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Abstract 

Distributed computing accomplished broad appropriation because of consequently parallelizing and 

transparently executing tasks in distributed environments. Straggling tasks is an essential test 

confronted by all Big Data Processing Frameworks, for example, Mapreduce
[3]

, Dryad
[4]

, Spark
[5]

. 

Stragglers are the assignments that run much slower than different tasks and since a job completes just 

when it’s last undertaking completions, stragglers postponement work fruition. The literature reviews 

stragglers recognition and rescheduling systems proposed so far and brings up their strengths and 

shortcomings. This thesis additionally displays wise attributes and impediments of the existing state- of-

the- craftsmanship calculations to take care of the issue of stragglers relief. This thesis presents a 

systematic and organized study of community detection techniques. The literature survey shows that 

most of the algorithms fail to efficiently reschedule the stragglers. Innocently one may anticipate that 

straggler taking care of will be a simple assignment, doubling tasks that are sufficiently slower. Actually 

it is a complex issue for a few reasons. In the first place, Speculative assignments are not free they seek 

certain assets, for example, system with other running tasks. Second, picking the node to run speculative 

task on is as significant as picking the task. Third, in Heterogeneous environment it may be challenging 

to recognize nods that are marginally slower than the mean and stragglers. At long last, Stragglers 

ought to be recognized as right on time as could reasonably be expected. The proposed framework uses 

mobile agent approach for rescheduling because the agent can start the execution at the other place 

from the very same place they left in the earlier machine. The implementation and results shows the 

proposed work is efficient and improves the overall performance of a big data processing framework. 
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1. INTRODUCTION 

Big Data  is considered to be a data collection that 

has grown so large it can’t be effectively or 

affordably managed (or exploited) using 

conventional data management tools: e.g., classic 

relational database management systems 

(RDBMS) 
[11]

 or conventional search engines 
[12]

, 

depending on the task at hand.  

1.1  The 3 Vs that define Big Data are 

Variety, Velocity and Volume. 

1.1.1 Variety: Data can be stored in multiple 

formats. For example database, excel, csv, access 

or for the matter of the fact, it can be stored in a 

simple text file. Sometimes the data is not even in 

the traditional format as we assume, it may be in 

the form of video, SMS, pdf or something we 

might have not thought about it. It is the need of 

the organization to arrange it and make it 

meaningful. It will be easy to do so if we have data 

in the same format, however it is not the case most 

of the time. The real world has data in many 

different formats and that is the challenge we need 

to overcome with the Big Data. This variety of the 

data represents Big Data. 

1.1.2 Velocity: The data growth and social media 
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explosion have changed how we look at the data. 

There was a time when we used to believe that 

data of yesterday is recent. The matter of the fact 

newspapers is still following that logic. Today, 

people reply on social media to update them with 

the latest happening. On social media sometimes a 

few seconds old messages (a tweet, status updates 

etc.) is not something interests users. They often 

discard old messages and pay attention to recent 

updates. The data movement is now almost real 

time and the update window has reduced to 

fractions of the seconds. This high velocity data 

represent Big Data. 

 

1.1.3 Volume: The exponential growth in the data 

storage as the data is now more than text data. We 

can find data in the format of videos, music and 

large images on our social media channels. It is 

very common to have Terabytes and Petabytes of 

the storage system for enterprises. As the database 

grows the applications and architecture built to 

support the data needs to be reevaluated quite 

often. Sometimes the same data is re-evaluated 

with multiple angles and even though the original 

data is the same the new found intelligence 

creates explosion of the data. The big volume 

indeed represents Big Data. 

1.1.4  Big Data Applications  include  

1. Faceted Search at Scale Faceted search is the 

process of iteratively refining a search request by 

selecting (or excluding) clusters or categories of 

results.  

2. Multimedia Search Multimedia Content is the 

fastest   growing type of user generated content, 

with millions of photos, audio files and videos 

uploaded to the web on daily basis.  

3. Sentimental Analysis uses semantic 

technologies to automatically discover, extract and 

summarize the emotions and attitudes expressed in 

unstructured content. 

4. Database Enrichment is done after collecting the 

data. This collected data is then analyzed and 

organized so that we can further use it to enhance 

and contextualize existing structured data 

resources like databases and data warehouses. 

 

1.2 MapReduce Paradigm 

MapReduce is a programming framework 

popularized by Google and used to simplify data 

processing across massive data sets. As people 

rapidly increase their online activity and digital 

footprint, organizations are finding it vital to 

quickly analyze the huge amounts of data their 

customers and audiences generate to better 

understand and serve them. MapReduce is the tool 

that is helping those kinds of organizations. This is 

a methodology need to handle extensive scale web 

search applications. This methodology is utilized 

within creating machine learning, data mining and 

search applications in data centers. The point of 

interest is that it permits programmers to extract 

from the issues of booking, parallelization, 

parceling, replication and concentrates on creating 

their application.  

Figure 1: MapReduce Framework 

 

The MapReduce library in the user program first 

splits the input files into M pieces of typically 16 

megabytes to 64 megabytes (MB) per piece 

(controllable by the user via an optional 

parameter). It then starts up many copies of the 

program on a cluster of machines. 

