

TVN Prapulla Chandu
1
, A. Vishnuvardhan

2 www.ijetst.in Page 1139

IJETST- Volume||01||Issue||07||Pages 1139-1144||September||ISSN 2348-9480 2014

International Journal of Emerging Trends in Science and Technology

Proactive Management and Monitoring of Mobile Devices in Social

Networking Applications

Authors

TVN Prapulla Chandu
1
, A. Vishnuvardhan

2

1
M.Tech. Programme, Student of Vasireddy Venkatadri Institute of Technology. Nambur (v),

Guntur, Andhra Pradesh.

Email: chandu2126@gmail.com
2
Asst Professor of Vasireddy Venkatadri Institute of Technology, Nambur(v), Guntur, Andhra Pradesh.

Email: Harshanandhan2k14@gmail.com.

Abstract

Now-a-days mostly mobile devices using social network applications have a part in mobile software. Social

network applications utilize the particular component called mobile presence service. It collects and

maintains each and every user’s present status details. Some of the details like current status

[online/offline], Global location and network address, and also updates the user’s online status friends with

the details. If presence frequently gets updates, it may lead to a scalability problem in a large-scale mobile

presence service because the more number of messages distributed by presence servers. To notify the

problem and enables mobile presence services to support large-scale social network applications, we

proposed efficient and scalable server architecture, called Presence Cloud. When mobile device using

people connect to network, Presence Cloud searches for the presence of his/her friends and notifies them of

his/her status. For efficient and good presence searching, Presence Cloud arranges presence servers into a

neat architecture, called quorum-based server-to-server architecture. To achieve small constant search

latency, It also uses a directed search algorithm and a one-hop caching strategy. The total number of

messages generated by the presence server when a user arrives is called the search cost; the time it takes to

search for the arriving user’s friend list is called the satisfaction level.

1 Introduction

Everyone can use presence-enabled applications

through the Internet, mobile devices and cloud

computing environments. The examples of these

application social network applications/services,

worldwide are Face book [3], Twitter [4],

Foursquare, Google Latitude, buddy cloud [11]

and Mobile Instant Messaging [1] (MIM).The

people that participants are using different type of

devices to connect with their friends by Social

network services on Internet. They collect and

notify the details about the presence of friends and

their appearances and activities to interact with

each other. These are possible by availability of

mobile devices which will use the wireless mobile

network technologies, social network services to

share live happening from a long location to

location.

In cloud computing environments, mobile

presence service is an essential component of

social network services. All mobile users will be

maintained by mobile presence service in an up-

to-date, which is the function of the mobile

presence service. The presence information

mailto:chandu2126@gmail.com

TVN Prapulla Chandu
1
, A. Vishnuvardhan

2 www.ijetst.in Page 1140

IJETST- Volume||01||Issue||07||Pages 1139-1144||September||ISSN 2348-9480 2014

includes information about a mobile user’s global

location, availability, activity, device capability,

and preferences. The service must also join the

user’s ID to his/her current presence details, as

well as retrieve and subscribe to changes in the

presence details of the user’s friends.

In social network services, each mobile user has a

friend list chart, typically called a buddy list,

which contains the contact details of other users

that he/she wants to communicate with each other.

The mobile device user’s present status is send to

all (broadcast) automatically to each person on the

buddy list whenever he/she transits from one

status to the other. Suppose whenever a user login

to social network application through his/her

mobile device, then the mobile presence service

searches for the logged user’s and notifies to every

buddy list. Most presence services use server

cluster technology to maximize a mobile presence

service’s search speed and minimize the

notification time.

On the Internet currently, more than 500 million

people use social network services. Thus, a

scalable mobile presence service is deemed

essential for future Internet applications. More

Internet services have been deployed in paradigms

and applications respectively distributed and cloud

computing. For example, Google and Face book

which they develop the services and spread among

as many their distributed servers as possible to

support and increase the huge number of users

worldwide.

