

Sonu Yadav www.ijetst.in Page 1711

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

International Journal of Emerging Trends in Science and Technology

Mobile Agent Based MapReduce Framework for Big Data Processing

Author

Sonu Yadav

M.Tech Stholar, Computer Science & Engineering, RPSGOI Mahendragarh,

Maharshi Dayanand University, Rohtak-124001, Haryana, India

Email: sonu25.90@gmail.com

Abstract

Distributed computing accomplished broad appropriation because of consequently parallelizing and

transparently executing tasks in distributed environments. Straggling tasks is an essential test

confronted by all Big Data Processing Frameworks, for example, Mapreduce
[3]

, Dryad
[4]

, Spark
[5]

.

Stragglers are the assignments that run much slower than different tasks and since a job completes just

when it’s last undertaking completions, stragglers postponement work fruition. The literature reviews

stragglers recognition and rescheduling systems proposed so far and brings up their strengths and

shortcomings. This thesis additionally displays wise attributes and impediments of the existing state- of-

the- craftsmanship calculations to take care of the issue of stragglers relief. This thesis presents a

systematic and organized study of community detection techniques. The literature survey shows that

most of the algorithms fail to efficiently reschedule the stragglers. Innocently one may anticipate that

straggler taking care of will be a simple assignment, doubling tasks that are sufficiently slower. Actually

it is a complex issue for a few reasons. In the first place, Speculative assignments are not free they seek

certain assets, for example, system with other running tasks. Second, picking the node to run speculative

task on is as significant as picking the task. Third, in Heterogeneous environment it may be challenging

to recognize nods that are marginally slower than the mean and stragglers. At long last, Stragglers

ought to be recognized as right on time as could reasonably be expected. The proposed framework uses

mobile agent approach for rescheduling because the agent can start the execution at the other place

from the very same place they left in the earlier machine. The implementation and results shows the

proposed work is efficient and improves the overall performance of a big data processing framework.

Keywords: MR, MAS, JADE, LATE, CORBA

1. INTRODUCTION

Big Data is considered to be a data collection that

has grown so large it can’t be effectively or

affordably managed (or exploited) using

conventional data management tools: e.g., classic

relational database management systems

(RDBMS)
[11]

 or conventional search engines
[12]

,

depending on the task at hand.

1.1 The 3 Vs that define Big Data are

Variety, Velocity and Volume.

1.1.1 Variety: Data can be stored in multiple

formats. For example database, excel, csv, access

or for the matter of the fact, it can be stored in a

simple text file. Sometimes the data is not even in

the traditional format as we assume, it may be in

the form of video, SMS, pdf or something we

might have not thought about it. It is the need of

the organization to arrange it and make it

meaningful. It will be easy to do so if we have data

in the same format, however it is not the case most

of the time. The real world has data in many

different formats and that is the challenge we need

to overcome with the Big Data. This variety of the

data represents Big Data.

1.1.2 Velocity: The data growth and social media

Sonu Yadav www.ijetst.in Page 1712

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

explosion have changed how we look at the data.

There was a time when we used to believe that

data of yesterday is recent. The matter of the fact

newspapers is still following that logic. Today,

people reply on social media to update them with

the latest happening. On social media sometimes a

few seconds old messages (a tweet, status updates

etc.) is not something interests users. They often

discard old messages and pay attention to recent

updates. The data movement is now almost real

time and the update window has reduced to

fractions of the seconds. This high velocity data

represent Big Data.

1.1.3 Volume: The exponential growth in the data

storage as the data is now more than text data. We

can find data in the format of videos, music and

large images on our social media channels. It is

very common to have Terabytes and Petabytes of

the storage system for enterprises. As the database

grows the applications and architecture built to

support the data needs to be reevaluated quite

often. Sometimes the same data is re-evaluated

with multiple angles and even though the original

data is the same the new found intelligence

creates explosion of the data. The big volume

indeed represents Big Data.

1.1.4 Big Data Applications include

1. Faceted Search at Scale Faceted search is the

process of iteratively refining a search request by

selecting (or excluding) clusters or categories of

results.

2. Multimedia Search Multimedia Content is the

fastest growing type of user generated content,

with millions of photos, audio files and videos

uploaded to the web on daily basis.

3. Sentimental Analysis uses semantic

technologies to automatically discover, extract and

summarize the emotions and attitudes expressed in

unstructured content.

4. Database Enrichment is done after collecting the

data. This collected data is then analyzed and

organized so that we can further use it to enhance

and contextualize existing structured data

resources like databases and data warehouses.

1.2 MapReduce Paradigm

MapReduce is a programming framework

popularized by Google and used to simplify data

processing across massive data sets. As people

rapidly increase their online activity and digital

footprint, organizations are finding it vital to

quickly analyze the huge amounts of data their

customers and audiences generate to better

understand and serve them. MapReduce is the tool

that is helping those kinds of organizations. This is

a methodology need to handle extensive scale web

search applications. This methodology is utilized

within creating machine learning, data mining and

search applications in data centers. The point of

interest is that it permits programmers to extract

from the issues of booking, parallelization,

parceling, replication and concentrates on creating

their application.

Figure 1: MapReduce Framework

The MapReduce library in the user program first

splits the input files into M pieces of typically 16

megabytes to 64 megabytes (MB) per piece

(controllable by the user via an optional

parameter). It then starts up many copies of the

program on a cluster of machines.