One of the copies of the program is special, the 

master. The rest are workers that are assigned 

work by the master. There are M map tasks and R 

reduces tasks to assign. The master picks idle 

workers and assigns each one a map task or a 

reduce task. 

A worker who is assigned a map task reads the 

contents of the corresponding input split. It parses 

key/value pairs out of the input data and passes 
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each pair to the user-defined Map function. The 

intermediate key/value pairs produced by the Map 

function are buffered in memory. 

Periodically, the buffered pairs are written to local 

disk, partitioned into R regions by the partitioning 

function. The locations of these buffered pairs on 

the local disk are passed back to the master, who is 

responsible for forwarding these locations to the 

reduce workers. 

When a reduce worker is notified by the master 

about these locations, it uses remote procedure 

calls to read the buffered data from the local disks 

of the map workers. When a reduce worker has 

read all intermediate data, it sorts it by the 

intermediate keys so that all occurrences of the 

same key are grouped together. The sorting is 

needed because typically many different keys map 

to the same reduce task. If the amount of 

intermediate data is too large to fit in memory, an 

external sort is used. 

The reduce worker iterates over the sorted 

intermediate data and for each unique intermediate 

key encountered, it passes the key and the 

corresponding set of intermediate values to the 

user's Reduce function. The output of the Reduce 

function is appended to a final output file for this 

reduced partition. 

When all map tasks and reduce tasks have been 

completed, the master wakes up the user program. 

At this point, the MapReduce call in the user 

program returns back to the user code. After 

successful completion, the output of the 

mapreduce execution is available in the R output 

files (one per reduce task, with file names as 

specified by the user). Typically, users do not need 

to combine these R output files into one file. They 

often pass these files as input to another 

MapReduce call, or use them from another 

distributed application that is able to deal with 

input that is partitioned into multiple files. 

1.2.1 Responsibilities of Execution Framework 

The developer submits the job to the submission 

node of a cluster (in Hadoop, this is called the job 

tracker) and execution framework (sometimes 

called the “runtime") takes care of everything else: 

it transparently handles all other aspects of 

distributed code execution, on clusters ranging 

from a single node to a few thousand nodes. 

Specific responsibilities include: 

Scheduling: 

Each MapReduce job is divided into smaller units 

called tasks. It is not uncommon for MapReduce 

jobs to have thousands of individual tasks that 

need to be assigned to nodes in the cluster. In large 

jobs, the total number of tasks may exceed the 

number of tasks that can be run on the cluster 

concurrently, making it necessary for the 

scheduler to maintain some sort of a task queue 

and to track the progress of running tasks so that 

waiting tasks can be assigned to nodes as they 

become available. 

Data/Code Co-location:  The phrase data 

distribution is misleading, since one of the key 

ideas behind MapReduce is to move the code, not 

the data. However, the more general point remains 

in order for computation to occur; we need to 

somehow feed data to the code. In MapReduce, 

this issue is inexplicably intertwined with 

scheduling and relies heavily on the design of the 

underlying distributed file system. To achieve data 

locality, the scheduler starts tasks on the node that 

holds a particular block of data (i.e., on its local 

drive) needed by the task. This has the effect of 

moving code to the data. If this is not possible 

(e.g., a node is already running too many tasks), 

new tasks will be started elsewhere, and the 

necessary data will be streamed over the network. 

Synchronization: In general, synchronization 

refers to the mechanisms by which multiple 

concurrently running processes “join up”, for 

example, to share intermediate results or otherwise 

exchange state information. In MapReduce, 

synchronization is accomplished by a barrier 

between the maps and reduces phases of 

processing. Intermediate key-value pairs must be 

grouped by key, which is accomplished by a large 

distributed sort involving all the nodes that 

executed map tasks and all the nodes that will 

execute reduce tasks. This necessarily involves 

copying intermediate data over the network, and 

therefore the process is commonly known as 

“shuffle and sort”. A MapReduce job with m 
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mappers and r reducers involves up to m * r 

distinct copy operations, since each mapper may 

have intermediate output going to every reducer. 

Note that the reduce computation cannot start until 

all the mappers have finished emitting key-value 

pairs and all intermediate key-value pairs have 

been shuffled and sorted, since the execution 

framework cannot otherwise guarantee that all 

values associated with the same key have been 

gathered. This is an important departure from 

functional programming: in a fold operation, the 

aggregation function g is a function of the 

intermediate value and the next item in the list 

which means that values can be lazily generated 

and aggregation can begin as soon as values are 

available. In contrast, the reducer in MapReduce 

receives all values associated with the same key at 

once.  

Error and Fault Handling: The MapReduce 

execution framework must accomplish all the 

tasks above in an environment where errors and 

faults are the norm, not the exception. Since 

MapReduce was explicitly designed around low-

end commodity servers, the runtime must be 

especially resilient. In large clusters, disk failures 

are common 
[34]

 and RAM experiences more errors 

than one might expect 
[37]

. Datacenters suffer from 

both planned outages (e.g., system maintenance 

and hardware upgrades) and unexpected outages 

(e.g., power failure, connectivity loss, etc.). 