Before introducing the buddy-list search problem

in distributed presence architectures in large-scale,

we examine the server architectures of existing

presence services. When a distributed presence

service is overloaded with buddy search messages,

then the buddy-list search problem is a scalability

problem. The design of Presence Cloud, a scalable

server-to-server architecture that can be used as a

building block for mobile presence services. To

avoid single point of failure, single presence

server is not supposed to maintain service-wide

global information about all users. Presence Cloud

arranges presence servers into a architecture called

quorum-based server- to-server architecture to

facilitate efficient buddy list searching. The server

overlay and a directed buddy search algorithm to

achieve small constant search latency; and

employs an active caching strategy that

substantially reduces the number of messages

generated by each search for a list of buddies.

Analyze the performance complexity of Presence

Cloud and two other architectures, one is Mesh-

based scheme and second is a Distributed Hash

Table based scheme. Through the process of the

simulation, we compare the performance of the

three approaches in terms of the number of

messages generated and the search satisfaction

which we use to denote the search response time

and the buddy notification time.

2 Related Work

Some IM systems, some form of centralized

clusters to provide presence services. The AIM,

Microsoft MSN and Yahoo Messenger are three

most known IM systems.Skype, a popular voice

over IP application, utilizes the Global Index (GI)

technology to provide a presence service for users.

Global Index is a multi tiered network to pology.

Where each node collects and maintains full

knowledge of all available users. It is difficult to

determine GI technology is used exactly in Skype

because it is not an open protocol.

Jabber is a well-known deployment of instant

messaging technologies based on distributed

structure and SMTP protocols has distributed

architecture which will be captures by jabber.

By using distributed structures like Jabber, the

output is a adaptable network of servers that can

be scaled much higher than the enormous,

centralized presence services. Recently, there is a

growing amount of interest in how to design a

peer-to-peer [6] SIP[7] which reduce maintenance

costs, and prevent failures.P2PSIP users are

organized in a DHT [8] system, which is easy

TVN Prapulla Chandu
1
, A. Vishnuvardhan

2 www.ijetst.in Page 1141

IJETST- Volume||01||Issue||07||Pages 1139-1144||September||ISSN 2348-9480 2014

than in a centralized server and to maintain

presence details.

Mobile services integrate the presence services

and some mobile devices also support mobile

presence services. In a weakly consistent scheme

to reduce the number of updating messages in

mobile presence services of IP Multimedia

Subsystem (IMS). However, it also suffers

scalability problem since it uses a central SIP

server to perform presence update of mobile users.

3 The Problem Statement

We assume the geographically distributed

presence servers to form a server-to-server

network, G = (V; E), where V is the set of the

Presence Server (PS) nodes, and E is a collection

of ordered pairs of V. Each PS node ni∈ V

represents a Presence Server and an element of E

is a pair (ni; nj) ∈ E with ni; nj ∈ V. Because the

pair is ordered, (nj ; ni) ∈ E is not equivalent to

(ni; nj) ∈ E. So, the edge (ni; nj) is called an

outgoing edge of ni, and an incoming edge of nj.

The server overlay enables its PS nodes to

communicate with one another by forwarding

messages through other PS nodes in the server

overlay. Indicate a collect of the mobile users in a

presence service as U = {u1; : : : ; ui; : : : ; um},

where 1 ≤ i≤ mand m is the number of mobile

users. A mobile user up communicates with one

PS node for search other user’s presence

information. That PS node will inform to the other

mobile users of his/her arrival.

4 Design of Presence Cloud

A new design of mobile presence services is

needed to address the buddy list search problem

for mobile social network applications. Presence

Cloud is used to query the system for buddy list

searches. It will construct and maintain distributed

server architecture. Presence Cloud consists of 3

most important building blocks that are run across

a set of presence servers. The 3 building blocks of

Presence Cloud are summarized below:

Presence Cloud server overlay organizes

presence servers based on the concept of grid

quorum system. So, the server overlay of

Presence Cloud has a balanced load property and a

two-hop diameter with O (√n) node degrees,

where the count of presence servers is indicated

by n.

One-hop caching strategy is used to reduce the

accelerate query speed and number of transmitted

messages. Immediate neighbors which offer a

buddies and which will be collected by presence

servers that has caches to store.

Directed buddy search is based on the directed

planning for search. On average it provides little

search latency.

4.1 Presence Cloud Overview

The Presence Cloud is used to construct scalable

server architecture for mobile presence services,

and can be used to efficiently search the desired

buddy lists.

