept is revocable anonymity. Here some 

trusted third party (who could, for example, be a 

judge) can extract the identity from a coin, but 

otherwise the coin is anonymous towards both the 

bank and the vendor. 

Although anonymity is desirable from the user’s 

point of view, protocols that ensure anonymity 

tend to be less efficient than non-anonymous 

protocols. Also from a legal point of view 

anonymity might be problematic. If electronic 

coins are achieved through black-mailing or other 

illegal activities, anonymity works in favor of the 

criminal. 

In an anonymous scheme for electronic coins the 

bank cannot monitor the flow of coins. It will 

detect irregularities only after a long period of 

time (if ever). This may be one reason why the 

schemes for electronic cash that are in use are 

non-anonymous. 

1.7 Payment Systems  

When making purchases, the most common ways 

to pay for the goods is either by using cash or by 

using a payment card or check. Cash has the 

property that it is anonymous and that it is 

possible to verify that it is valid by just looking at 

it and without calling the bank. This offline 

property of cash is important, and very desirable. 

It reduces communication costs, it makes the 

scheme more robust since it doesn’t require the 

bank to be available, and it is fast. The merchant 

can deposit the cash with his bank, use it as 

change, buy goods, pay salary etc. Unfortunately 

cash also has the not so nice property that it can be 

stolen. 
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 A payment card or check, on the other hand, is 

not itself a proof that the customer has the money 

to pay. The issuer must be contacted to verify that 

the customer has the necessary funds, but once the 

transaction is completed, it cannot be stolen like 

cash. Since the merchant’s name is part of the 

payment, no-one else can get credited for the 

transaction.  Digital payment systems try to mimic 

these properties. Systems for digital cash try to 

keep the anonymity of the customer, possibly with 

a trusted party that can  revoke the anonymity. 

However, since a digital coin is just a bit-string, it 

can be copied and spent twice. The most common 

way to deal with this is to design the system so 

that the identity of the owner is revealed if the 

same coin is spent twice. Another solution is to 

make the system online, but then part of the 

motivation to use coins is lost. 

Systems for digital cash often require that the 

merchant deposits the cash with the bank after the 

transaction rather than reuse it.  

However, digital cash may also have the useful 

property that in cannot be stolen while at the 

merchant, since the merchant’s name is part of the 

transaction.  If digital cash does not completely 

correspond to cash in the real world, payment card 

transactions are easier to make purely electronic. 

In many cases this simply means that the physical 

signature on the receipt is replaced by a digital 

signature by the cardholder. Here, however, we 

can ask for more and make payment card 

transactions anonymous towards the merchant. 

The goal then is to design a system such that two 

transactions cannot be linked by the merchants. 

The system will still be non-anonymous towards 

the issuer, since it must be able to charge the 

correct account. A trivial way to achieve 

anonymity towards the merchant is to give each 

cardholder not just one card number, but several 

one-time numbers. The bank keeps a list of which 

number belongs to which cardholder, and the 

cardholder makes sure each number is only used 

once. Provided that the card numbers are 

generated randomly, such a system would be 

anonymous towards the merchants. 

 

1.8 Group Signatures  

In this section we discuss a more general approach 

to the problem of creating anonymous credit 

cards. We use the concept of group signatures. In 

a group signature scheme, there are group 

members and a group manager. Group members 

can sign documents on behalf of the group, but the 

only information that someone other than the 

group manager gets is that someone in the group 

signed the document. The group manager, 

however, is able to determine the identity of a 

signer. As the alert reader already has seen, this is 

exactly what we need to make payment cards 

anonymous. The group members are the 

cardholders, and the issuer is the group manager. 

When making a payment, the cardholder produces 

a group signature on the transaction. The 

merchant verifies that the signature is produced by 

someone in the group of cardholders, but does not 

get any additional information. When the 

transaction is passed on to the card issuer, the 

issuer, who acts as group manager, extracts the 

identity of the cardholder to debit the correct 

account. 

The scheme described above with group 

signatures works for payment cards when there is 

just one issuer, and every merchant sends all 

transactions directly to that issuer. In reality this is 

not the case. There is not just one but several 

issuers cooperating within a network. Rather than 

sending the transaction directly to the issuer, the 

merchant sends it to the network, which routes it 

to the issuer. The obvious way to solve the 

problem is to set up a group signature scheme for 

each issuer. With this solution we lose some 

anonymity, since the merchant learns the name of 

the issuer, and in some cases this can give quite a 

lot of information. 

Therefore we would like a variant of group 

signatures where there are group managers that 
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only get partial information about the identity of 

the signer.  

More specifically, in the case of payment cards, 

we need a scheme such that the signature is 

anonymous to the merchant, the network can see 

which issuer the card belongs to, and the issuer 

sees the identity of the cardholder. Naturally this 

can be generalized so that there are several 

intermediate group managers that get more and 

more detailed information about the identity. In 

this thesis we describe such an extension of group 

signatures. Because of the hierarchical way 

information about the identity is revealed, we call 

the scheme hierarchical group signatures. 

1.9 EMV Payment Cards  

Still the majority of payment cards are equipped 

with a magnetic stripe where the cardholder data 

is encoded. Although a convenient and cheap 

solution, it has its security problems. The 

magnetic stripe can be copied and modified, 

making it a good target for counterfeit and fraud. 

The transactions made with a magnetic stripe are 

not digitally signed, making it possible to modify 

the transaction data after the transaction took 

place. 

One alternative to the magnetic stripe is smart-

cards. A smart-card is a tiny computer placed on 

a plastic card. As with any computer, it can store 

and process data. It can also have some parts of its 

memory protected from direct access. This is a 

very useful property to prevent copying and 

modification of cards. 

Since the amount of money lost on fraud by the 

payment networks is growing, there is an on-

going program to switch to smart-cards. The 

switch is currently in progress, with some issuers 

already issuing smart-cards, and some still using 

the magnetic stripe. 

With smart-cards, the security is increased 

considerably. A smart-card cannot be copied or 

modified the same way a magnetic stripe can. It 

can hold secret data used only internally by the 

card. Smart-cards can sign transactions, thus 

ensuring they are sent to the payment network 

unmodified. Some smart-cards also contain a 

private key for authentication purposes. Since the 

private key is accessible only to the internal 

smart-card software, such a card cannot be 

duplicated. 

Cardholder data on a smart-card may be digitally 

signed by the issuer, preventing it from being 

modified as data on the magnetic stripe. 

With the magnetic stripe a cardholder can pay 

wherever his brand of card is accepted. He doesn’t 

have to worry about who manufactured the 

terminal or which bank will process the payment, 

since all magnetic stripe cards and all terminals 

work according to the same standards. For the 

switch to smart-cards to be successful, the same 

interoperability is necessary also for smart-cards. 

Therefore an international, publicly available 

standard called EMV has been developed. 

1.10.  CRYPTOGRAPHY AND LATTICES 

 

 

 

 

 

 

 

 

       

             Figure 1.1: A two-dimensional lattice 

In this thesis we point out a vulnerability in some 

EMV cards. Although the EMV standard builds 

on primitives in which no vulnerabilities are 

known, we show that certain EMV card 

configurations are insecure. The vulnerability 

would allow an attacker to use an EMV card to 

perform an unlimited number of offline 
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transactions. EMV does allow for offline 

transactions, but there is a limit on the maximum 

number of consecutive offline transactions stored 

on the card. In Chapter 4 we show how to perform 

the attack, and also, where it is possible, how to 

configure a card to protect against the 

vulnerability. 

As we have seen, we need an underlying hard 

problem to design cryptosystems. One family of 

such problems are lattice problems. A lattice is 

defined as the set {λ1b1 + λ2b2 + · · · + λnbn} where 

λi are integers and bi ∈ R
n
. Put differently, a lattice 

is defined by n basis vectors in R
n
. The lattice 

consists of points in R
n
 (sometimes called lattice 

vectors) generated by adding combinations of the 

basis vectors with integral coefficients. In Figure 

1.1 a basis for a two-dimensional lattice is shown 

together with the lattice points generated by the 

lattice. 

In SVP, the task is to compute the shortest non-

zero vector in a lattice given a basis for the lattice. 

(The zero vector obviously is the shortest vector 

for any lattice.) In Figure 1.2 the shortest vector in 

the two-dimensional lattice is marked, and here 

we see that in general the shortest vector is not 

one of the basis vectors, and that the shortest 

vector is never unique, since if v  is a lattice 

vector, then so is −v. 

 

 

 

 

 

 

      

 

 

    Figure 1.2: The shortest vector in the lattice 

Computing a shortest vector in a two-dimensional 

lattice is not difficult, but in lattices of higher 

dimension the general consensus is that no 

algorithm which efficiently solves SVP exists.  

Now, if we can’t expect to find the shortest vector 

in reasonable time, it is natural to ask if we can 

find a vector which may not be the shortest, but 

which isn’t too much longer than the shortest.  

It turns out that the answer to this question 

depends on what one means by “not too much 

longer”. It is known that finding a lattice vector 

that is up to a factor k longer than the shortest is 

essentially as hard as finding the shortest vector 

for any constant k. On the other hand there is an 

efficient algorithm that is known to always give a 

vector that is at most 2
n/2

 times as long as the 

shortest vector, and that in practice often produces 

even better results. It is still unknown precisely 

where the border lies between what can be 

computed efficiently and what cannot. 