One of the copies of the program is special, the

master. The rest are workers that are assigned

work by the master. There are M map tasks and R

reduces tasks to assign. The master picks idle

workers and assigns each one a map task or a

reduce task.

A worker who is assigned a map task reads the

contents of the corresponding input split. It parses

key/value pairs out of the input data and passes

Sonu Yadav www.ijetst.in Page 1713

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

each pair to the user-defined Map function. The

intermediate key/value pairs produced by the Map

function are buffered in memory.

Periodically, the buffered pairs are written to local

disk, partitioned into R regions by the partitioning

function. The locations of these buffered pairs on

the local disk are passed back to the master, who is

responsible for forwarding these locations to the

reduce workers.

When a reduce worker is notified by the master

about these locations, it uses remote procedure

calls to read the buffered data from the local disks

of the map workers. When a reduce worker has

read all intermediate data, it sorts it by the

intermediate keys so that all occurrences of the

same key are grouped together. The sorting is

needed because typically many different keys map

to the same reduce task. If the amount of

intermediate data is too large to fit in memory, an

external sort is used.

The reduce worker iterates over the sorted

intermediate data and for each unique intermediate

key encountered, it passes the key and the

corresponding set of intermediate values to the

user's Reduce function. The output of the Reduce

function is appended to a final output file for this

reduced partition.

When all map tasks and reduce tasks have been

completed, the master wakes up the user program.

At this point, the MapReduce call in the user

program returns back to the user code. After

successful completion, the output of the

mapreduce execution is available in the R output

files (one per reduce task, with file names as

specified by the user). Typically, users do not need

to combine these R output files into one file. They

often pass these files as input to another

MapReduce call, or use them from another

distributed application that is able to deal with

input that is partitioned into multiple files.

1.2.1 Responsibilities of Execution Framework

The developer submits the job to the submission

node of a cluster (in Hadoop, this is called the job

tracker) and execution framework (sometimes

called the “runtime") takes care of everything else:

it transparently handles all other aspects of

distributed code execution, on clusters ranging

from a single node to a few thousand nodes.

Specific responsibilities include:

Scheduling:

Each MapReduce job is divided into smaller units

called tasks. It is not uncommon for MapReduce

jobs to have thousands of individual tasks that

need to be assigned to nodes in the cluster. In large

jobs, the total number of tasks may exceed the

number of tasks that can be run on the cluster

concurrently, making it necessary for the

scheduler to maintain some sort of a task queue

and to track the progress of running tasks so that

waiting tasks can be assigned to nodes as they

become available.

Data/Code Co-location: The phrase data

distribution is misleading, since one of the key

ideas behind MapReduce is to move the code, not

the data. However, the more general point remains

in order for computation to occur; we need to

somehow feed data to the code. In MapReduce,

this issue is inexplicably intertwined with

scheduling and relies heavily on the design of the

underlying distributed file system. To achieve data

locality, the scheduler starts tasks on the node that

holds a particular block of data (i.e., on its local

drive) needed by the task. This has the effect of

moving code to the data. If this is not possible

(e.g., a node is already running too many tasks),

new tasks will be started elsewhere, and the

necessary data will be streamed over the network.

Synchronization: In general, synchronization

refers to the mechanisms by which multiple

concurrently running processes “join up”, for

example, to share intermediate results or otherwise

exchange state information. In MapReduce,

synchronization is accomplished by a barrier

between the maps and reduces phases of

processing. Intermediate key-value pairs must be

grouped by key, which is accomplished by a large

distributed sort involving all the nodes that

executed map tasks and all the nodes that will

execute reduce tasks. This necessarily involves

copying intermediate data over the network, and

therefore the process is commonly known as

“shuffle and sort”. A MapReduce job with m

Sonu Yadav www.ijetst.in Page 1714

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

mappers and r reducers involves up to m * r

distinct copy operations, since each mapper may

have intermediate output going to every reducer.

Note that the reduce computation cannot start until

all the mappers have finished emitting key-value

pairs and all intermediate key-value pairs have

been shuffled and sorted, since the execution

framework cannot otherwise guarantee that all

values associated with the same key have been

gathered. This is an important departure from

functional programming: in a fold operation, the

aggregation function g is a function of the

intermediate value and the next item in the list

which means that values can be lazily generated

and aggregation can begin as soon as values are

available. In contrast, the reducer in MapReduce

receives all values associated with the same key at

once.

Error and Fault Handling: The MapReduce

execution framework must accomplish all the

tasks above in an environment where errors and

faults are the norm, not the exception. Since

MapReduce was explicitly designed around low-

end commodity servers, the runtime must be

especially resilient. In large clusters, disk failures

are common
[34]

 and RAM experiences more errors

than one might expect
[37]

. Datacenters suffer from

both planned outages (e.g., system maintenance

and hardware upgrades) and unexpected outages

(e.g., power failure, connectivity loss, etc.).

1.3 Mobile Agents Paradigm

Agents are software entities that have some kind

of autonomy and certain ‘intelligence’. An agent is

often assumed to represent another entity, such as

a human or an organization on whose behalf it is

acting. They are given some goals and they try to

achieve these goals according to their intelligence.

The basic dictionary definition of agent is one who

acts
[20].

In order to achieve these goals they

communicate and interact with other agents, they

exchange information and take back the results to

the user. The software agents behave in the same

manner too.