Fig.1.In the mobile Internet, a mobile user can

access the Internet and make a data connection to

Presence Cloud via 3G or Wi-Fi services. After

the mobile user connect and authenticates

himself/herself to the mobile presence services,

the user is directed to one of Presence Servers in

the Presence Cloud by using the Secure Hash

Algorithm, such as SHA-1. The mobile user opens

a TCP connection to the Presence Server (PS

node) for control message transmission. After the

control channel is built, the connected PS node

receives a request from mobile users for his/her

buddy list searching.

Fig.1. An overview of Presence Cloud

TVN Prapulla Chandu
1
, A. Vishnuvardhan

2 www.ijetst.in Page 1142

IJETST- Volume||01||Issue||07||Pages 1139-1144||September||ISSN 2348-9480 2014

Our Presence Cloud returns the presence detail of

the desired buddies to the mobile user after doing

an efficient searching operation.

4.2 Presence Cloud Server Overlay

The Presence Cloud server design model

algorithm arranges the PS nodes and which

provides a good low-diameter overlay property.

When the PS nodes into a server-to-server

structure. That ensures that a PS node only needs

two hops to reach any another PS nodes. The

concept of grid quorum system used by our

Presence Cloud, where a PS node only maintains a

set of PS nodes of size O (√n), where in mobile

presence services n is the number of PS nodes. By

using a grid quorum system in a Presence Cloud

system will construct the PS list, that PS node has

a group of PS nodes.

Fig. 2 for n=9. The size of a grid quorum is

⌈ √n⌉ ×⌈ √n⌉ . When a PS node joins the server

overlay of Presence Cloud, it receives an ID in the

matrix structure, find its point of place in the

matrix and obtains its PS list by contacting a root

server1. On the ⌈ √n⌉ × ⌈ √n⌉ grid, a PS node

with a grid ID can pick one column and one row

of entries and these entries will become its PS list

in a Presence Cloud server overlay. Fig. 2

illustrates an example of Presence Cloud, in which

the grid quorum is set to ⌈ √9⌉ × ⌈ √9⌉ . In the

Fig. 2, the PS node 8 has a PS list {2, 5, 7, 9} and

the PS node 3 has a PS list {1,2,6,9}. Thus, the PS

node 3 and 8 can construct their overly networks

according to their PS lists respectively.

Fig.2. A Perspective of Presence Cloud Server

Overlay

4.3 One-hop Caching

The presence of users, the caching strategy to

replicate presence information of users. In

Presence Cloud, each PS node maintains a user

list of presence information of the attached clients

[users].Presence Cloud used for caching the client

list of each node in its PS list.

At most one hop away from itself the PS nodes

replicate the user.

When neighbors establish connections then

periodically cache is updated with its neighbors.

Therefore, when a query is received by the PS

node, it can respond with all matches from its own

user list and provide matches from its caches of all

neighbors which has user lists. Whenever the user

will log off then automatically the Presence Cloud

inform to all servers and this information will

updated to all user list. This information transmits

them by neighboring PS nodes.

4.4 Directed Buddy Search

The buddy list searching algorithm of Presence

Cloud [14] coupled with the two-hop overlay and

one-hop caching [13] strategy ensures that

Presence Cloud can typically provide swift

responses for a large number of mobile users. In

servers network arrange PS nodes, which will

handle queries and reduce the network traffic

without impact on the search results by using the

one-hop search. Second, the neighbors user lists

can be maintained by using the one-hop and by

these finding buddies will increase and improve

the response time. For saving the cost we have to

use piggybacked for broadcasting messages in

buddy search.

TVN Prapulla Chandu
1
, A. Vishnuvardhan

2 www.ijetst.in Page 1143

IJETST- Volume||01||Issue||07||Pages 1139-1144||September||ISSN 2348-9480 2014

5 Cost Analysis

Cost analysis of the communication cost of

Presence Cloud [14] in terms of the number of

messages required to search the buddy

information ofa mobile user.

The buddy-list search problem can be solved by a

searching algorithm called brute-force [15]. In the

mobile presence service brute-force [15] simply

finds and identifies all the PS nodes.