Lattice problems have cryptographic applications. 

It is known that the crypto-system NTRU would 

be insecure if short vectors could be found in a 

certain type of lattices. Since the NTRU lattices 

are of very high dimension, it is believed to be 

infeasible to find such short vectors. However, the 

NTRU lattices have a certain structure that could 

potentially make them weaker. In this thesis we 

study this structure and show that SVP isn’t easier 

in this type of lattices. Our approach is to show 

that given an arbitrary lattice Λ1, it is possible to 

compute a lattice Λ2 which has the special 

structure and lies very close to Λ1. This is shown 

in Figure 1.3. Now we can conclude that if SVP 

were easy in Λ2, then it would be easy in  Λ1 as 

well, since a solution to SVP in Λ2 can be 

translated into a solution in Λ1 as well. Therefore 

the special structure of Λ2 does not help when 

solving SVP. 
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1.11.  THESIS OVERVIEW 

 

 

 

 

 

 

 

 

 

Figure 1.3: Approximating a lattice with another 

lattice 

 

 

 

 

 

 

 

 

 

 

 

 

The thesis is organized as follows. In Chapter 2.   We describe a protocol for electronic cash that is designed 

specifically to be as efficient as possible. In Chapter 3 the protocol for hierchical signatures with proofs of 

security can be found. Chapter 3 is joint work with Douglas Wikström. In Chapter 4 the weakness of certain 

EMV payment cards is analyzed. In Chapter 5 we give the full details of the lattice result. 
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Chapter 2 

An Efficient Protocol for Electronic Cash 

2.1 Introduction  

Today, a large and growing part of payments are 

made by electronic means, but there is still much 

room for improvement. Credit cards may be 

suitable for large amounts, but for small amounts 

the cost of using a credit card is too high. Also, a 

credit card is closely tied to the person’s identity, 

and we may want a system where the merchant 

learns less or even nothing about the identity of 

the customer. These are the issues to be addressed 

by electronic cash. The purpose of electronic cash 

is to give an alternate option for payment which 

provides some anonymity to the customer, and 

possibly avoids the need for contacting the bank 

for every transaction.    We present a system for 

electronic cash that is based on symmetric 

primitives. The advantage of this is that we get a 

system where the coins are small and where the 

cryptographic functions performed by the 

customer requires little processing power. 

Previous Work 

A system for electronic cash is usually designed 

for a situation where the coin is withdrawn from 

the bank by the customer, transferred from the 

customer to the merchant (as means of payment) 

and later deposited by the merchant at the bank. 

Sometimes it is desirable to have a system where 

the coins can be transferred between customers in 

several steps before they are deposited at the bank.  

The different security issues that need to be 

addressed include forgeability (cre-ating a coin 

that the merchant accepts without performing the 

withdrawal protocol with the bank first), double 

spending (making a copy of the coin and spending 

it twice), and revealing of identity (ability for the 

bank and the merchant to see who withdrew a 

coin used in a purchase). 

Previously published systems for electronic cash 

include the system presented by Chaum, Fiat and 

Naor, which addresses the issues of anonymity 

and detection of double spenders. Later systems 

have made improvements. We shown how to 

make the communication between the merchant 

and the customer more efficient. In a proposal for 

how to make the coins divisible is introduced. In  

the possibility of later revoking the anonymity of 

the coins is added, which may be desirable for 

legal reasons. Sander and Ta-Shma  present a 

system where the bank does not have a secret key. 

Our system is based on the ideas of that system. 

The similarities and differences between our 

system and the system introduced by Sander and 

TaShma is discussed in more detail in section 2.2. 

All these systems use asymmetric encryption or 

non-interactive zero-knowledge proofs  to achieve 

security. The use of asymmetric techniques such 

as RSA appears to imply that a coin must include 

numbers of size at least 768 bits, and probably at 

least 1024 bits. Since a coin often consists of 

several such numbers, storing the coins on a smart 

card where the storage is limited is problematic. 

With non-interactive zero-knowledge proofs, 

especially when based on general methods, the 

coins get even larger. 

We could of course use a handheld computer to 

store the coins. This would however make the 

system less convenient to use and thus less likely 

to be accepted. The cost of such devices would 

reduce the likely hood that the system is widely 

accepted. Therefore we want the emphasize the 

small coin size of the presented system. 

Privacy, Coin Sizes and Efficiency 

As mentioned before, in the systems presented so 

far, anonymity is a major concern. They ensure 

that neither the merchant nor the bank can identify 

the owner of a coin. This is achieved either by the 

use of blind signatures or non-interactive zero-

knowledge proofs of knowledge. Both methods 

generate coins that are “large” (meaning having a 

size such that a number n of the same size is hard 

to factor, or that it is hard to find the discrete 

logarithm modulo n). 
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We propose a system that is significantly more 

efficient than the previously published systems, 

and still provides full anonymity towards the 

merchant. The system only uses symmetric 

encryption and computation of hash functions, 

thus eliminating the need for costly operations like 

exponentiation. The emphasis is on efficiency – 

the same functionality can easily be accomplished 

using public key cryptography, but this would 

yield much larger coins. 

To get some perspective we can compare the size 

of the coins in our system with previously 

proposed systems. The system proposed by 

Ferguson needs five RSA-sized number per coin, 

giving each coin a size of 5 · 1024 = 5120 bits, or 

640 bytes. The system has reduced this to three 

numbers of 1024 bits, giving each coin a size of 

384 bytes.  

2.1.  INTRODUCTION  

Our Solution 

In this chapter we describe a simple and efficient 

system for electronic cash with provable security 

properties. The system relies on symmetric 

encryption technologies rather than asymmetric. 

This enhances performance, and the system still 

gives a fair level of anonymity. Another 

advantage is that the bank does not have a master 

secret that can be stolen and used for 

counterfeiting money. We present two variants of 

the system, one that is completely offline and one 

that is online. In the online variant, central 

databases are used to store information that 

otherwise would be stored on the customer’s 

smart card. 

Previously published systems focus on anonymity, 

both from the merchant and from the bank. They 

make it impossible for both the merchant and the 

bank to trace a payment. This un-traceability may 

be desirable in certain cases, and it is certainly in 

the customer’s interest. It is however far from 

certain that a bank would want (or accept) that 

kind of anonymity. There are also law 

enforcement aspects – if money is used in 

blackmailing, we would like to be able to trace the 

money. 

The system presented here is semi-anonymous. 

The merchant cannot trace a payment. In fact, it 

cannot see whether or not two payments have 

been made by the same customer. The bank, 

however, can see the identity of the customer 

when the merchant deposits his money, just as it 

would with, for example, a credit card.    

By sacrificing anonymity against the bank, we 

win a lot in coin size.  The technique used to 

avoid the need for a signature on every coin is the 

use of hash trees as proposed by Merkle [49] and 

used by Sander and Ta-Shma [63]. The idea is that 

the bank keeps the coins it has issued in hash 

trees, where each father is the hash value of the 

concatenated values its sons. Creating hash trees 

is a one-way process – given the leaves it is easy 

to compute the root value, but given only the root 

value it is infeasible to construct a matching tree 

(except for the trivial tree consisting of only the 

root).  The roots of the trees are made public, and 

any coin which has a path leading to a published 

root is regarded as valid. Since the paths are not 

secret, it is possible to publish these paths, 

removing the need for the paths to be stored on 

the smart card. Also, the correctness of these paths 

is defined by the fact that they lead to a certified 

root. This means that the databases containing the 

paths do not need to be in any way secure or 

authenticated.  

The merchant can himself verify the outcome by 

comparing the root with the certified roots he has 

received from the bank.  How does this system 

differ from an ordinary credit card system? When 

paying with a credit card, the customer have to 

reveal his identity to the merchant, whereas in the 

proposed system the customer remains 

anonymous to the merchant. In the online version 

the purchase must be verified against a database, 

but unlike a  credit card system, this database does 

not need to be authenticated. Also, the 

communication does not have to be secure.  A 

large merchant may even keep a copy of the 
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database locally, to speed up the processing. The 

offline version has the obvious advantage that 

there is no need for an online connection to an 

external database.  An implementation of the 

scheme is underway. 

2.2 Overview of the System  

The system uses hash trees to keep track of which 

coins should be considered valid. In the online 

variant, the hash trees are distributed to local 

databases via not necessarily secure lines. In the 

offline variant, only the bank keeps a copy of the 

hash trees and the customers keep track of the 

path of every coin. Only the roots need to be 

transmitted on an authenticated line. 

All participants have agreed on a parameter k, 

which needs to be even. H is a hash function. 

Ra(x) is a pseudorandom function with the key a. 

In practice we can think of H as SHA-1. As 

pseudorandom function we can use a symmetric 

cryptosystem (like AES) with a as the key. 

The Participants 

There are three participants – the customer, the 

merchant and the bank. The cus-tomer is assumed 

to have a smart card or similar device with some, 

but limited, storage and computational 

capabilities. The customer’s identity is id. The 

cus-tomer’s smart card is assumed to have a 

secret, which we call a. The card also contains a 

secret key used to identify the customer with some 

signature scheme. The bank has the corresponding 

public key.  The bank does not have a master 

secret key. The bank only needs to be able to, in 

an authenticated way, publish roots of the trees of 

hash values.  

