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1. Introduction 

The brain’s reticular activating system (RAS) is 

thought to regulate the perception of mental 

fatigue. Mental fatigue is the temporary 

incapability to sustain optimal cognitive 

performance. During any cognitive activity, the 

onset of fatigue starts gradually and relies on an 

individual’s cognitive ability. Mental fatigue can 

manifest itself as decreased attention which occurs 

when there is depletion of limited resources from 

the self-regulatory capacity [1].  

 

1.1 Electroencephalogram (EEG) (Fz and Pz) 

The electroencephalogram (EEG) has been used 

as a tool for investigating brain functions for 

several decades. Various cognitive attention-

related studies [2], [3] revealed that both fronto-

midline and parietal-midline are associated to 

focused attention and somatosensory information 

processing [4]. Moreover, researchers [5] found 

increased frontal theta power is associated with 

cognitive task complexity and focused attention, 

while decreased parietal alpha power is related to 

Abstract: 

Nonlinear analysis of electroencephalogram (EEG) activity can provide a better understanding of brain 

signal dynamics during cognitive fatigue. The aim of this study was to analyse the regularity of EEG time 

series of healthy participants undergoing a series of cognitive tasks to test the hypothesis whether the 

irregularity of EEG signals changes through increasing time on performing cognitive task. EEG activities 

were recorded from two scalp loci of the international 10-20 system (that are Fz and Pz electrodes 

representing the midline frontal and parietal lobes of the brain respectively) in twelve participants from 

which Approximate Entropy (ApEn) values were computed. ApEn is a nonlinear method which quantifies 

the irregularity of a time series whereby larger ApEn corresponds to more irregularity. ApEn values were 

found to be significantly different among the six time intervals of a series of 5-minutes cognitive tasks 

(p<0.01). Moreover, there was a significant positive correlation between ApEn at the Pz electrode and 

measured mental fatigue visual analogue scale (p<0.01). Therefore, the irregularity found in the 

participants’ EEG signals across the time intervals of performing cognitive task demonstrate that EEG 

regularity analysis with ApEn might be a useful tool in increasing our insight into the characteristics of the 

brain processes involved while performing fatiguing cognitive task and in quantifying cognitive fatigue. 
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increased information processing in a cognitive 

and visuomotor task. Therefore, in this research, 

EEG activities were recorded from the frontal 

midline and the parietal midline areas of the brain. 

 

1.2 Nonlinear Methods 

       Recent progress in nonlinear dynamics theory 

has provided new methods for the study of EEG 

[6]. Nonlinearity is found in many dynamical 

systems. For instance, nonlinearity is introduced 

even at cellular level of the brain as the neurons 

dynamical behaviour is controlled by saturation 

and threshold phenomena. Nonlinear studies of the 

brain were successful in making relative 

comparisons of different physiological states and 

in forming part of possible medical applications 

techniques [7]. 

So far, few authors have analysed EEG in 

healthy participants with nonlinear methods in the 

cognitive fatigue context by estimating the 

underlying nonlinear dynamical complexity of 

physiological data employing correlation 

dimension and largest Lyapunov. These measures 

were problematic as the amount of data required 

for meaningful results in their computation is 

beyond the scope for experimental possibilities for 

physiological data [8], [9]. Furthermore, these 

nonlinear metrics assume the time series to be 

stationary, and this is generally not true with 

physiological data. Thus, the study of the EEG 

background activity with more suitable nonlinear 

methods becomes apparent. 

1.3 Approximate Entropy 

One alternative solution lies in computing the 

approximate entropy of the EEG. Approximate 

Entropy (ApEn) is a recently introduced family of 

statistics that quantifies regularity in the data 

without any apriori knowledge about the system 

generating them[10],[11]. Approximate Entropy is 

a measure of complexity and it quantifies the 

unpredictability of fluctuations in a time 

series[12]. A time series containing many 

repetitive patterns has a relatively small ApEn 

whereas a less predictable process has a higher 

ApEn and less system order. Given N data points 

from a EEG time series {x(n)} = x(1), x(2), …., 

x(N), the following steps were used to compute 

ApEn [9], [11]: 

 

Step 1: Form N-m+1 vectors X(1)…X(N-m+1) 

defined by: X(i) = [x(i), x(i+1),… x(i+m-1)], i = 

1…N-m+1. Fix m, an integer, and r, a positive real 

number. The value of m represents the window 

length of compared run of data, and r specifies a 

filtering level [11].  

Step 2: Define the distance between X(i) and X(j), 

d[X(i),X(j)], as the maximum norm:  

d[X(i), X(j)] =        (1) 

The variable d represents the distance between the 

vectors x(i) and x(j), given by the maximum 

difference in their respective scalar components.  

Step 3: For a given X(i), count the number j (j = 

1…N-m+1) so that d[X(i), X(j)] ≤ r, denoted as 

N
m
(i). Then, for i=1…N-m+1, 

             (2) 

 measures, within a tolerance r, the frequency 

of patterns similar to a given window of length m. 