Figure 2: Mobile agent in network system

1.3.1 Mobile Agents’Applications: Computation

bundles - converts computational client/server

round trips to relocatable data bundles, reducing

network load.

Parallel processing -asynchronous execution on

multiple heterogeneous network hosts

Dynamic adaptation - actions are dependent on

the state of the host environment

Tolerant to network faults - able to operate

without an active connection between client and

server

Flexible maintenance - to change an agent's

actions, only the source (rather than the

computation hosts) must be updated

1.3.2 Stragglers

Stragglers
[10]

, tasks running slowly compared to

their peers, also impacts on mapreduce

performance. Stragglers need to be speculated
[37]

on faster machines if overall performance is to be

improved as even a single task running on a

slower machine can delay the further execution of

already finished tasks.

Stragglers’ problem: Due to unavailable input,

tasks have to be recomputed if we want to proceed

further otherwise we have to wait for the time,

which the task takes to complete.

There are numerous reasons
[23]

 behind the task to

take longer time, for example, flawed machines,

heterogeneity among hardware, measure of data to

process, system blockage and contention for the

existing assets. Be that as it may if one task runs

slower on a given machine it is not important for

the entire present and future task to run slower on

that specific machine. Likewise it is not important

for a task to be slower all around its execution.

Sonu Yadav www.ijetst.in Page 1715

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

But, if one task runs slower on a given machine, it

is not necessary for all the current and future tasks

to run slower on that host. Also, it is not necessary

for a task to be slower throughout its execution.

e.g., it is possible that a task is slower because

there are other processes contending for the

resources, which can be very transient. Therefore,

we introduce another term, straggler effect, to

denote the transient behavior of the straggler.

Previous efforts mainly provided speculation

mechanisms at the application layer by modifying

the Hadoop framework. However, stragglers are

not entirely caused because of the faults at the

application
[38]

, but they may be caused even

because of the other processes running on the

same host. e.g., the disk access is delayed because

there is one more process that is performing disk

operations and hence contending for the disk.

Therefore, even if the disk is not faulty, because of

the other IO bound processes, a straggler effect

can be present. Similarly, the Hadoop processes

have to contend for the CPU in case there are other

VMs running on the same host. Due to this fact, no

mechanism can optimally resolve the straggler at

the application, but the straggler effect can be

effectively resolved at the operating system level,

where the information about all the processes

running on the host can be obtained and used.

2. COMPARISON BETWEEN VARIOUS

ALGORITHM

The Problem of Stragglers has accepted extensive

consideration recently with numerous stragglers

moderating methods being created. These

strategies could be comprehensively considered

Blacklisting and Speculative Execution.

Boycotting distinguishes machines in terrible

health and abstains from scheduling tasks on these

machines. Nonetheless, Stragglers happen on non

boycotted machines, regularly because of

characteristically complex reasons like I/O

contention, obstruction by occasional support

operations and background services and network

behaviors.

2.1 HADOOP NATIVE SCHEDULER

Here, the mechanism used by Hadoop to distribute

work across a cluster is described along with its

method to detect straggler and then speculating

them. Assumptions made by the scheduler have

been identified which hurt its performance under

normal load. These motivate our straggler

detecting and mitigating algorithms scheduler,

which can improve Hadoop performance.

Hadoop implementation of MapReduce closely

resembles Google’s
[1]

. There is a single master

managing a number of slaves. The input file,

which resides on a distributed file system

throughout the cluster, is split into even-sized

chunks replicated for fault-tolerance. Hadoop

divides each MapReduce job into a set of tasks.

Each chunk of input is first processed by a map

task, which outputs a list of key-value pairs

generated by a user defined map function. Map

outputs are split into buckets based on key. When

all maps have finished, reduce tasks apply a

reduce function to the list of map outputs with

each key.

Figure 3: Hadoop Map Reduce

Figure 3, illustrates a MapReduce computation.

Hadoop runs several maps and reduces

concurrently on each slave – two of each by

default – to overlap computation and I/O. Each

slave tells the master when it has empty task slots.

The scheduler then assigns it tasks. The goal of

speculative execution is to minimize a job’s

response time. Response time is most important

for short jobs where a user wants an answer

quickly, such as queries on log data for debugging,

Sonu Yadav www.ijetst.in Page 1716

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

monitoring and business intelligence. Short jobs

are a major use case for MapReduce.

2.1.1 Assumptions in Hadoop Native Scheduler:

Hadoop scheduler makes several implicit

assumptions [6] which are:

1. Nodes can perform work at roughly the same

rate.

2. Tasks progress at a constant rate throughout

time.

3. There is no cost to launching a speculative task

on a node that would otherwise have an idle slot.

4. A task’s progress score is representative of

fraction of its total work that it has done.

Specifically, in a reduce task, the copy, sort and

reduce phases each take about 1/3 of the total time.

5. Tasks tend to finish in waves, so a task with a

low progress score is likely a straggler.

6. Tasks in the same category (map or reduce)

require roughly the same amount of work.

2.1.2 How the Assumptions Break Down: These

assumptions [6] break down in current sort of

parallel processing network as follows:

1. Heterogeneity: Assumptions (1) and (2) are

about homogeneity among nodes in the network.