The bank also has a symmetric cryptosystem, 

whose encryption we call E, and whose 

decryption is called D.  The merchant has no 

secret. The merchant has to get the root of the 

hash tree the bank has published in a secure way, 

and it has to have access to a database which 

contains the hash tree, although this access does 

not have to be authenticated. 

The Protocol 

The protocol consists of three steps – withdrawal, 

payment and deposition. In the withdrawal phase, 

the customer receives coins from the bank and the 

bank charges the customer’s bank account. In the 

payment phase, the customer transfers coins to the 

merchant. In the deposition phase, the merchant 

deposits the money with the bank, and the bank 

credits the amount to the merchant’s account. 

Withdrawal 

When withdrawing money from his account, a 

secure channel is set up between the customer and 

the bank. The customer first identifies himself to 

the bank in some way (possibly using his private 

key). A withdrawal of a coin then proceeds as 

follows 

1. The bank generates a serial number, s, and 

sends c = E(s, id) to the customer.  

2. The customer commutes zi = H(Ra(c, i)) for 

i = 1, . . . , k, and sends these signed to the 

bank.  

3. The banks allocates a position in the next 

hash tree, and sends the path to  

this position (as a {0, 1}-string) to the 

customer. Later, when the bank actu-ally 

builds the tree, the customer’s coin is 

inserted as a leaf in the allocated position.  

This is described in Figure 2.1. We call the pair (c, 

a) a coin. 

After the protocol has finished, the customer has 

the coin represented by c, and knows k values that 

hash to values in the hash tree. Also, this 

information is not known to anyone but the 

customer. 

Note that the use of a pseudo-random function is 

only to save space. The same security would be 

achieved if the customer in step 2 generated k 

values, say b1, b2, . . . , bk and sent H(bi) to the 

bank. In such a setup, the customer would need to 

store the values k b1, b2, . . . , bk, whereas he in the 

current setup does not need to store any extra 

information apart from c. 
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An alternative to having c as an encryption of (s, 

id) would be to have c as a unique random 

number, and to have the bank store the pair (c, id) 

in a private database. The current setup avoids the 

need for an extra database with sensitive  

information. Such a setup would, on the other 

hand, remove the need for a secret key for the 

bank. 

Payment 

In the payment phase, the customer sends the 

public part of the coin c together with the 

challenges hzi i and the path through the hash tree 

to the merchant. In the online variant, the 

merchant turns to the database to get the necessary 

path. In the offline variant, the user has the path 

and sends it to the merchant. All the merchant 

needs to check is that one end of the path contains 

the hash value of c and the challenges and that the 

other end contains the root it has received on a 

secure channel. Together with the path, the 

merchant receives the zi’s. 

The procedure is as follows. From the start the 

customer has a coin (c, a). 

1. The customer sends c, hzii and the path to 

the merchant.  

2. The merchant verifies c and hzii with the 

database. The merchant picks numbers 

3.  b1, . . . , bk at random from {0, 1} under the 

constraint that 
P
 bi = k/2.  

3. The customer computes yi = Ra(c, i) for each 

i such that bi = 1 and sends the result to the 

merchant. 

4. The merchant accepts if H (yi) = zi for 

every yi. If this is the case, the merchant 

stores these values.  

5.  

Deposition 

The merchant deposits the coin at the bank by 

sending the yi’s together with c. The bank 

decrypts c and marks the coin as used in its 

database. Should the coin already be marked as 

used, it checks which yi’s were used in the 

previous transaction. If the same yi’s were used in 

that transaction, it is assumed that the merchant is 

trying to deposit the same coin twice, and the 

merchant’s account is only credited once. If the 

yi’s are different, the customer has tried to double 

spend his coin.   It is then easy for the bank to 

retrieve the identity of the double spender, since 

this information is stored in the coin. 

Maintaining the Hash Tree 

The idea of the hash tree is the idea presented 

after a certain period of time t, say one minute, the 

bank creates a hash tree where each leaf consists 

of a coin c issued during that period and the 

corresponding challenges zi. The bank forms the 

tree and publishes the root. It then gives the path 

to the customers that have withdrawn coins during 

that last period. 

2.3 Analysis of the System : 

For the analysis we want to prove two things. First 

we need to prove that for honest participants, the 

system gives a fair result. Then we need to prove 

that the system is secure. The first part follows 

directly from the construction of the system and 

that D(E(s, id)) = (s, id) and that H and Ra are 

deterministic. 

Proof of Security 

The setting for the system is that the customer 

trusts the bank for anonymity and for providing 

fair coins. Both the merchant and the customer 

trust the roots of the hash trees. The bank does not 

need to trust anyone. The customer does not need 

to trust the merchant and the merchant does not 

need to trust the customer. No one needs to trust 

the hash trees provided by the third party database 

providers. 

By neglible probability we mean a probability 

lower than 1/p(n) for any poly-nomial p and large 

enough security parameter n. The relevant security 

parameters are the number of challenges, the 

length of the customer’s private key, the length of 

the bank’s private key and the output length of the 

hash function. 
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We start by giving definitions of the tools we 

need. Since these definitions are standard 

definitions, we only give informal descriptions. 

Definition 2.3.1 (Collision resistant hash 

function). 

A keyed hash function Ha : A → {0, 1 }
n
 with key 

a is called collision resistant if a polynomial time 

(in |a|) probabilistic Turing machine has negligible 

probability of finding x, y ∈ A, x 6= y such that 

H(x) = H(y). 

Definition 2.3.2 (Pseudorandom functions). 

A function Ra : A → B, where a is a parameter, is 

called pseudorandom if it indistinguishable from a 

uniformly distributed functions f : A → B to a 

Turing machine that runs in time polynomial in 

|a|. 

Definition 2.3.3 (Semantic security). 

We call a symmetric cryptosystem (E, D) 

semantically secure if no polynomial time 

probabilistic Turing machine T can distinguish 

between E(m0) and E(m1) with non-negligible 

probability, even if T is allowed to pick m0 and m1 

itself. 

Definition 2.3.4 (Detect identity). 

We say that two merchants can detect identity if 

they can play the following game and be 

successful with a probability non-negligibly 

higher than 1/2. 

2.4.  SOME PRACTICAL DETAILS  

there exists an a such that yi
1
 = Ra(c

1
, i) and yi

2
 = 

Ra(c
2
, i) for every challenge yi. Otherwise the 

output bit is 1 with probability q.   

We want to use the oracle to violate the pseudo 

randomness of Ra. Assume we have a family of 

functions F given as a black box and we want to 

decide whether it is pseudorandom or random.  

We want to create an algorithm A (which uses O 

as an oracle) that with non-negligible probability 

outputs 1 if F is pseudorandom and 0 otherwise. 

Consider the following four distributions of coins, 

where a and b are two different keys for the 

pseudorandom function, and B is a random 

function. 

1. Both coins are withdrawn using Ra.  

2. Both coins are withdrawn using B.  

3. The first coin is withdrawn using Ra  and 

the second coin using B.  

4. The first coin is withdrawn using Ra  and 

the second coin using Rb.  

Let pi be the probability the oracle O outputs 1 on 

in data from distribution i. From the assumption 

that O can detect identity it follows that p1 − p4 is 

non-negligible. This implies that one of p1 − p2, p2 

− p3 or p3 − p4 is non-negligible. We show how to 

implement A in each of these cases 

• If p1 6= p2 we create both coins using F 

and use this as input to O.  

• If p2 6= p3 we create one coin using F and 

the other using a random function and 

execute O with this as input.  

• If p3 6= p4 we create one coin using Ra and 

the other using F and use this as input to O.  

Since for at least one of these inequalities the 

difference is non-negligible, our al-gorithm is able 

to distinguish the family of pseudorandom 

functions from random functions, which was 

assumed to be infeasible. This is a contradiction 

which proves the theorem.  

Choosing the Challenges and Stealing of Coins 

As we have seen, the way the challenges are 

chosen is very important for the de-tection of 

double spending. The simplest would be to choose 

the challenges at random. The probability of the 

challenges being identical is then very low. One 

could, however, imagine legal problems if the 

bank tries to prove in court that two merchants 

have collaborated to perform fraud against the 

bank by both de-positing the same coin. The 

merchants can of course argue that they happened 

to  accidently pick the same random challenge 

(maybe due to bad (pseudo-) random number 

generators). 
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With this setup, a merchant A could steal coins 

from merchant B. If A steals the hard-disk 

containing the only copy of B’s coins, the theft 

would never be discovered by the bank. Several 

practical precautions are of course possible, but 

we will see that with a slight modification of the 

protocol, stealing coins is impossible. 

One way of choosing challenges would be to have 

the challenge consist of a hash value of, say, the 

merchant’s identity, the time, the amount and 

possibly other parameters. 

 The problem with this setup is that since k cannot 

be very large, it would be possible for the 

customer to find a collision. He can then choose to 

spend his coin where he has found the collision, 

and hence get exactly the same challenge. The 

bank would not be able to decide whether it is the 

merchants or the customer that is guilty of the 

fraud. 