Step 4: Compute the natural logarithm of each 

and average it over i, 

       (3) 

Step 5: Increase the dimension to m+1. Repeat 

steps (1) to (4) and find  and .  

Step 6: ApEn is defined by: 

       (4) 

Although the selection of m and r are critical in 

computing ApEn, there are no proper guidelines to 

optimise these values. For smaller r values, poor 

conditional probability estimates are achieved 

whereas for larger r values, detailed system 

information is lost. To avoid a significant 

contribution of noise in an ApEn computation, 
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value of r should be chosen such that it is larger 

than most of the noise present in the signal [12]. It 

was suggested to estimate ApEn with parameter 

values m = 2 and r = 0.2*SD where SD represents 

the standard deviation of the original data 

sequence {x(n)} [9], [11]. Couple with that, it was 

shown that these input parameters produce good 

reproducibility for ApEn especially for time series 

of data length N ≥ 60 [11]. Also, previous study 

[9] showed that these values were good choices 

especially for time series of data length N = 3000 

which was applied in this research study [9], [11]. 

2. Materials and Methods 

2.1 Participants Details 

Twelve healthy and right-handed participants 

comprising of 6 males and 6 females were 

recruited from the research participant database. 

The participants’ mean age was 29.6 ± 3.7 years 

old, and they were moderately to highly mentally 

active as they were required to complete a series of 

5 minute-block of cognitive task for a total 

duration of thirty minutes. Using a health 

questionnaire, participants reported no history of 

neurological or musculoskeletal pathology that 

might affect their cognitive and motor 

performance. Subjects signed an informed consent 

form approved by the School ethics committee 

board.  

 

2.2 Hardware and software resources 

The Research Power lab, and Octal Bio Amp 

systems (Power lab, AD Instruments, Australia) 

were used for the recording of the 

electroencephalogram (EEG) data. The electro-

caps (small, medium or large) consist of Ag/AgCl 

electrodes embedded in the elastic electro-cap 

fabric to record EEG activities from the scalp, and 

these EEG data were transmitted to the Power lab 

systems via an electro-cap interface (Electro-Cap 

International, Inc., USA). Moreover, the ECI 

electro-gel was used to ensure the impedance 

between the EEG electrodes and the scalp was less 

than 5kΩ which was verified using a digital multi 

meter (Draper 52320, UK).  The software that 

were utilised in this study were Chart 5 software 

for Windows to record and process the 

physiological signals, the E-Prime software 

version 2.0 to implement and conduct the 

cognitive tasks, and Matlab software R2009b for 

computation of ApEn. 

 

2.3 Description of the cognitive tasks 

The rapid visual information processing (RVIP) 

and modified stroop (MST) tasks were used in this 

research study, so that the psychological strain 

which was placed by these tasks on the 

participants was mostly cognitive [13]. For, the 

modified stroop task (MST), the participants had 

to respond to the colour of the word appearing at 

the centre of a computer screen (Red, Yellow, 

Green and Blue) by pressing quickly the numerical 

keys associated to these colours on the keyboard. 

Moreover, if the word that appeared on the screen 

was written in grey colour, they were required to 

respond to the word. For instance, if the word 

RED was written in grey colour, then the 

participants would need to press the keyboard 

numerical key which was associated to red colour. 

The duration of the MST cognitive task was 5 

minutes. As for the rapid visual information 

processing (RVIP) task, the participants were 

required to respond to a specific sequence (odd or 

even) of integer numbers from 0 to 9 which 

appeared at a rate of 600 milliseconds on the 

computer screen. For instance, when they noticed 

three consecutive numbers (e.g. 5 3 7) or three 

consecutive numbers (e.g. 2 6 8), they had to press 

the 'spacebar' on the keyboard as quickly and 

accurately as they could. The duration of this 

cognitive task was also 5 minutes. These cognitive 

tasks were alternately presented to the participants 

for a duration of 30 minutes so that there were in 

all three RVIPs and three MSTs which represented 

the cognitive battery task.  

 

2.4 EEG data recording and processing 

EEG activities were recorded continuously from 

the midline placements Fz and Pz according to the 

international 10-20 system electrode placement 

(See Figure 1). The cortical EEG activities were 

amplified, digitized, sampled at a frequency rate of 
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400Hz which was sufficient to capture the EEG 

activities based on Nyquist’s criterion. Then these 

EEG activities were online filtered using a pass 

band of 0.1Hz to 100Hz using the Power Lab 

systems. The EEG signals were then digitally low 

pass filtered with a cut-off frequency of 30 Hz, and 

online reduced to a sample frequency of 100 Hz to 

analyse the EEG frequency bands of interest [14]. 

Moreover, artefacts such as blinking and fast eye 

movements were removed from the recorded 

signals based on any amplitude greater than ±70 

µV [15]. Eventually, these processed EEG signals 

were used to compute and average the approximate 

entropy over 3000 EEG data points for each 5 

minute block of cognitive task (See illustration 

Figure 2). 

 

 
Figure 1: The 10-20 international system electrode 

placement showing the EEG electrode placement, 

the reference electrode (A1 - left earlobe) and the 

ground electrode (AFz), Fz (Frontal midline 

electrode), Cz (central midline electrode) and Pz 

(parietal midline electrode). 