Hadoop assumes that any detectably slow node is

faulty. However, nodes can be slow for other

reasons. In a non-virtualized data center, there

may be multiple generations of hardware. In a

virtualized data center where multiple virtual

machines run on each physical host, such as

Amazon EC2, co-location of VMs may cause

heterogeneity. Heterogeneity seriously impacts

Hadoop scheduler. Because the scheduler uses a

fixed threshold for selecting tasks to speculate, too

many speculative tasks may be launched; taking

away resources from useful tasks (assumption 3 is

also untrue). Also, because the scheduler ranks

candidates by locality, the wrong tasks may be

chosen for speculation first.

2. Other Assumptions: Assumptions (3), (4) and

(5) stated above are broken on both homogeneous

and heterogeneous clusters, and can lead to a

variety of failure modes.

Assumption (3) breaks down when resources are

shared. For example, the network is a bottleneck

shared resource in large MapReduce jobs. Also,

speculative tasks may compete for disk I/O in I/O-

bound jobs. Finally, when multiple jobs are

submitted, needless speculation reduces

throughput without improving response time by

occupying nodes that could be running the next

job.

Assumption (4), that a task’s progress score is

approximately equal to its percent completion, can

cause incorrect speculation of reducers. In a

typical MapReduce job, the copy phase of reduce

tasks is the slowest, because it involves all-pairs

communication over the network. Tasks quickly

complete the other two phases once they have all

map outputs. However, the copy phase counts for

only 1/3 of the progress score. Thus, soon after the

first few reducers in a job finish the copy phase,

their progress goes from 1/3 to 1, greatly

increasing the average progress.

Assumption (5), that progress score is a good

proxy for progress rate because tasks begin at

roughly the same time, can also be wrong. The

number of reducers in a Hadoop job is typically

chosen small enough so that they can all start

running right away, to copy data while maps run.

However, there are potentially tens of mappers per

node, one for each data chunk. The mappers tend

to run in waves. Even in a homogeneous

environment, these waves get more spread out

over time due to variance adding up, so in a long

enough job, tasks from different generations will

be running concurrently. In this case, Hadoop will

speculatively execute new, fast tasks instead of

old, slow tasks that have more total progress.

2.2 LONGEST APPROXIMATE TIME TO

END (LATE) SCHEDULER

Progress Score is ascertained as in Hadoop local

scheduler. Progress rate is then calculated as

advancement score/T where T is the time for

which the task has been running. Time to finish is

then approximated as (1-Progress Score)/Progress

Rate.Tasks with advancement rates beneath an

edge of 25 percentile of all tasks are

acknowledged to be stragglers.LATE stays

informed regarding moderate nodes in the system

and does not run speculative duplicates on those

nodes.LATE additionally utilizes a cap on the

Sonu Yadav www.ijetst.in Page 1717

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

amount of speculative task that can run at once, to

handle the way that speculative tasks cost assets.

2.2.1 LATE Algorithm:

A node asks for a new task and there are fewer

than Speculative Cap speculative tasks running:

Ignore the request if the node’s total progress is

below Slow Node Threshold. Rank currently

running tasks that are not currently being

speculated by estimated time left. Launch a copy

of the highest-ranked task with progress rate

below Slow Task Threshold. Like Hadoop

scheduler, it also waits until a task has run for 1

minute before evaluating it for speculation. In

practice, it has found that a good choice for the

three parameters to LATE are to set the

Speculative Cap to 10% of available task slots and

set the Slow Node Threshold and slow Task

Threshold to the 25th percentile of node progress

and task progress rates respectively.

Advantages: LATE enjoys following advantages:

1. It is robust to node heterogeneity, in light of the

fact that it will re-propel just the slowest tasks and

just a little number of tasks.

2. LATE takes into account node heterogeneity

while deciding where to speculate tasks.

3. Likewise, by keeping tabs on assessed time left

instead of advancement rate, LATE hypothetically

executes just assignments that will enhance job

response time, as opposed to any slow tasks.

 Disadvantages: LATE comes up with some

demerits too, which are:

1. A bigger undertaking will have a tendency to

take more of a chance than the rests to process, in

this way it is conceivable to be tagged as a

candidate to be speculated resulting in wasted

assets.

2. As the end time for an assignment is ascertained

utilizing the averaged out progress rate of out

advancement rate against the current advancement

rate, the end time anticipated is prone to be

mistaken.

3. Starting assessment time needed by the LATE

scheduler is high (1 minute) before an undertaking

could be stamped as straggler.

4. LATE basically prompts longer reaction time.

Since no clarification for the moderate nature of

the accepted stragglers is looked for, the straggler

determination might be inaccurate.

2.3 REINING IN OUTLIERS USING

“MANTRI”

Mantri is a system that monitors tasks and mitigate

outliers using cause and resource aware

techniques. Mantri’s strategies include restarting

outliers, network-aware placement of tasks and

protecting outputs of valuable tasks. Using real-

time progress reports, Mantri detects and acts on

outliers early in their lifetime. A task that has to

run for long because it has more work to do will

not be restarted; if it lags due to reading data over

a low-bandwidth path, it will be restarted only if a

more advantageous network location becomes

available. Early action on outliers frees up

resources that could be used for pending tasks,

doing so is nontrivial.