Since the only property of randomness we used is 

that we have low probability of the same 

challenge, we could instead allocate a certain 

interval of challenges to each merchant (or rather 

to each terminal accepting payments). We would 

then have a counter in every terminal to ensure 

that no set of challenges is used twice. If a 

terminal runs out of queries, it would notify the 

bank which would assign a new interval. If we 

assume that we want each interval to consist of 

10000 queries, and we want 10
9
 such intervals, k 

= 50 would be enough. 

A feature of this setup is that a merchant A cannot 

steal a coin from another merchant B, since this 

stolen coin has a challenge that does not 

correspond to a valid challenge of A, and the bank 

detects that the coin has been stolen. The same is 

true if a merchant eavesdrops a purchase or a 

deposition of a coin. 

The Coin Databases 

Another important part of the payment system is 

the coin databases. Since every coin issued is to 

be stored in these databases, they need quite large 

storage capabilities. We can note that the 

information in these databases is in no way 

sensitive. It does not have to be authenticated or 

secure, and with the cost of storage medium being 

low (and only getting lower), this is not such big a 

problem as it may seem. On the other hand, smart 

card memory is expensive, so it is a good thing to 

save smart card memory in favor of hard disk 

space. 

For each coin only the hash value needs to be 

stored in the database. To further reduce storage 

need we can design the system so that the coins 

are issued in a distributed manner. For every 

entity with a certain number of customers (e.g., 

every city), the coins would be combined into a 

hash tree. These local hash trees would be joined 

into national hash trees, which in turn would be 

joined on an international level. 

With this setup most databases can be designed to 

hold only information on coins issued in the same 

city or country, and during the last period of time, 

say a month. There would probably be a few 

complete databases that would be contacted in 

case the coin could not be found in the local 

database, and these would need to contain every 

coin that has been issued. 

2.5  CONCLUSIONS  

If we assume that a person spends 100 coins per 

day, one million customers would spend 

approximately 3 × 10
9
 coins per month. Since 

every coin needs 160 bit in the database 

(assuming we use SHA-1 as hash function) the 

total storage need would be 60 GB, which is far 

from infeasible, especially as the security 

requirements of the database are low. The central 

databases would need to hold more information. 

Values of Coins 

The system as described here assumes all coins 

have the same value. It is easy to adopt the system 

to handle coins of different values. When the bank 

issues the coin, it can simply add the value of the 

coin to the leaf in the database.   The value does 
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not have to be added explicitly – it suffices to 

have the hash value stored in the database include 

the value of the coin. 

The Size of a Coin 

We now calculate the size of a coin (c, a). The 

secret a is common to all coins, so the size of it 

does not have to be counted. The variable c 

consists of the encryption of a serial number s and 

the identity id. If we want the system to scale for 

world-wide use, we need to reserve, say, 64 bits 

for the identity. We can then use 64 bits for the 

serial number, and still be able to fit the coin in 

128 bits. We only need the serial number to be 

unique per customer. Using a symmetrical 

cryptosystem with a key-length of 128 bits, we get 

an output of 128 bits. 

In the online variant, we need to store the path in 

the hash tree. If we assume that the system 

globally has 10
10

 users and every user uses 100 

coins per day for 100 years, no path needs more 

than 60 bits. This gives a total coin size of less 

than 200 bits, or 25 bytes, which is a major 

improvement compared to the asymmetric cash 

systems described in the introduction. 

In the offline variant, the path needs to be stored 

by the customer. This is more than can be stored 

on a smart card, which means we need some 

means of secondary storage. 

Assuming a tranfer rate of 9600 bps between the 

card and the terminal, the most costly phase of the 

payment phase, transfer of the responses to the 

challenges, requires less than half a second, 

assuming that 25 challenges have to be answered.  

We have presented a system for electronic cash 

that is both practical and provably secure. The 

privacy properties are such that banks are likely to 

accept the system, and the system still protects the 

customer’s identity against the merchants. The 

coins are small enough to fit on smart cards. 
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Chapter 3 

Hierarchical Group Signatures 

3.1 Introduction  

Consider the notion of group signatures 

introduced by Chaum and van Heyst [21]. A 

group member can compute a signature that to an 

outsider reveals nothing about the signer’s identity 

except that he is a member of the group. On the 

other hand the group manager can always reveal 

the identity of the signer. 

An application for group signatures is anonymous 

credit cards. The cardholder wishes to preserve his 

privacy when he pays a merchant for goods, i.e., 

he is in-terested in unlinkability of payments. The 

bank must obviously be able to extract the identity 

of a cardholder from a payment or at least an 

identifier for an account, to be able to debit the 

account. To avoid fraud, the bank, the merchant, 

and the cardholder all require that a cardholder 

cannot pay for goods without holding a valid card. 

To solve the problem using group signatures we 

let the bank be the group manager and the 

cardholders be signers. A cardholder signs a 

transaction and hands it to the merchant. The 

merchant then hands the signed transaction to the 

bank, which debits the cardholder and credits the 

merchant. Since signatures are unlikeable, the 

merchant learns nothing about the cardholder’s 

identity. The bank on the other hand can always 

extract the cardholder’s identity from a valid 

signature and debit the correct account. 

The above scenario is somewhat simplified since 

normally there are many banks that issue cards of 

the same brand and which are processed through 

the same payment network. The payment network 

normally works as an administrator and routes 

transactions to several independent banks. Thus, 

the merchant hands a payment to the payment 

network which hands the payment to the issuing 

bank. We could apply group signatures here as 

well by making the payment network act as the 

group manager. The network would then send the 

extracted identity to the issuing bank. Another 

option is to set up several independent group 

signatures schemes, one for each issuer. In the 

first approach, the payment network learns the 

identity of the customer, and in the second 

approach the merchant learns which  bank issued 

the customer’s card.  A better solution would 

reveal nothing except what is absolutely necessary 

to each party. The merchant needs to be convinced 

that the credit card is valid, the payment network 

must be able to route the payment to the correct 

card issuer and the issuer must be able to 

determine the identity of the cardholder. 

A solution that comes to mind is to use ordinary 

group signatures with the modification that the 

customer encrypts his identity with his bank’s 

public key. Then we have the problem of showing 

to the merchant that this encryption contains valid 

information. However, the customer cannot reveal 

the public key of the bank to the merchant, 

making such a proof far from trivial.  

 In this chapter we introduce and investigate the 

notion of  hierarchical group signatures. These 

can be employed to solve the above problem. 

When using a hierarchical group signature scheme 

there is not one single group manager.  

Instead there are several group managers 

organized in a tree, i.e., each group manager either 

manages a group of signers or a group of group 

managers. In the original notion the group 

manager can always identify the signer of a 

message, but nobody else can distinguish between 

signatures by different signers. The corresponding 

property for hierarchical group signatures is more 

complicated. If a manager directly manages a 

group of signers, it can identify all the signers that 

it manages, but the signatures of all other signers 

are indistinguishable to it. This corresponds 

directly to the original notion. If a manager 

manages a group of managers, it cannot identify 

the signer, but it can identify the manager directly 

below it which (perhaps indirectly) manages the 

signer. Thus, a manager that does not manage 

signers directly get only partial information on the 

identity of the signer. 
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When we use hierarchical group signatures to 

construct anonymous credit cards for the more 

realistic setting we let the payment network be the 

root manager that manages a set of group 

managers, i.e., the issuing banks, and we let the 

cardholders be signers. The credit card application 

also demonstrates what kind of responsibility 

model is likely to be used with a hierarchical 

group signature scheme. With a valid signature on 

a transaction, the merchant has a valid demand on 

the payment network. If the payment network has 

a signature that can be shown to belong to a 

certain bank, the network has a valid demand on 

that bank. Thus, it is in the network’s interest to 

open the signatures it receives from merchants, 

and it is in the issuing banks’ interest to open the 

signatures they receive from the network. 

3.2   HIERARCHICAL GROUP   

SIGNATURES : 

In Section 3.5 we consider the issue of existence 

of such primes. We use QRN to denote the 

subgroup of squares in Z∗
N , i.e., the quadratic 

residues. We write ∅ to denote both the empty set 

and the empty string. 

We say that a distribution ensemble D = {Dκ} is 

efficiently sampleable if there exists a polynomial 

time Turing machine TD that on input 1
κ
 outputs a 

random sample distributed according to Dκ.  All 

adversaries in this chapter are modeled as 

polynomial time Turing machines  with non-

uniform auxiliary advice string. We denote the 

set of such adversaries by  PPT∗. 

A public-key cryptosystem is said to be CCA2-

secure if it is infeasible for an attacker to 

determine which one of two messages of his 

choice that a given cryptotext is the encryption of, 

even if the attacker has access to a decryption 

oracle both before the choice is made and after the 

cryptotext is received [60] 

In Section 3.2 we formalize the notion of 

hierarchical group signatures and give definitions 

of security. We also briefly discuss why it is not 

trivial to transform a non-hierarchical group 

signature scheme into a hierarchical scheme. In 

Section 3.3 we introduce the concept of cross-

indistinguishability, which we use in both the 

general construction and the explicit construction. 