 

1.3 Mobile Agents Paradigm  

Agents are software entities that have some kind 

of autonomy and certain ‘intelligence’. An agent is 

often assumed to represent another entity, such as 

a human or an organization on whose behalf it is 

acting. They are given some goals and they try to 

achieve these goals according to their intelligence. 

The basic dictionary definition of agent is one who 

acts 
[20]. 

In order to achieve these goals they 

communicate and interact with other agents, they 

exchange information and take back the results to 

the user. The software agents behave in the same 

manner too. 

 
Figure 2: Mobile agent in network system 

 

1.3.1 Mobile Agents’Applications: Computation 

bundles - converts computational client/server 

round trips to relocatable data bundles, reducing 

network load. 

Parallel processing -asynchronous execution on 

multiple heterogeneous  network hosts 

Dynamic adaptation - actions are dependent on 

the state of the host environment 

Tolerant to network faults - able to operate 

without an active connection between client and 

server 

Flexible maintenance - to change an agent's 

actions, only the source (rather than the 

computation hosts) must be updated 

 

1.3.2 Stragglers 

Stragglers 
[10]

, tasks running slowly compared to 

their peers, also impacts on mapreduce 

performance. Stragglers need to be speculated 
[37]

 

on faster machines if overall performance is to be 

improved as even a single task running on a 

slower machine can delay the further execution of 

already finished tasks.  

Stragglers’ problem: Due to unavailable input, 

tasks have to be recomputed if we want to proceed 

further otherwise we have to wait for the time, 

which the task takes to complete.  

There are numerous reasons 
[23]

 behind the task to 

take longer time, for example, flawed machines, 

heterogeneity among hardware, measure of data to 

process, system blockage and contention for the 

existing assets. Be that as it may if one task runs 

slower on a given machine it is not important for 

the entire present and future task to run slower on 

that specific machine. Likewise it is not important 

for a task to be slower all around its execution. 
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But, if one task runs slower on a given machine, it 

is not necessary for all the current and future tasks 

to run slower on that host. Also, it is not necessary 

for a task to be slower throughout its execution. 

e.g., it is possible that a task is slower because 

there are other processes contending for the 

resources, which can be very transient. Therefore, 

we introduce another term, straggler effect, to 

denote the transient behavior of the straggler. 

Previous efforts mainly provided speculation 

mechanisms at the application layer by modifying 

the Hadoop framework. However, stragglers are 

not entirely caused because of the faults at the 

application 
[38]

, but they may be caused even 

because of the other processes running on the 

same host. e.g., the disk access is delayed because 

there is one more process that is performing disk 

operations and hence contending for the disk. 

Therefore, even if the disk is not faulty, because of 

the other IO bound processes, a straggler effect 

can be present. Similarly, the Hadoop processes 

have to contend for the CPU in case there are other 

VMs running on the same host. Due to this fact, no 

mechanism can optimally resolve the straggler at 

the application, but the straggler effect can be 

effectively resolved at the operating system level, 

where the information about all the processes 

running on the host can be obtained and used.  

 

2. COMPARISON BETWEEN VARIOUS 

ALGORITHM 

The Problem of Stragglers has accepted extensive 

consideration recently with numerous stragglers 

moderating methods being created. These 

strategies could be comprehensively considered 

Blacklisting and Speculative Execution. 

Boycotting distinguishes machines in terrible 

health and abstains from scheduling tasks on these 

machines. Nonetheless, Stragglers happen on non 

boycotted machines, regularly because of 

characteristically complex reasons like I/O 

contention, obstruction by occasional support 

operations and background services and network 

behaviors. 

 

 

2.1 HADOOP NATIVE SCHEDULER 

Here, the mechanism used by Hadoop to distribute 

work across a cluster is described along with its 

method to detect straggler and then speculating 

them. Assumptions made by the scheduler have 

been identified which hurt its performance under 

normal load. These motivate our straggler 

detecting and mitigating algorithms scheduler, 

which can improve Hadoop performance. 

Hadoop implementation of MapReduce closely 

resembles Google’s 
[1]

. There is a single master 

managing a number of slaves. The input file, 

which resides on a distributed file system 

throughout the cluster, is split into even-sized 

chunks replicated for fault-tolerance. Hadoop 

divides each MapReduce job into a set of tasks. 

Each chunk of input is first processed by a map 

task, which outputs a list of key-value pairs 

generated by a user defined map function. Map 

outputs are split into buckets based on key. When 

all maps have finished, reduce tasks apply a 

reduce function to the list of map outputs with 

each key. 

  
 

Figure 3: Hadoop Map Reduce 

 

Figure 3, illustrates a MapReduce computation. 

Hadoop runs several maps and reduces 

concurrently on each slave – two of each by 

default – to overlap computation and I/O. Each 

slave tells the master when it has empty task slots. 

The scheduler then assigns it tasks. The goal of 

speculative execution is to minimize a job’s 

response time. Response time is most important 

for short jobs where a user wants an answer 

quickly, such as queries on log data for debugging, 
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monitoring and business intelligence. Short jobs 

are a major use case for MapReduce. 