2.3.1 Mantri’s Restart Algorithm

1: let ∆ = period of progress reports

2: let c = number of copies of a task

3: periodically, for each running task, kill all but

the fastest α copies after∆ time has passed since

begin

4: while slots are available do

5:if tasks are waiting for slots then

6: kill, restart task if trem > E(trem)+ ∆, stop at γ

restarts

7: duplicate if P((trem > tnew)*(c+1/c)) > δ

8: start the waiting task that has the largest data to

read

9: else all tasks have begun

10: duplicate iff E(tnew − trem) > ρ∆

11: end if

12: end while

Mantri’s restart algorithm is independent of the

values for its parameters. Setting γ to a larger and

ρ, δ to a smaller value trades off the risk of

wasteful restarts for getting larger speedup. The

default values that are specified here err on the

side of caution. To not thrash on inaccurate

estimates, Mantri kills a task no more than γ = 3

times. By scheduling duplicates conservatively

and pruning aggressively, Mantri has a high

Sonu Yadav www.ijetst.in Page 1718

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

success rate of its restarts. As a result, it reduces

completion time and conserves resources.

2.4 MONTOOL: FINDING STRAGGLERS IN

HADOOP

MonTool takes an alternative approach to

determine the relative ordering of system calls in

order to make a relation of system calls with

stragglers. It tracks disk and network system calls

for this analysis. MonTool is designed on the

underlying assumption that tasks in same category

(Map/Reduce) make similar system calls in an

ordered sequence. A straggler would show a

slower system calls access pattern. MonTool runs

a daemon on each slave node

Figure 4: Contention Avoidance Cloning

which periodically sends monitoring information

to the master node. Further, the master can query

slaves to understand the causes for the task delays.

2.4.1 Working: Mon Tool gathers information

about the tasks by tracing system calls and

analyzing them. With this information Mon Tool

finds the stragglers as well as their causes. For this

Mon Tool performs two important functions which

are:

1. Effective Gathering of System Calls: Mon Tool

used System Tap to monitor the system calls.

System Tap uses the hooks provided by the OS,

where user code can be executed. System Tap

generates comparatively lesser amount of

overhead data while gathering the system calls and

efficiently differentiates the network and disk

read/writes.

2. Detecting the stragglers based on the pattern of

system calls made by different machines: This task

was based on the correlation of various patterns

produced by various machines carrying out similar

tasks.

2.4.2 Limitations:It accepts all maps or

diminishes tasks work upon similar measured

workloads and access information in a similar

pattern. Be that as it reduces this assumption

reduce tasks as information size read by diminish

tasks may be distinctive for each task. Associating

system calls can't be attained without any data

about the keys and the example of the keys is

regularly not accessible in Hadoop.

2.5 ATTACK OF THE CLONES: DOLLY

Current mitigation techniques, all involve an

element of waiting and speculation of stragglers

whenever detected. Dolly instead propose full

cloning of small jobs, avoiding waiting and

speculation altogether. Cloning of small jobs only

marginally increases resource utilization because

workloads show that while the majority of jobs are

small, they only consume a small fraction of the

resources. Dolly methodology manages stragglers

in proactive way. As opposed to holding up and

attempting to predict stragglers, it take speculative

execution to its extreme and launches different

clones of each task of a job and just utilize the

result of the clone that completes first. This

introduces some challenges like extra handful of

resources and then accessing the data from the

fastest clone, i.e. which finishes first in the group.

Dolly defines new approaches for intermediate

data access.

2.5.1 Intermediate Data Access: Avoiding

Contention: Dolly defines its approaches for

mitigating contention while accessing intermediate

data from various map processes finishing

simultaneously.

1. CAC Contention Avoidance Cloning: Here as

soon as an upstream task clone finishes, its output

is sent to exactly one downstream task clone per

clone group.

Ѱ (n,c,d)=Probability[n upstream tasks of c clones

with >= d clones per group.

p is the probability of a task straggling.

 Ѱ (n,c,d) = (

)

n

 Contention Avoidance Cloning Dolly defined

probability for job straggling with CAC as

Sonu Yadav www.ijetst.in Page 1719

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

 P= 1-∑
c
d=1[ѱ(n,c,d)-ѱ(n,c,d-1)]*(1-p

d
)
n

1. CC Contention Cloning: As soon as an

upstream task clone finishes, all the downstream

tasks read the output of the upstream clone,

alleviating the problem of contention.

Figure 5: Contention Cloning
[7]

Dolly defined probability for job straggling with

CC as

 P= 1-∑
c
d=1[ѱ (n,c,1)]*(1-p

d
)
n

Every downstream clone waits for a small window

of time (ώ) to see if it can get an exclusive copy of

the intermediate data. The wait time of ώ allows

for normal variations among upstream clones. If

the downstream clones does not get its exclusive

copy even after waiting for ώ, it reads with

contention from one of the finished upstream

clones output.

2.6 ISSUES WITH EXISTING ALGORITHMS

There exist a few algorithms for straggler

detection and mitigating their effects. All of them

in one way or the other launches speculative

copies of the tasks which are running slower as

compared to the others. These speculative

launches, however, reduces the time for overall

execution but uses comparatively more resources.

During the review of the current state of art

algorithms it was found that the major issue with

the existing algorithms was their inefficiency in

launching the same task which is staggering on

one machine to the other machine and resuming it

there from the very same place from where it had

stopped execution on the previous machine. So

there is a sheer need for algorithms which can link

the already mapped and reduced portion to the

portion of the task which is to be executed next on

the other machine. Another issue was the problem

of homogeneity. None of them have employed

mobile agents for addressing heterogeneity of the

machines in the network. Mobile agents addresses

this issue efficiently as they can resume their

execution from the same place they had left but

also don’t mind the heterogeneity in the network.