Our construction under general assumptions is 

presented in Section 3.4 and in Section 3.5 we 

give the explicit construction. The zero-

knowledge proofs used in Section 3.5 can be 

found in Section 3.6. Finally in Sections 3.7 and 

3.8 we discuss possible modifications and 

extensions of the current scheme. 

Contributions 

We introduce and formalize the notion of 

hierarchical group signatures. We give a 

construction that is provably secure under the 

existence of a trapdoor permutation family. As 

part of our investigations we introduce a new 

property of cryptosystems, which we call cross-

indistinguishability. This property may be of 

independent in-terest. 

Then we consider how a practical hierarchical 

group signature scheme can be constructed under 

specific complexity assumptions. We show that 

by a careful selection of primitives one can 

construct a relatively practical hierarchical group 

signature scheme that is provably secure under the 

DDH assumption and the strong RSA assumption 

in the random oracle model. For reasonable 

security parameters a few hundred 

exponentiations are required to produce a 

signature. 

3.3.CROSS-INDISTINGUISHABILITY  

of such a scheme are complex and involves many 

subtle issues, e.g. should all group managers 

(indirect and direct) of a signer get information on 

its identity, or should the signer decide on a path 

from a root and only reveal information to group 

managers along this path? Although we believe 

that the techniques we use for our construction 

would be useful also for this type of scheme we 

do not investigate such schemes further. 
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On Constructing Hierarchical Group 

Signatures 

All known group signatures are based on the idea 

that the signer encrypts a secret of some sort using 

the group manager’s public key, and then proves 

that the resulting cryptotext is on this special 

form. The security of the cryptosystem used 

implies anonymity, since no adversary can 

distinguish crypto texts of two distinct messages if 

they are encrypted using the same public key. 

Suppose we wish to generalize this approach to 

construct a hierarchical group signature scheme. 

In the hierarchical setting protecting the identity 

of the signer implies protecting the identity of the 

group managers along the path of to the signer. 

On the other hand these group managers (and 

nobody else) must be able to extract partial 

knowledge on the identity on the identity of the 

signer. Thus, it seems that hierarchical group 

signatures must somehow contain embedded 

crypto texts. To ensure anonymity, signatures with 

embedded crypto texts corresponding to distinct 

public keys must be indistinguishable, since 

otherwise the crypto texts embedded in a signature 

would reveal information on the identity of the 

signer.  

This type of in distinguishability does not follow 

from the in distinguishability of a cryptosystem. 

We say that a cryptosystem that has this property 

is cross-indistinguishable. This property is 

investigated in detail in Section 3.3 below. 

On the other hand, to ensure traceability, the 

signer must prove that a signature contains the 

identity of the signer encrypted with public keys 

corresponding to the path to the signer. In 

principle this is not a problem, since there is a 

non-interactive zero-knowledge proof system for 

any language in NP, but the details must be 

resolved. It is far from obvious how to construct a 

practical proof system. 

It turns out that the cryptosystem we use must not 

only be indistinguishable (semantically secure), 

but it must also have an incomparable security 

property which we call cross-in 

distinguishability. 

3.4 A CONSTRUCTION UNDER 

GENERAL ASSUMPTIONS: 

In this section we show how hierarchical group 

signatures can be constructed under general 

assumptions. Our focus is on feasibility and 

conceptual simplicity. We prove the following 

theorem. 

Theorem 3.4.1. If there exists a family of trapdoor 

permutations, then there exists a secure 

hierarchical group signature scheme. 

To prove the theorem we construct a hierarchical 

group signature scheme by augmenting the group 

signature scheme of [7] with additional crypto 

texts and a non-interactive zero-knowledge proof. 

Assumptions and Primitives Used 

Before we give our construction we review some 

constructions and results on which our 

construction is based. 

Group Signature Scheme 

The first building block we need is a group 

signature scheme secure under the assumption that 

trapdoor permutations exists. As shown by Bellare 

et al. such a scheme exists. 

Theorem 3.4.2 (cf. [7]). If there exists a family of 

trapdoor permutations, then there exists a secure 

group signature scheme GS = (GKg, GSig, GVf , 

Open). 

Public Key Cryptosystem 

The probabilistic cryptosystem of Goldwasser and 

Micali [34] is indistinguishable, but we are not 

aware of any proof of cross-indistinguishability. 

We prove that their construction is also cross-

indistinguishable, but first we recall their 

construction. 

Their construction is based on the existence of 

non-approximable trapdoor predicates. This 

concept can be captured in modern terminology as 
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follows. A family of trapdoor permutations is a 

triple of polynomial time algorithms F = (Gen, 

Eval, Invert). The instance generator Gen(1
κ
) 

outputs a description f of a permutation of {0, 1}
κ
 

and a trapdoor f 
−1

. The evaluation algorithm 

Eval(1
κ
, f, x) evaluates the permutation on input x 

∈ {0, 1}
κ
. The the corresponding inversion 

algorithm Invert(1
κ
, f 

−
 
1
, y) evaluates the inverse 

permutation on input y ∈ {0, 1}
κ
. We abuse 

notation and write f (x) and f 
−1

(y) for the 

evaluation of the permutation and inverse 

permutation as described above. 

The last requirement on the family of trapdoor 

permutations is that it must be infeasible for any A 

∈ PPT∗ given f and y = f (x), where x ∈ {0, 1}
κ
, to 

compute x = f 
−1

(y). A hard-core bit for F is a 

family of functions B = {Bκ : {0, 1} 
κ
 → {0, 1}} 

such that it is infeasible to compute Bk(x), given 

only f and f (x) for a random x ∈ {0, 1}
κ
. 

Goldreich and Levin [33] show how to construct a 

family of trapdoor permutations F with a hard-

core bit B from any family of trapdoor 

permutations. 

The cryptosystem GM = (GMKg, E, D) of 

Goldwasser and Micali [34] using F and B can be 

defined as follows (using modern terminology). 

The key generator GMKg(1
κ
) simply outputs (pk , 

sk ) = (f, f 
−1

) = Gen(1
κ
). 

3.5 CONCLUSION  

We have introduced and formalized the notion of 

hierarchical group signatures and given two 

constructions. The first construction is provably 

secure under general assumptions, whereas the 

second is provably secure under the DDH 

assumption, the strong RSA assumption and the 4-

Cunningham chain assumption in the random 

oracle model. 

Although the latter construction is practical, i.e., it 

can be implemented and run on modern 

workstations, it is still relatively slow. Thus, an 

interesting open problem is to find more efficient 

constructions of hierarchical group signatures. 

cards based on M/Chip cannot be configured in 

the proposed way, and are therefore always 

susceptible to the attack. Here the only solution is 

to move to (more expensive) DDA cards. 

One possibility to solve the problem is the change 

the EMV specification so that a terminal always 

goes online when a non-DDA EMV card is used. 

Although the consequence is that issuers using 

low-cost card cannot benefit from the advantages 

of offline transaction, from a security perspective 

this approach would be the most efficient. 
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CHAPTER - 4 

On the Security of Non-RSA EMV 

Payment Cards : 

4.1 Introduction  

A large part of today’s electronic purchases are 

made with different kinds of pay-ment cards. The 

majority of the cards used today have a magnetic 

stripe where the card data is stored. Over the last 

years, card skimming, where the content of the 

magnetic stripe is copied, has become a major 

problem. The countermeasure is to move from the 

magnetic stripe to smart-cards where the data is 

stored on a chip instead. To make sure also smart-

card based payment cards will have the same 

global acceptance as the magnetic stripe, Europay, 

MasterCard and Visa have together developed the 

EMV specification. 

The preparations for moving from payment cards 

based on magnetic stripe to smart-card based 

cards have been going on for more than ten years. 

Some card issuers have already converted their 

card base to EMV smart-cards, and more are 

about to make the switch. 

The base for EMV smart-cards is the EMV 

specifications [29], which define the protocol 

between the card and the terminal. Payment 

organizations, in particular Visa and MasterCard, 

have developed their own extensions to the EMV 

specifica-tions [48, 47, 73]. 

In this chapter we will examine a potential 

problem in the configuration of an EMV card. In 

particular we will show how to avoid this problem 

with a card based on Visa’s VSDC specification, 

and that it cannot be avoided when using 

MasterCard’s M/Chip specification.  EMV 

specifies two possible security levels for cards, 

Static Data Authentication (SDA) and Dynamic 

Data Authentication (DDA). The difference lies in 

that DDA cards must support RSA, whereas an 

SDA card does not. The issue we discuss in this 

chapter relates only to SDA cards. 

4.2 SMART-CARDS  

A smart-card is a tiny computer with its own CPU 

and storage. The data stored on the card cannot be 

read or written directly but only through certain 

functions. This means that a smart-card may have 

keys that can be used for encryption but cannot be 

read in clear. Another possilibity is to have a PIN 

that must be entered before certain functions can 

be used. More information about smart-cards can 

be found in [38]. 

The fact that the data on the card can only be 

accessed through predefined functions means that 

we can define data to be public when it can be 

accessed in clear and private when it is used only 

for internal processing by the card. When 

analyzing protocols involving smart-cards, a 

reasonable security model is to assume the data 

can only be accessed and modified using the 

predefined functions. The weakness analyzed in 

this chapter follows that security model. 