The communication cost [16] of searching buddies

and replicating presence information can be

formulated as Mcost= Q Mesh + RMesh, where R

Meshis the communication cost of replicating

presence information to all PS nodes.

Accordingly, we have M cost =O (n).

In the analysis of Presence Cloud, we assume that

all the PS nodes will access all the mobile users.

Here, the search cost of analysis denoted as Qp,

which is 2 ×(⌈ √n⌉ −1) messages for both

searching buddy lists and replicating presence,

because these both can be combined into one

single message, the replicating cost for

communicating, Rp= 0. It is straight forward to

know that the communication cost of searching

buddies and replicating presence information in

Presence Cloud is P cost= Qp = 2× ([√n] −1).

6 Performance Evaluation

Our implementation we use Java to write network

simulator [17,18] and the related architectures.

Some of the architectures are Mesh based,

Presence Cloud and Chord-based presence server

architecture. To perform tests up to 20,000 users

and 2,048 PS nodes the simulator used is packet-

level, which make our experiments difficult the

data generated by the simulator will fit for small

time in RAM.

6.1 Performance Metrics

The following three metrics measure the server

architectures performance in the context.

1) Total Searching Messages: This represents

during the simulation time the total

number of messages transferred between

the query initiator and the other PS nodes.

2) Average Searching Messages for each-

arrived user: The number of searching

messages used for each arrived user.

7 Conclusion

In this paper we presented about the scalability of

the server structure and server capable of use PS

nodes which will support quires. The server which

introduced the buddy-list problem in distributed

server architecture of mobile presence. The server

notifies and updates the buddy list; when the

mobile users are connect to network by social

service applications and when they log off. In

large-scale social network services Presence

Cloud are used has a a scalable mobile presence

service

References

1. Instant messaging and presence protocol

ietf working group

http://www.ietf.org/html.charters/impp-

charter.html.

2. Extensible messaging and presence

protocol it working

grouphttp://www.ietf.org/html.charters/xm

pp-charter.html.

3. Facebook, http://www.facebook.com.

4. Twitter, http://twitter.com.

5. Jabber, http://www.jabber.org/.

6. Peer-to-peer session initiation protocol

working

group,http://www.ietf.org/html.charters/p2

psip-charter.html.

7. K. Singh and H. Schulzrinne,”Peer-to-peer

internet telephony using sip,” Proc. of

ACM NOSSDVA, 2005.

8. S. A. Baset, G. Gupta, and H.

Schulzrinne,”Openvoip: An open peer-

to-peer voip and IM system,” Proc. of

ACM SIGCOMM, 2008.

TVN Prapulla Chandu
1
, A. Vishnuvardhan

2 www.ijetst.in Page 1144

IJETST- Volume||01||Issue||07||Pages 1139-1144||September||ISSN 2348-9480 2014

9. J. Rosenberg, H. Schulzrinne, G.

Camarillo, A. Johnston, J. Peterson, R.

Sparks, M. Handley, and E. Schooler,”Sip:

Session initiation protocol,” RFC 3261,

2002.

10. Open Mobile Alliance, OMA instant

messaging and presence service, 2005.

11. Buddycloud, http://buddycloud.com.

12. Mobile instant messaging,

http://en.wikipedia.org/wiki/Mobile instant

messaging.

13. M.A. Maddah-Ali and U. Niesen,

“Fundamental limits of caching,” arXiv

preprint ArXiv: 1209.5807, 2012.

14. Extensible Messaging and Presence

Protocol IETF Working Group,

“http://www.ietf/html.charters/xmppcharte

r.Service,”2005.

15. Michael T. Goodrich and Roberto

Tamassia, Algorithm Design, 2002, John

Wiley and Sons, Inc.

16. B. Awerbuch, A. Baratz, and D.

Peleg, "Cost-sensitive analysis of

communication Protocols", Proc. ACM

PODC, pp.177 -187 1990 .

17. M. Law and W. D. Kelton, Simulation

modelling and analysis, third ed. New

York: McGraw-Hill, 2000.

18. Schmeiser, "Simulation output analysis: A

tutorial based on one research thread,"

presented at the 2004 Winter Simulation

Conference, December 5-8, 2004, pp. 162-

170.