2.1.1 Assumptions in Hadoop Native Scheduler: 

Hadoop scheduler makes several implicit 

assumptions [6] which are:  

1. Nodes can perform work at roughly the same 

rate. 

2. Tasks progress at a constant rate throughout 

time. 

3. There is no cost to launching a speculative task 

on a node that would otherwise have an idle slot. 

4. A task’s progress score is representative of 

fraction of its total work that it has done. 

Specifically, in a reduce task, the copy, sort and 

reduce phases each take about 1/3 of the total time. 

5. Tasks tend to finish in waves, so a task with a 

low progress score is likely a straggler. 

6. Tasks in the same category (map or reduce) 

require roughly the same amount of work. 

2.1.2 How the Assumptions Break Down: These 

assumptions [6] break down in current sort of 

parallel processing network as follows: 

1. Heterogeneity: Assumptions (1) and (2) are 

about homogeneity among nodes in the network. 

Hadoop assumes that any detectably slow node is 

faulty. However, nodes can be slow for other 

reasons. In a non-virtualized data center, there 

may be multiple generations of hardware. In a 

virtualized data center where multiple virtual 

machines run on each physical host, such as 

Amazon EC2, co-location of VMs may cause 

heterogeneity. Heterogeneity seriously impacts 

Hadoop scheduler. Because the scheduler uses a 

fixed threshold for selecting tasks to speculate, too 

many speculative tasks may be launched; taking 

away resources from useful tasks (assumption 3 is 

also untrue). Also, because the scheduler ranks 

candidates by locality, the wrong tasks may be 

chosen for speculation first. 

2. Other Assumptions: Assumptions (3), (4) and 

(5) stated above are broken on both homogeneous 

and heterogeneous clusters, and can lead to a 

variety of failure modes. 

Assumption (3) breaks down when resources are 

shared. For example, the network is a bottleneck 

shared resource in large MapReduce jobs. Also, 

speculative tasks may compete for disk I/O in I/O-

bound jobs. Finally, when multiple jobs are 

submitted, needless speculation reduces 

throughput without improving response time by 

occupying nodes that could be running the next 

job. 

Assumption (4), that a task’s progress score is 

approximately equal to its percent completion, can 

cause incorrect speculation of reducers. In a 

typical MapReduce job, the copy phase of reduce 

tasks is the slowest, because it involves all-pairs 

communication over the network. Tasks quickly 

complete the other two phases once they have all 

map outputs. However, the copy phase counts for 

only 1/3 of the progress score. Thus, soon after the 

first few reducers in a job finish the copy phase, 

their progress goes from 1/3 to 1, greatly 

increasing the average progress. 

Assumption (5), that progress score is a good 

proxy for progress rate because tasks begin at 

roughly the same time, can also be wrong. The 

number of reducers in a Hadoop job is typically 

chosen small enough so that they can all start 

running right away, to copy data while maps run. 

However, there are potentially tens of mappers per 

node, one for each data chunk. The mappers tend 

to run in waves. Even in a homogeneous 

environment, these waves get more spread out 

over time due to variance adding up, so in a long 

enough job, tasks from different generations will 

be running concurrently. In this case, Hadoop will 

speculatively execute new, fast tasks instead of 

old, slow tasks that have more total progress. 

2.2 LONGEST APPROXIMATE TIME TO 

END (LATE) SCHEDULER 

Progress Score is ascertained as in Hadoop local 

scheduler. Progress rate is then calculated as 

advancement score/T where T is the time for 

which the task has been running. Time to finish is 

then approximated as (1-Progress Score)/Progress 

Rate.Tasks with advancement rates beneath an 

edge of 25 percentile of all tasks are 

acknowledged to be stragglers.LATE stays 

informed regarding moderate nodes in the system 

and does not run speculative duplicates on those 

nodes.LATE additionally utilizes a cap on the 
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amount of speculative task that can run at once, to 

handle the way that speculative tasks cost assets. 

2.2.1 LATE Algorithm: 

A node asks for a new task and there are fewer 

than Speculative Cap speculative tasks running: 

Ignore the request if the node’s total progress is 

below Slow Node Threshold. Rank currently 

running tasks that are not currently being 

speculated by estimated time left. Launch a copy 

of the highest-ranked task with progress rate 

below Slow Task Threshold. Like Hadoop 

scheduler, it also waits until a task has run for 1 

minute before evaluating it for speculation. In 

practice, it has found that a good choice for the 

three parameters to LATE are to set the 

Speculative Cap to 10% of available task slots and 

set the Slow Node Threshold and  slow Task 

Threshold to the 25th percentile of node progress 

and task progress rates respectively.  

Advantages: LATE enjoys following advantages:  

1. It is robust to node heterogeneity, in light of the 

fact that it will re-propel just the slowest tasks and 

just a little number of tasks. 

2. LATE takes into account node heterogeneity 

while deciding where to speculate tasks. 

3. Likewise, by keeping tabs on assessed time left 

instead of advancement rate, LATE hypothetically 

executes just assignments that will enhance job 

response time, as opposed to any slow tasks. 

 Disadvantages: LATE comes up with some 

demerits too, which are: 

1. A bigger undertaking will have a tendency to 

take more of a chance than the rests to process, in 

this way it is conceivable to be tagged as a 

candidate to be speculated resulting in wasted 

assets. 