4.3 THE EMV SPECIFICATION 

The EMV specification describes in detail the data 

flow between the card and the terminal during a 

transaction. The outcome of an execution the 

protocol is one of the following 

1. Transaction is approved offline.  

2. Transaction is denied offline.  

3. ransaction is sent to the issuer for online 

authorization Since most transaction are 

either approved offline or sent online, we 

will consider only these two cases here. 

The principle is that a transaction can be 

approved offline only if both the card and 

the terminal agrees on it, but is sent online 

if at least one of them requests it. 

Both Visa and MasterCard have written their own 

extensions to EMV. Here they define which of the 

public EMV parameters that can be used, and also 

what the internal behavior of the card should be. 

Visa calls their application VSDC [73]. 

MasterCard has published two separate 

documents, one giving the external interface in the 

form of minimum requirements [47] and one 

defining the internal behavior by describing the 
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application M/Chip [48]. However, also 

MasterCard is moving towards a unified 

document giving both internal and external 

details.  

Card-Issuer Authentication  

During a transaction, the card may generate one or 

two MACs. These MACs are generated with a 

symmetric key known only to the issuer and the 

card. Therefore the MAC can only be verified by 

the issuer and not by the terminal or the acquirer. 

Card Configuration 

SDA and DDA. 

EMV gives the option of using low-cost cards 

without RSA capabilities as well as more 

expensive RSA enabled cards. Cards without RSA 

capabilities support only Static Data 

Authentication (SDA) whereas cards with RSA 

support can handle also 

Dynamic Data Authentication (DDA). 

For both SDA and DDA, the issuer receives a 

certificate from the payment organization. The 

issuer certificate and the issuer public key, IPK, 

are stored publicly on the card. For SDA, the 

issuer signs a set of card parameters of his choice 

with his private key and places the signature on 

the card. The signature is called Signed Static 

Application Data, SSAD. In the case of DDA the 

card is given its own RSA key pair. The card 

private key is stored internally on the card, but the 

card public key is signed by the issuer. (Even if 

the card supports DDA, an SDA signature is 

usually still put on the card.) 

Card parameters 

Apart from the keys and certificates mentioned 

above, several parameters describing under which 

circumstances to allow offline transactions are 

stored on the card. In this thesis we are only 

interested in one parameter, namely Lower 

Consecutive Offline Limit (LCOL). The LCOL 

gives the number of transactions that can be 

performed offline, i.e., without contacting the 

issuer. 

Also the parameters Application Transaction 

Counter (ATC) and Last Online Application 

Transaction Counter (LATC) are stored on the 

card. The ATC con-tains the number of 

transaction the card has performed and the LATC 

holds the index of latest transaction that executed 

online. They are both initialized to zero. 

Symmetric keys  

When a card is issued, the issuer generates a 

symmetric key that is stored on the card and used 

to generate MACs transaction messages.
2
 The key 

is also stored by issuer, but not disclosed to the 

merchants or the acquirers. 

4.4    THE PROBLEM  

In this section we will describe the potential 

problem, and also how to avoid it wh ere possible. 

Making a Pure Online Card 

In many cases, it is desirable to have a card that 

can only function online. There are two ways to 

achieve this: 

• Set the LCOL to zero. This way the 

terminal will always make a transaction go 

online.  

• Make the internal risk analysis of the card 

such that it always makes the decision to go 

online, regardless of what the terminal’s 

decision is.  

The most obvious reason to make a card online-

only is to make sure the card-holder does not 

spend money he does not have. However, for an 

SDA card there is also another reason. Since the 

MAC cannot be verified offline, someone might 

copy the card, keeping the original SDA signature, 

but replace the symmetric key.  

Then a terminal would accept the card (since the 

SDA signature is valid), and when (and if) the 

issuer detects that the MAC is invalid, it is already 

too late.  The essence of the attack described  here 
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is to copy the card and modify the copy in such a 

way that it will allow offline transactions. 

Copying an SDA Card 

If we assume that the hardware is secure, the 

adversary can copy all the public data on a card, 

but not the internal data. Also, when the card is 

copied, he can modify data that has not been 

signed by the issuer, but if he changes the data 

included in the SDA signature the card will not be 

accepted. When a card is copied the adversary can 

change the internal behavior of the card by 

replacing the original program code by his own. 

Making an Online Card Work Offline 

As mentioned above, there are two ways to make 

a card online-only. Here we will discuss different 

attack scenarios depending on what method is 

used. 

If the LCOL parameter is set to zero, then it may 

either be signed or not be signed with the SDA 

signature. If it is not signed, the adversary can 

simply copy the card and modify the LCOL to 

contain a non-zero value. The card will be 

accepted offline, since the SDA signature is still 

valid. He will not be able to copy the symmetric 

key, so the copy cannot be used online, but as 

long as the card only is used offline, it will work. 

In case the LCOL is signed, it cannot be changed 

and the attack does not work. 

If the LCOL is not present on the card, but the 

internal risk analysis of the card is used to make 

all transaction go online, then the attack is a little 

bit different. When the adversary copies the card, 

he replaces the card application with an ap-

plication that always accepts to make the 

transaction offline. Also here he cannot copy the 

symmtric key, but he will be able to use the card 

offline. 

Note that for any of these attacks, the adversary 

only needs access to the card for a few seconds so 

that he can read all the public data. Since the 

commands for doing this are standardized, any 

card-reader could be used for this. 

Copying an Offline-enabled Card 

If the card has LCOL non-zero, but not in the 

SDA signature, the adversary can of course use a 

similar method to get an arbitrary number of 

offline transactions (with invalid MACs, making it 

impossible to tie the transaction to the card). 

However, even if LCOL is signed, the adversary 

can issue an attack similar to those described 

above. He can copy all the parameters on the card, 

but modify the card application to that it always 

responds that no offline transactions have been 

performed prior to the current. That way the 

terminal will always accept to make the 

transaction offline (since the number of offline 

transactions is lower than the LCOL) and the 

issuer will not be able to detect that the MAC is 

invalid. 

Protecting Against the Attack 

As we can see, the only way to make the card 

secure against the proposed attack is to set the 

LCOL to zero and include it in the SDA signature. 

In other words, there is no way of making a secure 

offline SDA card.
3
 

However, the specifications for M/Chip [48] (used 

for MasterCard) don’t allow the use of LCOL, 

leaving only card-based risk analysis for making a 

card online-only. As we have seen, such an 

approach is always susceptible to the attack by 

modifying the application. (The M/Chip 

specifications do define the LCOL, but only as 

private parameter used internally by the card.) 

3
This attack does not work for DDA cards. 

It can be noted that inclusion of LCOL in the data 

signed with SDA is not in the published 

recommendations. One step for reducing the 

potential threat is to update the recommendations 

to include the LCOL and also note that it should 

be set to zero. 

Conclusions and Recommendations 

We have demonstrated how EMV cards with a 

certain configuration can be at-tacked, and we 
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have also pointed out how to configure a card 

correctly to avoid this attack. We have seen that 

cards based on M/Chip cannot be configured in 

the proposed way, and are therefore always 

susceptible to the attack. Here the only solution is 

to move to (more expensive) DDA cards. 

One possibility to solve the problem is the change 

the EMV specification so that a terminal always 

goes online when a non-DDA EMV card is used. 

Although the consequence is that issuers using 

low-cost card cannot benefit from the advantages 

of offline transaction, from a security perspective 

this approach would be the most efficient. 
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Chapter 5 

Lattices With Many Cycles Are Dense 

5.1 Introduction  

The interest in the computational complexity of 

lattice problems started in the beginning of the 

1980s, when van Emde Boas published the first 

NP-completeness result for lattice problems [71]. 

Several hardness results for different variants of 

this problems and for different subsets of lattices 

have followed. One such way of classifying 

lattices is according to the cycle structure of 

Abelian group Z
n
/Λ, which is the main focus of 

this chapter. Previous results on the complexity of 

lattice problems that either explicitly or implicitly 

consider lattices with a certain cycle structure 

include [1, 13, 56, 67]. 

The group Z
n
/Λ is finite if Λ ⊆ Z

n
 and full-

dimensional. One way to visu-alize this group is 

to divide Z
n
 into the parallelepipeds spanned by a 

basis and consider two points equivalent if they lie 

in the same position in their respective 

parellelepipeds. In Figure 5.1 one such 

equivalence class of points is shown. Note how 

this can be considered a generalization of 

reduction modulo an integer over Z. It is easy to 

see that Z
n
/Λ is a group under addition, and since 

addition is commutative, the group is abelian.  

As with any abelian group, it is isomorphic to the 

cartesian product of cyclic groups. By writing the 

cycle lengths in increasing order so that the length 

of cycle i divides the length of cycle i + 1, we get 

a unique representation. For example, instead of 

writing Z3 × Z5 we write Z15, and instead of Z2 × 

Z3 × Z3 we write Z3 × Z6. 

There are two reasons to study the hardness of 

certain lattice problems in dif-ferent subclasses of 

lattices rather than for general lattices. The first 

reason is purely theoretical – it gives us a better 

understanding of how the computational 

complexity of lattice problems behaves if we 

restrict ourselves to certain lattice classes. The 

second reason is more practical – most hardness 

results are worst-case results for general lattices.  