3. PROPOSED WORK AND

IMPLEMENTATION

The previous chapter described various techniques

which are used by other researchers to solve the

problem of straggler detection and mitigation in

parallel data processing network; the chapter

reviewed the broad literature on stragglers and

shows important insights in the domain. It is

observed that there are a lot of techniques are

proposed for the detection of stragglers in parallel

processing data networks, but none of them used

mobile agents. A mobile agent is a set of code and

data which can execute the code with the data as

parameter in agent platform. Due to stragglers a

part of resources gets wasted because we have

multiple speculative copies of a single task

running at the same time but we need only one for

one final execution. So if we can limit the number

of speculative execution to a single copy at any

time we can have a hundred percent resource

utilization for the useful because we run only one

instance for any file at a time.

3.1 ALGORITHMS FOR PROPOSED

SOLUTION

The proposed solution ABMR algorithm uses one

mobile agent for each split it gets from the user

and then that mobile agent moves from one

location to another based on how the scheduler

schedules it based on the performance score the

agent sent to the scheduler. The scheduler

maintains two arrays one for slower machines and

one for faster machines. The scheduler reschedules

the agents running on slower machines to the

faster machines one at a time. The scheduler

finally recollects all the results after each agent has

done its work and then presents it to the original

user of the application.

Sonu Yadav www.ijetst.in Page 1720

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

Figure 6: Information Flow Diagram

3.1.1 Algorithm for Scheduler

1. All hosts in the network which want to take part

in big data processing register themselves with

their IP Addresses.

These IP addresses are used to create agent

containers in the main program.

2. A Scheduler agent is created in by the main

application which takes file name as argument and

finds all the agent containers running on the home

platform.

3. Scheduler agent creates the mobile agents after

splitting the file and assigns a file split to each of

them.

Each agent sends its performance score to the

scheduler after every Ts seconds.

score_agent[i] =Total executed/Total to be

executed*Ts

4. Meanwhile, when the agent moves from one

location to another, it saves its current state so that

they can start from the very same place where they

stopped the execution.

5. After performing all the operations, the agent

submits the result back to the scheduler.

6. The scheduler forwards the result to the user

after accumulation of results from all the reducers.

Algorithm for Scheduler

MainScheduler(file[],containers[])

1. ratio=file.length/container.length

2. for j=1 to container.length

for i=1 to ratio

container[j].createAgent(file[i],container[j]

)

3. for j=1 to file.length

score[j] = (receive (msg[j]);

avg+=score/file.length;

4. for i=1 to no of agents if score[i]<0.5 *

avg slowContainers[k++]=container[i];

else if score[i]>= avg

fastContainers[k++]=container[i];

5. for i=1 to no of slow Containers

agent[i].move(fastContainer[i]

6. if allMessageFinished

7. return

Figure 7: Flow Chart for the Proposed Solution

3.2 WORKING STEPS FOR CURRENT

SOLUTION

3.2.1 Registration Phase: Each of the nodes who

want to be the part of the computing grid first of

all registers itself with the main node where the

application has been running. This registration

process is carried out for a fixed time period. Each

node sends its IP Address to the main application

so that it can further communicate with these

nodes. These IP addresses are stored in the array

and a corresponding agent container is launched in

the jade runtime environment for each of the

agent. This agent container controls all the

operations to be performed on a particular agent.

Sonu Yadav www.ijetst.in Page 1721

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

Each node registering itself admits that it is

meeting all the conditions it is required to fulfill

and is readily offering its services to the parallel

processing network.

3.2.2 File Fetching and Scheduler Agent

Creation: In this step the address of the big data

file to be processed it is fetched and then the

scheduler agent is created along with the file

address and the array of the agent containers

created earlier. The scheduler then contacts all the

agent containers and they are then used for the

creation of agents. The scheduler in the meantime

splits the file among multiple pieces based on the

size of the split which it takes from the user.

3.2.3 Agent Score Calculation: Each agent

calculates the score based on the number of words

it has processed in unit time out of the total

number of words it had to process using the

formula

Score = (Number of words processed/Total

number of words to be processed)*(unit time)

where the Number of words processed are counted

by a variable,the Number of words to be processed

are found by the String library in JAVA,the unit

time is a constant set to value 100 milliseconds.

3.2.4 Agent Score Submission: Each agent then

submits its partially calculated score and then

sends it back to the scheduler; the agent uses the

message format from the Agent class in JADE

execution environment [44] to send the score of

the current execution. The application has an array

for the slowest and fastest running agents to store

the exact values.

3.2.5 Agent Relocation: The arrays stored for

slowest and fastest machines are used to send the

location where the slow agents have to move

where they can complete the original activity of

the agent. The location is sent to the agent in a

message particularly to the agent which the

scheduler declares the straggler.

3.2.6 Agent Result Submission: The agent then

submits the result to the application, which then

merges all the results into the main result and then

directs the final result to user. Final result is in the

form of the file which contains the overall result.

3.2.7 Final Result Submission: The application

then sends the result back to the users who have

requested the task.

3.3 IMPLEMENTATION

It all starts with the main host starting which

initially informs all the members of their network

that they can now register with the main host if

they want to be the part of the parallel data

processing network.