2. As the end time for an assignment is ascertained 

utilizing the averaged out progress rate of out 

advancement rate against the current advancement 

rate, the end time anticipated is prone to be 

mistaken. 

3. Starting assessment time needed by the LATE 

scheduler is high (1 minute) before an undertaking 

could be stamped as straggler. 

4. LATE basically prompts longer reaction time. 

Since no clarification for the moderate nature of 

the accepted stragglers is looked for, the straggler 

determination might be inaccurate. 

2.3 REINING IN OUTLIERS USING 

“MANTRI” 

Mantri is a system that monitors tasks and mitigate 

outliers using cause and resource aware 

techniques. Mantri’s strategies include restarting 

outliers, network-aware placement of tasks and 

protecting outputs of valuable tasks. Using real-

time progress reports, Mantri detects and acts on 

outliers early in their lifetime. A task that has to 

run for long because it has more work to do will 

not be restarted; if it lags due to reading data over 

a low-bandwidth path, it will be restarted only if a 

more advantageous network location becomes 

available. Early action on outliers frees up 

resources that could be used for pending tasks, 

doing so is nontrivial.  

2.3.1 Mantri’s Restart Algorithm 

1: let ∆ = period of progress reports 

2: let c = number of copies of a task 

3: periodically, for each running task, kill all but 

the fastest α copies after∆ time has passed since       

begin 

4: while slots are available do 

5:if tasks are waiting for slots then 

6: kill, restart task if trem > E(trem)+ ∆, stop at γ 

restarts 

7: duplicate if P((trem > tnew)*(c+1/c)) > δ 

8: start the waiting task that has the largest data to 

read 

9: else all tasks have begun 

10: duplicate iff E( tnew − trem) > ρ∆ 

11: end if 

12: end while 

Mantri’s restart algorithm is independent of the 

values for its parameters. Setting γ to a larger and 

ρ, δ to a smaller value trades off the risk of 

wasteful restarts for getting larger speedup. The 

default values that are specified here err on the 

side of caution. To not thrash on inaccurate 

estimates, Mantri kills a task no more than γ = 3 

times. By scheduling duplicates conservatively 

and pruning aggressively, Mantri has a high 
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success rate of its restarts. As a result, it reduces 

completion time and conserves resources. 

2.4 MONTOOL: FINDING STRAGGLERS IN 

HADOOP 

MonTool takes an alternative approach to 

determine the relative ordering of system calls in 

order to make a relation of system calls with 

stragglers. It tracks disk and network system calls 

for this analysis. MonTool is designed on the 

underlying assumption that tasks in same category 

(Map/Reduce) make similar system calls in an 

ordered sequence. A straggler would show a 

slower system calls access pattern. MonTool runs 

a daemon on each slave node  

Figure 4: Contention Avoidance Cloning 

which periodically sends monitoring information 

to the master node. Further, the master can query 

slaves to understand the causes for the task delays. 

2.4.1 Working: Mon Tool gathers information 

about the tasks by tracing system calls and 

analyzing them. With this information Mon Tool 

finds the stragglers as well as their causes. For this 

Mon Tool performs two important functions which 

are: 

1. Effective Gathering of System Calls: Mon Tool 

used System Tap to monitor the system calls. 

System Tap uses the hooks provided by the OS, 

where user code can be executed. System Tap 

generates comparatively lesser amount of 

overhead data while gathering the system calls and 

efficiently differentiates the network and disk 

read/writes.  

2. Detecting the stragglers based on the pattern of 

system calls made by different machines: This task 

was based on the correlation of various patterns 

produced by various machines carrying out similar 

tasks.  

2.4.2 Limitations:It accepts all maps or 

diminishes tasks work upon similar measured 

workloads and access information in a similar 

pattern. Be that as it reduces this assumption 

reduce tasks as information size read by diminish 

tasks may be distinctive for each task. Associating 

system calls can't be attained without any data 

about the keys and the example of the keys is 

regularly not accessible in Hadoop. 

2.5 ATTACK OF THE CLONES: DOLLY 

Current mitigation techniques, all involve an 

element of waiting and speculation of stragglers 

whenever detected. Dolly instead propose full 

cloning of small jobs, avoiding waiting and 

speculation altogether. Cloning of small jobs only 

marginally increases resource utilization because 

workloads show that while the majority of jobs are 

small, they only consume a small fraction of the 

resources. Dolly methodology manages stragglers 

in proactive way. As opposed to holding up and 

attempting to predict stragglers, it take speculative 

execution to its extreme and launches different 

clones of each task of a job and just utilize the 

result of the clone that completes first. This 

introduces some challenges like extra handful of 

resources and then accessing the data from the 

fastest clone, i.e. which finishes first in the group. 

Dolly defines new approaches for intermediate 

data access.  

2.5.1 Intermediate Data Access: Avoiding 

Contention: Dolly defines its approaches for 

mitigating contention while accessing intermediate 

data from various map processes finishing 

simultaneously. 

1. CAC Contention Avoidance Cloning: Here as 

soon as an upstream task clone finishes, its output 

is sent to exactly one downstream task clone per 

clone group. 