 

 

 

 

 

 

Figure 5.1: Points that are equivalent modulo a 

lattice certain structural properties. It would be 

desired to have results that show that these 

properties cannot be used to solve lattice problem 

more efficiently. 

The first result on the cycle structure was 

published by Paz and Schnorr [56]. In their paper 

it is shown that any lattice can be approximated 

arbitrarily well by a lattice with one cycle. In 

other words, the lattices with one cycle form a 

hard core. On the other hand, the lattices Cai and 

Nerurkar [13] prove to be hard in the improved 

version of Ajtai [1] have up to n/c cycles. 

Although the results are diff erent in nature (the 

latter is not an NP-hardness result), it is 

interesting to note that they give hardness results 

for lattices with diff erent cycle structure. This 

gives rise to the question of the role of the cycle 

structure in the complexity of lattice problems. 

The influence of the cycle structure on the 

hardness of lattice problems has practical 

implications.  

For some crypto systems (e.g., NTRU [37]) there 

are attacks based on finding short vectors in 

certain lattices. The lattices used in some of these 

attacks have a cycle structure that diff ers from the 

cycle structure of the lattices that previously have 

been shown to be NP-hard. 

Since a lattice with n cycles always can be 

transformed into a lattice with fewer cycles by a 

simple rescaling, the maximum number of cycles 

that is meaningful to analyze is n − 1. Trolin 

showed that the exact version SVP under the max-
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norm is NP-complete for n-dimensional lattices 

with n − 1 cycles of equal length [67]. 

In this chapter we investigate the importance of 

the cycle structure further. Our main result is a 

polynomial-time transformation that with arbitrary 

precision approximates any n-dimensional lattice 

with a lattice that has n − 1 cycles of equal length, 

showing that these lattices form a hard core. A 

consequence of this is that short vectors and close 

vectors cannot be computed more efficiently in 

this class of lattices than in general lattices, except 

possibly for a polynomial factor. As our   

transformation only changes the size of the 

coordinates of the basis vectors and not the 

dimension of the lattice, the transformation is 

rather tight. 

5.2. BACKGROUND  

We also give a theorem showing a connection 

between the subdeterminants of a lattice and its 

Smith Normal Form. An i-minor of B is an i × i 

matrix formed by taking i rows and i columns of 

B. 

Theorem 5.2.4. Let B be an integral square matrix. 

Then the diagonal elements of the Smith Normal 

Form, s1, s2, . . . , sn can be computed as  where di  

is gcd of the determinants of all i-minors of B, and 

d0 = 1. 

Although this method of computing the Smith 

Normal Form and hence the cycle structure is 

quite inefficient (we need consider all the i-

minors, not only the principal), it turns out to be 

useful in certain proofs in this chapter. There are 

other, more efficient methods to compute the 

Smith Normal Form [39]. 

Another way to describe the number of cycles of a 

lattice is to use a diff erent representation of the 

lattice, namely as a set of modular equations. 

Every lattice can be described in this way. 

Theorem 5.2.5. Let Λ ⊆ Z
n
 be a lattice. Then there 

exist n-dimensional vectors a1, a2, . . ., am and 

integers b1, b2, . . . , bm, bi > 1, such that 

Λ = {x : ha1 , xi ≡ 0 mod b1 ∧  ha2, xi ≡ 0 mod b2 

∧  . . . ∧  ham, xi ≡ 0 mod bm} . 

The essence of this theorem is that any lattice can 

be expressed as a system of modular linear 

equations whose solutions form the lattice. 

The connection to the cycle structure is that the 

number of nontrivial cycles is m, and the length of 

cycle i is bi, provided that the system of equations 

has been reduced to minimize the number of 

equations and that the gcd of the coefficients and 

the modulus is 1 in each equation. 

In the transformations we approximate lattices in 

Z
n
 with lattices in Q 

n
. The standard definition of 

cycle structure cannot be applied to general 

lattices in Q
n
. Since multiplication by a constant 

does not aff ect lattice problems such as SVP and 

CVP, we will define the cycle structure of a lattice 

Λ ⊂ Q
n
 as the cycle structure of kΛ, where k is 

the smallest integer such that kΛ ⊆ Z
n
. 

5.3 The Approximation  

Let Λ ⊆ Z
n
 be an arbitrary lattice. To adapt this 

into a lattice with n − 1 cycles that is arbitrarily 

close to the original lattice we go through the 

following five steps: 

1. Inflate the lattice by a factor k and perturb 

to achieve a lattice with Hermite Normal 

Form of a certain form.  

2. Reduce the sublattice spanned by the first 

n−1 vectors of the Hermite Normal Form 

using the LLL algorithm.  

3. Factor the partly reduced basis matrix into 

two matrices, where the second has its 

determinant equal to one.  

4. Multiply the two matrices to get a basis for 

an (n − 1)-cyclic lattice that is close to the 

original lattice.  

5. Perform modifications to the first matrix to 

give it n−1 cycles of equal length.  

 

5.5. CONCLUSIONS 

Lemma 5.4.3. Let (Λ ⊆ Z
n
, y ∈  Z

n
) be an instance 

of CVP such that 0 ≤ yi < det(Λ). Then x ∈  Λ is a 
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solution if and only if k
1
 σΛ,ε(x) is a solution of the 

instance 

k
1
 σε(Λ), k

1
 σΛ,ε(y)

_
 for k and ε

−1
  polynomial in 

det(Λ) and n. 

Proof. The lemma follows directly from Theorem 

5.4.1. Using the two lemmas, we can construct the 

reduction by first reducing the target vector 

modulo det(Λ) and then apply the transformation 

with the appropriate value of ε.  

Obviously the same technique can be used to 

achieve a similar result for SVP. The following 

lemma follows directly from the above lemmas. 

Lemma 5.4.4. Let Λ ⊆ Z
n
 be an instance of SVP. 

Then x ∈  Λ is a solution if and only if k
1
 σΛ,ε(x) is 

a solution of the instance k
1
 σε(Λ) for k and ε

−1
 

polynomial in det(Λ) and n. 

From this we can conclude that the 

inapproximability results for SVP and CVP from 

[41] and [27] hold also for lattices with n − 1 

cycles. 

Theorem 5.4.5. SVP in ℓp-norm is NP-hard to 

approximate within any constant factor for n-

dimensional lattices with n − 1 non-trivial cycles 

of equal length. 

Theorem 5.4.6. There exist constants cp  such that 

CVP is NP-hard to approximate within n 
log log

 
n
 in 

ℓp-norm for n-dimensional lattices with n − 1 non-

trivial cycles of equal length. 

We have constructed a transformation that given 

an n-dimensional lattice of any cycle structure 

produces a lattice with n − 1 cycles that is 

arbitrarily close to the original lattice. This closes 

the question of whether SVP and CVP can be 

easier to solve in lattices with many cycles. Using 

the presented result, such a solution would give a 

solution for the general case that is at most a 

polynomial factor slower in running time. Also 

the known inapproximability results for SVP and 

CVP extend to lattices with n − 1 cycles. 

By previous results, we know that any lattice can 

be approximated arbitrarily well by a cyclic 

lattice, and hence that SVP and CVP cannot be 

easier to solve in cyclic lattices than in general 

lattices, except possibly for a polynomial factor. 

We now have the two extremes, for one cycle and 

for n − 1 cycles. 

From the results by Ajtai and the improvement by 

others we have a hardness result also for lattices 

with n/c cycles. Together with our result this gives 

evidence for the general hypothesis that the cycle 

structure have little importance in deciding the 

hardness of SVP and CVP in a certain lattice. 

Although it does seem likely that also lattices with 

m non-trivial cycles form a hard core for 2 ≤ m ≤ 

n − 2, we don’t have a proof for this. The current 

proof does not easily extend to these cycle 

structures. Since our method relies on inflating the 

lattice by a factor d
t
 to get a lattice with 

determinant d
nt+1

 and then making changes to 

achieve m cycles, the length of each cycle is 

d
(nt+1)/m

 . Naturally t must be chosen so that (nt + 

1)/m is an integer. In our case, we achieve this by 

setting t = n − 2 and m = n − 1. Since the value of 

t would depend on m and for certain relations 

between m and n no such t exists at all, our 

method cannot directly be generalized to create 

any cycle structure where the non-trivial cycles 

have equal length. 

Even if a transformation into m cycles of equal 

length for 1 ≤ m ≤ n − 1 were found it would still 

be an open question whether other cycle 

structures, where the cycles have diff erent 

lengths, remain easy. Still the current result seems 

to be a strong indication that the cycle structure 

does not play an important role for the 

computational complexity of lattice problems. 

the lattice by a factor d
t
 to get a lattice with 

determinant d
nt+1

 and then making changes to 

achieve m cycles, the length of each cycle is 

d
(nt+1)/m

 . Naturally t must be chosen so that (nt + 

1)/m is an integer. In our case, we achieve this by 

setting t = n − 2 and m = n − 1. Since the value of 

t would depend on m and for certain relations 
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between m and n no such t exists at all, our 

method cannot directly be generalized to create 

any cycle structure where the non-trivial cycles 

have equal length. 

Even if a transformation into m cycles of equal 

length for 1 ≤ m ≤ n − 1 were found it would still 

be an open question whether other cycle 

structures, where the cycles have diff erent 

lengths, remain easy. Still the current result seems 

to be a strong indication that the cycle structure 

does not play an important role for the 

computational complexity of lattice problems. 