Figure 8: Requesting Connection from slaves

Hosts then register with the IP address of the

server (main host) which is sent to them in the

message the main host broadcast the registration

message. A main popup menu appears at the client

which can then accept the offer or reject it.

Figure 9: Confirming Request

The client who accepts the offer replies the

message containing their IP addresses which is

sent to the main host. Now after a pre specified

time limit is over, the user sends the big data file

address, i.e. where it is located and the scheduler is

activated at the main host, which in turn activates

the splitter to get the big data file splitted. The

splits are assigned to the agents and the agents are

assigned a specific location where it has to be

created by the main container.

Sonu Yadav www.ijetst.in Page 1722

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

Figure 10: Created Agents and Scheduler Agent

After the creation of all the agents the scheduler

waits for a response from the agents i.e. the

performance score is sent to the scheduler in the

form of a message.

Figure 11: Message sending from various agents

Figure 12: Rescheduled Agents

Finally the reducer’s output file is sent to the

scheduler who in turn sends it back to the user of

the application. The Scheduler in turn collects the

overall result and then sends this result to the user.

4. RESULT AND ANALYSIS

The results obtained by running various tests on

the algorithm, and running it with different types

of straggler arrangements. The proposed

Algorithm is tested on both scenarios for split

sizes as well as for various setting up of stragglers.

All the results collected by the experiments and

provide the comparison of the results with results

of other technique proposed for solving the

problem of straggler detection and mitigation.

4.1 TESTING

The implementation of the proposed algorithm is

put to test on an Intel i5 laptop with 6GB RAM is

used for the execution of the program for both

scenarios with a 450MB text file. The map and

reduce operations are defined for word count

procedures. JADE is used for creating agents on

the various machines.

The algorithm is run with the following values of

the parameters:

Figure 13: Parameter Values for the Algorithm

This gives the algorithm the flexibility to be

applied to various types of networks. By varying

these parameters one can get different execution

times. If one provides values which are below or

beyond those constrains, the results will not be

same. The algorithm is tested to provide good

results with these values of the parameters within

constraints.

4.2 Comparison with HADOOP Native

Scheduler based on Straggler Percentage

The proposed algorithm is compared with the

HADOOP Native Scheduler for its straggler

detection and mitigation technique’s wide

implementation. The following figure 14 clearly

shows that the proposed technique outperforms

this technique in execution time for randomly

generated graphs. This algorithm provided better

results than the algorithms used for comparison.

Not only it outperforms the Hadoop Native

Scheduler in its execution time but it does so

Sonu Yadav www.ijetst.in Page 1723

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

without any DFS. It simply saves the extra time

Hadoop takes to create the DFS and then resumes

them from the place where they have left earlier.

Table 1: Execution Overview on Straggler %

Straggler

%

HADOOP

Native

Scheduler

Time(ms)

Mobile Agent

Based MapReduce

Time(ms)

10% 48587 51237

20% 58548 54893

40% 87373 74120

50% 120252 99365

Figure 14: Line Graph Based On Straggler %

4.3 Comparison with HADOOP Native

Scheduler based on Split Sizes

The proposed algorithm is compared with the

HADOOP Native Scheduler for its straggler

detection and mitigation technique’s wide

implementation. The following figure 15 clearly

shows that the proposed technique outperforms

this technique in execution time for randomly

generated graphs for various split sizes. Our

algorithm provided better results than the

algorithms used for comparison. Not only it

outperforms the Hadoop Native Scheduler in its

execution time but it does so without any DFS.

Split sizes however, can increase our problems

because we used the network to transfer

information from one machine to the other. While

the information or splits are being transmitted the

network speed comes into picture which can

increase the overall execution time.

Table 2: Execution Overview on basis of various

Split Sizes

Setup Scenario

Size*Container*A

gents/Container

HADOOP

Native

Scheduler

Time(seconds)

Mobile Agent

Based

MapReduce

Time(millisec

onds)

50*3*3 45 48

45*2*5 47 48

30*3*5 50 49

15*3*10 55 55

Figure 15: Line Graph Based On Split Size

4.4 RESULT ANALYSIS

From the previous section it is evident that the

MBMR Algorithm performs well on single

machine as well as for network of machines. The

algorithm improves the execution time for a single

machine and can serve the same purpose for if we

have enough bandwidth. The significant insights

from the result of the implementation of MBMR

are as follows:

1. Outliers or stragglers are detected and are then

rescheduled to other machine without wasting a

single machine cycle because it reschedules them

in an efficient manner.

2. Rescheduling process is delayed so that if a

node has stuck in some other useful work it is not

marked straggler and can continue its work. This

Sonu Yadav www.ijetst.in Page 1724

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

delay does not cost us much because we are using

mobile agents which are known for their ability to

start from the very place, they left their execution.

3. There is a significant improvement in the

execution time as compared to existing algorithms

i.e. about 10-12% and that as well without using

any DFS.

5. CONCLUSION

5.1 Conclusion

Straggler detection and mitigation approaches

have attracted a lot of attention of researchers in

recent years and there is a considerable increase in

the number of algorithms published for solving the

issue as it has applications in various domains like

big data processing and parallel computation. This

report tries to review all popular algorithms for

straggler detection and mitigation along with their

rescheduling with their strengths and weaknesses.