Ѱ (n,c,d)=Probability[n upstream tasks of c clones 

with >= d clones per group. 

p is the probability of a task straggling. 

  Ѱ (n,c,d) = (    
 
           

   

   
 )

n 

 

 Contention Avoidance Cloning Dolly defined 

probability for job straggling with CAC as 
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     P= 1-∑
c
d=1[ѱ(n,c,d)-ѱ(n,c,d-1)]*(1-p

d
)
n 

1. CC Contention Cloning: As soon as an 

upstream task clone finishes, all the downstream 

tasks read the output of the upstream clone, 

alleviating the problem of contention.  

Figure 5: Contention Cloning 
[7]

 

Dolly defined probability for job straggling with 

CC as 

           P= 1-∑
c
d=1[ѱ (n,c,1)]*(1-p

d
)
n 

Every downstream clone waits for a small window 

of time (ώ) to see if it can get an exclusive copy of 

the intermediate data. The wait time of ώ allows 

for normal variations among upstream clones. If 

the downstream clones does not get its exclusive 

copy even after waiting for ώ, it reads with 

contention from one of the finished upstream 

clones output. 

 

2.6 ISSUES WITH EXISTING ALGORITHMS 

There exist a few algorithms for straggler 

detection and mitigating their effects. All of them 

in one way or the other launches speculative 

copies of the tasks which are running slower as 

compared to the others. These speculative 

launches, however, reduces the time for overall 

execution but uses comparatively more resources. 

During the review of the current state of art 

algorithms it was found that the major issue with 

the existing algorithms was their inefficiency in 

launching the same task which is staggering on 

one machine to the other machine and resuming it 

there from the very same place from where it had 

stopped execution on the previous machine. So 

there is a sheer need for algorithms which can link 

the already mapped and reduced portion to the 

portion of the task which is to be executed next on 

the other machine. Another issue was the problem 

of homogeneity. None of them have employed 

mobile agents for addressing heterogeneity of the 

machines in the network. Mobile agents addresses 

this issue efficiently as they can resume their 

execution from the same place they had left but 

also don’t mind the heterogeneity in the network. 

 

3. PROPOSED WORK AND 

IMPLEMENTATION 

The previous chapter described various techniques 

which are used by other researchers to solve the 

problem of straggler detection and mitigation in 

parallel data processing network; the chapter 

reviewed the broad literature on stragglers and 

shows important insights in the domain. It is 

observed that there are a lot of techniques are 

proposed for the detection of stragglers in parallel 

processing data networks, but none of them used 

mobile agents. A mobile agent is a set of code and 

data which can execute the code with the data as 

parameter in agent platform. Due to stragglers a 

part of resources gets wasted because we have 

multiple speculative copies of a single task 

running at the same time but we need only one for 

one final execution. So if we can limit the number 

of speculative execution to a single copy at any 

time we can have a hundred percent resource 

utilization for the useful because we run only one 

instance for any file at a time.  

3.1 ALGORITHMS FOR PROPOSED 

SOLUTION 

The proposed solution ABMR algorithm uses one 

mobile agent for each split it gets from the user 

and then that mobile agent moves from one 

location to another based on how the scheduler 

schedules it based on the performance score the 

agent sent to the scheduler. The scheduler 

maintains two arrays one for slower machines and 

one for faster machines. The scheduler reschedules 

the agents running on slower machines to the 

faster machines one at a time. The scheduler 

finally recollects all the results after each agent has 

done its work and then presents it to the original 

user of the application. 
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Figure 6: Information Flow Diagram 

3.1.1 Algorithm for Scheduler 

1. All hosts in the network which want to take part 

in big data processing register themselves with 

their IP Addresses. 

These IP addresses are used to create agent 

containers in the main program. 

2. A Scheduler agent is created in by the main 

application which takes file name as argument and 

finds all the agent containers running on the home 

platform. 

3. Scheduler agent creates the mobile agents after 

splitting the file and assigns a file split to each of 

them. 

Each agent sends its performance score to the 

scheduler after every Ts seconds. 

score_agent[i] =Total executed/Total to be 

executed*Ts 

4. Meanwhile, when the agent moves from one 

location to another, it saves its current state so that 

they can start from the very same place where they 

stopped the execution. 

5. After performing all the operations, the agent 

submits the result back to the scheduler. 

6. The scheduler forwards the result to the user 

after accumulation of results from all the reducers. 

 

Algorithm for Scheduler 

MainScheduler(file[],containers[]) 

1. ratio=file.length/container.length 

2. for j=1 to container.length 

for i=1 to ratio 

container[j].createAgent(file[i],container[j]

) 

3. for j=1 to file.length    

score[j] = (receive (msg[j]); 

avg+=score/file.length; 

4. for i=1 to no of agents if score[i]<0.5 * 

avg slowContainers[k++]=container[i]; 

else if score[i]>= avg 

fastContainers[k++]=container[i]; 

5. for i=1 to no of slow Containers 

agent[i].move(fastContainer[i] 

6. if allMessageFinished  

7. return 

 
Figure 7:  Flow Chart for the Proposed Solution 

 

3.2 WORKING STEPS FOR CURRENT 

SOLUTION 

3.2.1 Registration Phase: Each of the nodes who 

want to be the part of the computing grid first of 

all registers itself with the main node where the 

application has been running. This registration 

process is carried out for a fixed time period. Each 

node sends its IP Address to the main application 

so that it can further communicate with these 

nodes. These IP addresses are stored in the array 

and a corresponding agent container is launched in 

the jade runtime environment for each of the 

agent. This agent container controls all the 

operations to be performed on a particular agent. 
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Each node registering itself admits that it is 

meeting all the conditions it is required to fulfill 

and is readily offering its services to the parallel 

processing network. 