Bibliography 

1. M. Ajtai. Generating hard instances of lattice 

problems. In 28th ACM Sym-posium on the 

Theory of Computing (STOC), pages 99–

108. ACM Press, 1996.  

2. M. Ajtai. The shortest vector problem in ℓ2 is 

NP-hard for randomized reduc-tions. In 30th 

ACM Symposium on the Theory of 

Computing (STOC), pages 10–19. ACM 

Press, 1998.  

3. G. Ateniese, J. Camenisch, M. Joye, and G. 

Tsudik. A practical and provably secure 

coalition-resistant group signature scheme. 

In Advances in Cryptology  

– CRYPTO 2000, volume 1880 of Lecture 

Notes in Computer Science, pages 255–270. 

Springer Verlag, 2000.  

4. G. Ateniese and G. Tsudik. Some open 

issues and directions in group signa-tures. In 

Financial Cryptography ’99, volume 1648 of 

Lecture Notes in Com-puter Science, pages 

196–211. Springer Verlag, 1999.  

5. L. Babai. Trading group theory for 

randomness. In 17th ACM Symposium on 

the Theory of Computing (STOC), pages 

421–429. ACM Press, 1985.  

6. Bellare and O. Goldreich. On defining proofs 

of knowledge. In Advances in Cryptology – 

CRYPTO’92, volume 740 of Lecture Notes 

in Computer Science, pages 390–420. 

Springer Verlag, 1992.  

7. M. Bellare, D. Micciancio, and B. Warinschi. 

Foundations of group signatures: Formal 

definitions, simplified requirements, and a 

construction based on gen-eral assumptions. 

In Advances in Cryptology – EUROCRYPT 

2003, volume 2656 of Lecture Notes in 

Computer Science, pages 614–629. Springer 

Verlag, 2003.  

8. M. Blum, P. Feldman, and S. Micali. Non-

interactive zero-knowledge and its 

applications. In 20th ACM Symposium on 

the Theory of Computing (STOC), pages 

103–118. ACM Press, 1988.  

9. F. Boudot. Efficient proofs that a committed 

number lies in an interval. In  Advances in 

Cryptology – EUROCRYPT 2000, volume 

1807 of Lecture Notes in Computer Science, 

pages 431–444. Springer Verlag, 2000.  

10. F. Boudot and J. Traoré. Efficient publicly 

veriable secret sharing schemes with fast or 

delayed recovery. In 2nd International 

Conference on Information and 

Communication Security (ICICS), volume 

1726 of Lecture Notes in Computer Science, 

pages 87–102. Springer Verlag, 1999.  

11. S. Brands. Untraceable off -line cash in wallets 

with observers. In Advances in Cryptology – 

CRYPTO’93, volume 773 of Lecture Notes 

in Computer Science, pages 302–318. 

Springer Verlag, 1994.  

12. E. Brickell, P. Gemmell, and D. Kravitz. 

Tracing extensions to anonymous cash and 

the making of anonymous change. In 6th 

Annual ACM-SIAM Symposium on Discrete 

Algorithms (SODA), pages 457–466. ACM 

Press, 1995.  

13. J-Y. Cai and A. Nerurkar. An improved worst-

case to average-case connection for lattice 

problems. In 38th IEEE Symposium on 

ACM Symposium on the Theory of 

Computing (STOC), pages 468–477. IEEE 

Computer Society Press, 1997.  

14. J. Camenisch. Efficient and generalized group 

signature. In Advances in Cryptology – 

EUROCRYPT’97, volume 1233 of Lecture 

Notes in Computer Science, pages 465–479. 

Springer Verlag, 1997.  



 

Dr. Daruri Venugopal                                       www.ijetst.in  Page 1951 

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015 

15. J. Camenisch and M. Michels. A group 

signature scheme with improved effi-ency. In 

Advances in Cryptology – ASIACRYPT’98, 

volume 1514 of Lecture Notes in Computer 

Science, pages 160–174. Springer Verlag, 

1999.  

16. J. Camenisch and M. Michels. Separability 

and efficiency for generic group signature 

schemes. In Advances in Cryptology – 

CRYPTO’99, volume 1666 of Lecture Notes 

in Computer Science, pages 413–430. 

Springer Verlag, 1999.  

17. J. Camenisch and M. Stadler. Efficient group 

signature schemes for large groups. In 

Advances in Cryptology – CRYPTO’97, 

volume 1294 of Lecture Notes in Computer 

Science, pages 410–424. Springer Verlag, 

1997.  

18. R. Canetti, O. Goldreich, and S. Halevi. The 

random oracle model revisited. In 30th ACM 

Symposium on the Theory of Computing 

(STOC), pages 209–218. ACM Press, 1998. 

19. D. Chaum, A. Fiat, and M. Naor. Untraceable 

electronic cash. In Advances in Cryptology – 

CRYPTO’88, volume 403 of Lecture Notes 

in Computer Science, pages 319–327. 

Springer Verlag, 1990.  

20. D. Chaum, E. van Heijst, and B. Pfitzmann. 

Cryptographically strong undeni-able 

signatures, unconditionally secure for the 

signer. In Advances in Crypto-logy – 

CRYPTO’91, volume 576 of Lecture Notes 

in Computer Science, pages 470–484. 

Springer Verlag, 1991.  

21. D. Chaum and E. van Heyst. Group signatures. 

In Advances in Cryptology – 

EUROCRYPT’91, volume 547 of Lecture 

Notes in Computer Science, pages 257–265. 

Springer Verlag, 1991.  

22. L. Chen and T.P. Pedersen. New group 

signature schemes. In Advances in 

Cryptology – EUROCRYPT’94, volume 950 

of Lecture Notes in Computer Sci-ence, 

pages 171–181. Springer Verlag, 1994.  

23. R. Cramer, I. Damgård, and B. Schoenmakers. 

Proofs of partial knowledge and simplified 

design of witness hiding protocols. In 

Advances in Cryptology – CRYPTO’94, 

volume 839 of Lecture Notes in Computer 

Science, pages 174– 187. Springer Verlag, 

1994.  

24. R. Cramer and V. Shoup. A practical public 

key cryptosystem provably se-cure against 

adaptive chosen ciphertext attack. In 

Advances in Cryptology – CRYPTO’98, 

volume 1462 of Lecture Notes in Computer 

Science, pages 13–25. Springer Verlag, 

1998.  

25. R. Cramer and V. Shoup. Signature schemes 

based on the strong RSA as-sumption. In 6th 

ACM Conference on Computer and 

Communications Security (CCS), pages 46–

51. ACM Press, 1999. 

26. D. Chaum and E. van Heyst. Group signatures. 

In Advances in Cryptology – 

EUROCRYPT’91, volume 547 of Lecture 

Notes in Computer Science, pages 257–265. 

Springer Verlag, 1991.  

27. L. Chen and T.P. Pedersen. New group 

signature schemes. In Advances in 

Cryptology – EUROCRYPT’94, volume 950 

of Lecture Notes in Computer Sci-ence, 

pages 171–181. Springer Verlag, 1994.  

28. R. Cramer, I. Damgård, and B. Schoenmakers. 

Proofs of partial knowledge and simplified 

design of witness hiding protocols. In 

Advances in Cryptology  – CRYPTO’94, 

volume 839 of Lecture Notes in Computer 

Science, pages 174– 187. Springer Verlag, 

1994.  

29. R. Cramer and V. Shoup. A practical public 

key cryptosystem provably se-cure against 

adaptive chosen ciphertext attack. In 

Advances in Cryptology – CRYPTO’98, 

volume 1462 of Lecture Notes in Computer 

Science, pages 13–25. Springer Verlag, 

1998.  

30. R. Cramer and V. Shoup. Signature schemes 

based on the strong RSA as-sumption. In 6th 

ACM Conference on Computer and 

Communications Security (CCS), pages 46–

51. ACM Press, 1999.  



 

Dr. Daruri Venugopal                                       www.ijetst.in  Page 1952 

IJETST- Vol.||02||Issue||03||Pages 1923-1952||March||ISSN 2348-9480 2015 

AUTHOR PROFILE 

                            

Dr. Daruri Venugopal  Received the Bachelors 

and Masters degrees from Osmania University,  in 

1995  and 1997, respectively. He done his M.Phil 

Mathematics from Algappa University in the year 

2003. He done his M.Tech Computer Science 

Engineering  from JRN Deemed University. He 

Done his Doctorate in Computer Science 

Engineering. He has over 110 Research Paper to 

his Credit. He is Editorial Board Member and 

Reviewer for four Reputed International Journals 

in Mathematics & Computer Science Areas.   He 

is a Advisory Board Member of Reputed 

Technical Institutions. He is a Life Member of  

ISTE,   He is a Recognized Ph.D Supervisor in the 

Areas of Mathematics and also in Computer 

Science  and Network Engineering. Presently 

working as Professor in  Siddhartha Institute of 

Technology and Sciences, Ghatkesar, Hyderabad.     


	page12
	page14
	page15
	page16
	page18
	page20
	page21
	page26
	page28
	page31
	page34
	page38
	page42
	page51