The report tries its best to review all popular

algorithms, but the study is by no means complete

as there are newer algorithms discovered at a fast

rate because of the growing interest of researchers

in this domain. This report describes nearly all the

algorithms which exist for straggler detection, and

also reviews their strengths and weaknesses. The

basic concepts required for understanding the

problem of straggler detection are described in

great detail. The main goal was to come up with a

technique which is better than the current state of

art solutions. The proposed technique of Greedy

Mobile Agent based MapReduce for Big Data

Processing and straggler detection is described.

Extensive tests are also performed and the results

are also shown for the sake of validity of the

proposed technique. The proposed technique

performs well as compared to the classical

algorithms and the current state of art algorithms.

The report showed that the problem of outliers and

their mitigation can be handled by the proposed

greedy local technique.

5.2 Future Scope

In future the efforts will be concentrated on further

optimizing the technique, so that the algorithm can

scale to larger number of nodes and hence can be

applied to large social networks. Another area of

future work will be to come up with a parallel

version of the algorithm, so that large networks

can be processed in parallel, to reduce the

execution time. Further scaling the algorithm to

larger networks will also be considered.

The whole algorithm can be broken down into

three main steps namely: finding containers,

mobile agents and scheduler. In future the

optimizations that can be performed in each of

these steps are:

Optimization in the finding containers step

During this phase the algorithm simply wants the

master to initiate the process which in turn

increases the task for the master, adding this task

to the slaves we can reduce the amount of the

work for the master and can split this to the slaves.

Optimization in the mobile agent creation step

During the mobile agent creation phase the

algorithm simply creates the mobile agent which

serve the purpose of each split’s processing.

Mobile agent can be created in a more efficient

way for parallel processing if we redefine the data

structures and their behavior accordingly.

Optimization in the scheduling step

Scheduling starts when all agents are created and

we have containers available for their scheduling.

The scheduler’s logic can be further optimized to

reduce the execution time for the application.

Future work will also be concentrated on finding

better local heuristic functions to reduce the

execution time of the algorithm. Finally, better

benchmarking abilities are required by which we

can compare the algorithms faster.

References

1. Laura Wilber, Steve Mills, and Bill Perlowitz.

“Demystifying Big Data.”, Notices of TA

Foundation, (2009).

2. Chris Eaton, Dirk Daroos, Tom Deustch., and

George Lapis, Paul Zikopolous.

“Understanding Big Data:.”, (2011)

3. J. Dean and Sanjay Ghemawat. "MapReduce:

Simplified Data processing on large clusters ",

Commun. ACM, 51:107-113(2004).

Sonu Yadav www.ijetst.in Page 1725

IJETST- Vol.||02||Issue||01||Pages 1711-1725||January||ISSN 2348-9480 2015

4. Michael Isard, Mihai Budiu, Yuan Yu,

Andrew Birrell, Dennis Fetterly, D., "Dryad:

Distributed Data-Parallel Programs from

Sequential Building Blocks", EuroSys’07, 424,

175-308, (2007).

5. Spark homepage: http://www.spark-project.org

6. M. Zaharia, A. Konwinski, A. D. Joseph, R.

Katz, and I. Stoica. “Effective Straggler

Mitigation: Attack of the Clones”. In

Proceedings of the 8th USENIX conference on

Operating systems design and implementation,

OSDI’08, pages 29–42, 2008..

7. Ganesh Ananthanarayanan, Ali Ghodsi, Scott

Shenker, Ion Stoica, "Effective Straggler

Mitigation: Attack of the Clones", In USENIX

NSDI,2012.

8. G. Ananthanarayanan, S. Kandula, A.

Greenberg, I. Stoica, E. Harris, and B. Saha.

Reining in the Outliers in Map-Reduce

Clusters using Mantri. In USENIX OSDI,

2010.

9. Rohan Gandhi, Amit Sabne "Finding

Stragglers in Hadoop", In Proceedings of the

8th USENIX conference on Operating systems

design and implementation, OSDI’, 32, 425-

443, (2008).

10. Freeman, L. C., "Finding Stragglers in

Parallel Computation", ACM, 1, 215-239,

(2009).

11. Carl W. Olofson, Randy Perry, "IDC Analyze

the future", White Paper, 104, 36-41, (2011).

12. Guimerà, R., Sales-Pardo, M.. Amaral, L. A.

N., "Search Engine Architectures from

Conventional to P2P", Physical Review E, 70,

025101, (2012).

13. Hadoop Native Scheduler, Hadoop

http://hadoop.apache.org/docs/r2.2.0/hadoop-

project-dist/hadoop-

common/NativeLibraries.html

14. Neil Raden, Hired Brains, "Big Data Analytics

Architecture", Physical Review E, 70, 056131,

20 July (2012).

15. Chris Eaton, Dirk Daroos, Tom Deustch., and

George Lapis, Paul Zikopolous.

“Understanding Big Data:.”, (2011)

Author Profile

This is to certify that this dissertation entitled

“Mobile Agent Based MapReduce Framework

For Big Data Processing” embodies the work

carried out by Sonu Yadav pursuing M.Tech

degree in Computer Science & Engineering at

 RPSGOI Mahendragarh, Haryana, India

Affiliated from Maharshi Dayanand University,

Rohtak-124001, Haryana, India under Ms. Komal

Garg (Assistant Professor at Computer Science &

Engineering Deptt.) and that it is worthy of

consideration for the award of M.Tech degree.