3.2.2 File Fetching and Scheduler Agent 

Creation: In this step the address of the big data 

file to be processed it is fetched and then the 

scheduler agent is created along with the file 

address and the array of the agent containers 

created earlier. The scheduler then contacts all the 

agent containers and they are then used for the 

creation of agents. The scheduler in the meantime 

splits the file among multiple pieces based on the 

size of the split which it takes from the user. 

3.2.3 Agent Score Calculation: Each agent 

calculates the score based on the number of words 

it has processed in unit time out of the total 

number of words it had to process using the 

formula  

Score = (Number of words processed/Total 

number of words to be processed)*(unit time) 

where the Number of words processed are counted 

by a variable,the Number of words to be processed 

are found by the String library in JAVA,the unit 

time is a constant set to value 100 milliseconds. 

3.2.4 Agent Score Submission: Each agent then 

submits its partially calculated score and then 

sends it back to the scheduler; the agent uses the 

message format from the Agent class in JADE 

execution environment [44] to send the score of 

the current execution. The application has an array 

for the slowest and fastest running agents to store 

the exact values. 

3.2.5 Agent Relocation: The arrays stored for 

slowest and fastest machines are used to send the 

location where the slow agents have to move 

where they can complete the original activity of 

the agent. The location is sent to the agent in a 

message particularly to the agent which the 

scheduler declares the straggler. 

3.2.6 Agent Result Submission: The agent then 

submits the result to the application, which then 

merges all the results into the main result and then 

directs the final result to user. Final result is in the 

form of the file which contains the overall result. 

3.2.7 Final Result Submission: The application 

then sends the result back to the users who have 

requested the task. 

 

3.3 IMPLEMENTATION 

It all starts with the main host starting which 

initially informs all the members of their network 

that they can now register with the main host if 

they want to be the part of the parallel data 

processing network.  

 

Figure 8: Requesting Connection from slaves 

Hosts then register with the IP address of the 

server (main host) which is sent to them in the 

message the main host broadcast the registration 

message. A main popup menu appears at the client 

which can then accept the offer or reject it. 

 

Figure 9:  Confirming Request 

The client who accepts the offer replies the 

message containing their IP addresses which is 

sent to the main host. Now after a pre specified 

time limit is over, the user sends the big data file 

address, i.e. where it is located and the scheduler is 

activated at the main host, which in turn activates 

the splitter to get the big data file splitted. The 

splits are assigned to the agents and the agents are 

assigned a specific location where it has to be 

created by the main container. 
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Figure 10:  Created Agents and Scheduler Agent 

After the creation of all the agents the scheduler 

waits for a response from the agents i.e. the 

performance score is sent to the scheduler in the 

form of a message. 

 
Figure 11: Message sending from various agents 

 
Figure 12: Rescheduled Agents 

Finally the reducer’s output file is sent to the 

scheduler who in turn sends it back to the user of 

the application. The Scheduler in turn collects the 

overall result and then sends this result to the user.  

4. RESULT AND ANALYSIS 

The results obtained by running various tests on 

the algorithm, and running it with different types 

of straggler arrangements. The proposed 

Algorithm is tested on both scenarios for split 

sizes as well as for various setting up of stragglers. 

All the results collected by the experiments and 

provide the comparison of the results with results 

of other technique proposed for solving the 

problem of straggler detection and mitigation. 

4.1 TESTING  

The implementation of the proposed algorithm is 

put to test on an Intel i5 laptop with 6GB RAM is 

used for the execution of the program for both 

scenarios with a 450MB text file. The map and 

reduce operations are defined for word count 

procedures. JADE is used for creating agents on 

the various machines. 

The algorithm is run with the following values of 

the parameters: 

Figure 13: Parameter Values for the Algorithm 

This gives the algorithm the flexibility to be 

applied to various types of networks. By varying 

these parameters one can get different execution 

times. If one provides values which are below or 

beyond those constrains, the results will not be 

same. The algorithm is tested to provide good 

results with these values of the parameters within 

constraints. 

4.2 Comparison with HADOOP Native 

Scheduler based on Straggler Percentage 

The proposed algorithm is compared with the 

HADOOP Native Scheduler for its straggler 

detection and mitigation technique’s wide 

implementation. The following figure 14 clearly 

shows that the proposed technique outperforms 

this technique in execution time for randomly 

generated graphs. This algorithm provided better 

results than the algorithms used for comparison. 

Not only it outperforms the Hadoop Native 

Scheduler in its execution time but it does so 
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without any DFS. It simply saves the extra time 

Hadoop takes to create the DFS and then resumes 

them from the place where they have left earlier.  

Table 1: Execution Overview on Straggler % 

Straggler 

% 

HADOOP 

Native 

Scheduler 

Time(ms) 

Mobile Agent 

Based MapReduce 

Time(ms) 

10% 48587 51237 

20% 58548 54893 

40% 87373 74120 

50% 120252 99365 

 

 

Figure 14:  Line Graph Based On Straggler % 

4.3 Comparison with HADOOP Native 

Scheduler based on Split Sizes 

The proposed algorithm is compared with the 

HADOOP Native Scheduler for its straggler 

detection and mitigation technique’s wide 

implementation. The following figure 15 clearly 

shows that the proposed technique outperforms 

this technique in execution time for randomly 

generated graphs for various split sizes. Our 

algorithm provided better results than the 

algorithms used for comparison. Not only it 

outperforms the Hadoop Native Scheduler in its 

execution time but it does so without any DFS. 

Split sizes however, can increase our problems 

because we used the network to transfer 

information from one machine to the other. While 

the information or splits are being transmitted the 

network speed comes into picture which can 

increase the overall execution time. 

Table 2: Execution Overview on basis of various 

Split Sizes 

Setup Scenario  

Size*Container*A

gents/Container 

HADOOP 

Native 

Scheduler 

Time(seconds) 

Mobile Agent 

Based 

MapReduce 

Time(millisec

onds) 

50*3*3 45 48 

45*2*5 47 48 

30*3*5  50 49 

15*3*10 55 55 

 

Figure 15: Line Graph Based On Split Size 

4.4 RESULT ANALYSIS 

From the previous section it is evident that the 

MBMR Algorithm performs well on single 

machine as well as for network of machines. The 

algorithm improves the execution time for a single 

machine and can serve the same purpose for if we 

have enough bandwidth. The significant insights 

from the result of the implementation of MBMR 

are as follows: 

1. Outliers or stragglers are detected and are then 

rescheduled to other machine without wasting a 

single machine cycle because it reschedules them 

in an efficient manner. 

2. Rescheduling process is delayed so that if a 

node has stuck in some other useful work it is not 

marked straggler and can continue its work. This 
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delay does not cost us much because we are using 

mobile agents which are known for their ability to 

start from the very place, they left their execution. 

3.  There is a significant improvement in the 

execution time as compared to existing algorithms 

i.e. about 10-12% and that as well without using 

any DFS. 

 

5. CONCLUSION 

5.1 Conclusion 

Straggler detection and mitigation approaches 

have attracted a lot of attention of researchers in 

recent years and there is a considerable increase in 

the number of algorithms published for solving the 

issue as it has applications in various domains like 

big data processing and parallel computation. This 

report tries to review all popular algorithms for 

straggler detection and mitigation along with their 

rescheduling with their strengths and weaknesses. 

The report tries its best to review all popular 

algorithms, but the study is by no means complete 

as there are newer algorithms discovered at a fast 

rate because of the growing interest of researchers 

in this domain. This report describes nearly all the 

algorithms which exist for straggler detection, and 

also reviews their strengths and weaknesses. The 

basic concepts required for understanding the 

problem of straggler detection are described in 

great detail. The main goal was to come up with a 

technique which is better than the current state of 

art solutions. The proposed technique of Greedy 

Mobile Agent based MapReduce for Big Data 

Processing and straggler detection is described. 

Extensive tests are also performed and the results 

are also shown for the sake of validity of the 

proposed technique. The proposed technique 

performs well as compared to the classical 

algorithms and the current state of art algorithms. 

The report showed that the problem of outliers and 

their mitigation can be handled by the proposed 

greedy local technique. 

5.2 Future Scope 

In future the efforts will be concentrated on further 

optimizing the technique, so that the algorithm can 

scale to larger number of nodes and hence can be 

applied to large social networks. Another area of 

future work will be to come up with a parallel 

version of the algorithm, so that large networks 

can be processed in parallel, to reduce the 

execution time. Further scaling the algorithm to 

larger networks will also be considered.  

The whole algorithm can be broken down into 

three main steps namely: finding containers, 

mobile agents and scheduler. In future the 

optimizations that can be performed in each of 

these steps are: 

Optimization in the finding containers step 

During this phase the algorithm simply wants the 

master to initiate the process which in turn 

increases the task for the master, adding this task 

to the slaves we can reduce the amount of the 

work for the master and can split this to the slaves. 

Optimization in the mobile agent creation step 

During the mobile agent creation phase the 

algorithm simply creates the mobile agent which 

serve the purpose of each split’s processing. 

Mobile agent can be created in a more efficient 

way for parallel processing if we redefine the data 

structures and their behavior accordingly. 

Optimization in the scheduling step 

Scheduling starts when all agents are created and 

we have containers available for their scheduling. 

The scheduler’s logic can be further optimized to 

reduce the execution time for the application. 

Future work will also be concentrated on finding 

better local heuristic functions to reduce the 

execution time of the algorithm. Finally, better 

benchmarking abilities are required by which we 

can compare the algorithms faster.  
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