 

 
Figure 2: EEG activity (measured in microvolts) 

for the first 3000 data points for the first cognitive 

task presented (RVIP) for a randomly chosen 

participant. 

 

2.5 Study protocol and procedures 

On the first visit to the Neurophysiology 

laboratory, the participants completed the health 

questionnaire and then, they were each assigned an 

identification number to protect their anonymity. 

The right size electro cap was identified for each 

participant, and then they were given each a 

practice session on the cognitive tasks that they 

would need to complete during their second visit. 

This first visit allowed the participants to get 

accustomed with the laboratory environment and 

procedures. One week later, during their second 

visit, the participants sat comfortably facing the 

computer monitor at a distance of about 60 cm and 

the appropriate EEG electro-cap was fitted. Then, 

EEG activities at the frontal midline (Fz), and 

parietal midline (Pz) were recorded while the 

reference Ag/AgCl electrodes were attached to A1 

representing the left ear lobe, and the ground 

electrode was located at AFz representing the 

Anterior Frontal of the scalp [14] (Figure 1).  

 

As precautions, the participants were requested 

to try not to blink while responding to the visual 

cues, during the cognitive experiments, to reduce 

interference of the electrooculogram (EOG) 

activities [16] to the measured EEG signals. Also, 

just after each 5 min-block of cognitive task, they 

had to complete a mental fatigue visual analogue 

scale (VAS) so that their perceived mental fatigue 

was monitored during the trial. They were required 

to mark in-between the horizontal scales that 

consisted of two extreme marks ‘0’ and ‘10’ 

signifying low and high mental fatigue 

respectively.  

 

2.6 Statistical Analysis  

Firstly, all the recorded and computed data were 

tested for normality using Kolmogorov-Smirnov 

(K-S) test [23]. A Two-way factorial ANOVA 

(Analysis of Variance) was used (2 Brain 

Locations x 6 time intervals) to analyse the 

dependent variable ApEn across the brain regions 

and time on task [17]. The two brain locations are 

Pz and Fz while the six time intervals are (time5, 

time10, time15, time20, time25, time30). The 
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notations time5 represents 5 minutes have elapsed, 

time10 represents 10 minutes had elapsed and so 

on. When the main analysis indicated a significant 

interaction (p < 0.05) between the factors, follow-

up analysis were achieved, adjusting error rates 

according to Bonferroni correction. Also 

depending on the normality of the data, 

appropriate correlation analysis method was 

employed to find out the relationship between the 

mental fatigue VAS and computed ApEn.  

 

3. Results 

Firstly, all measured and computed data were 

found to be normally distributed and hence 

appropriate parametric tests were used.  

3.1 Mental fatigue Visual Analogue Scale 

Table 1: Subjective measure of mental fatigue 

scale (mean and standard deviation) for the twelve 

participants during the 6 time intervals 

 

 Time 

5 

Time 

10 

Time 

15 

Time 

20 

Time 

25 

Time 

30 

Mean 

(±SD) 

49.2 

± 1.3 

44.1 

± 1.9 

49.1 

± 1.2 

45.3 

± 2.6 

50.9 

± 3.1 

45.3 

± 2.6 

Median 

 

49.3 43.8 49.0 45.0 51.3 45.0 

 

Table 1 shows that the mean and median of mental 

fatigue scale measures decreased and increased for 

the different time intervals. Statistical analysis 

using paired t-test showed that there was a 

significant difference between the perceived 

mental fatigue scales for these two types (RVIP 

and MST) of cognitive tasks (Paired t-test, t-value 

= 10.046, p < 0.0001). Participants felt more 

mentally fatigued while completing the RVIP 

(49.7±2.2) as compared to MST (44.9 ± 2.4).  

 

3.2 ApEn data 

Based on the statistical analysis tests of between-

subjects effects with ApEn as dependent variable 

(DV), there was a significant difference in ApEn 

values for the factor Time Interval (2-way 

Factorial ANOVA, F(5, 11) = 22.684, p < 0.0001, 

partial η
2
 = 0.462) (See Figure 3) but there was no 

significant difference in ApEN values for the factor 

brain location. Also there was no significant 

interaction between brain location and time 

interval. In addition, there was a significant 

correlation between ApEn at Pz electrode and 

Mental fatigue scale which means that as the 

irregularity of the EEG activity increases, the 

mental fatigue VAS also increases (Pearson’s 

Correlation Coefficient r= +0.328, p = 0.005). The 

correlation between ApEn for Fz and mental 

fatigue was positive with r = +0.118 but it was not 

significant with statistical p > 0.05.  

 

 
Figure 3: Computed average (±SD) ApEn values 

for the two brain locations (Fz and Pz) for the six 

time intervals of 5 minutes each. 

 

4. Discussions 

The advantage of using the approximate entropy 

nonlinear metric was that it considers the total 

information content of the EEG signal across the 

brain regions under investigation [18]. ApEn 

involved low computational demand and it took in 

average about 2.7 minutes to compute ApEn for 

data length N= 3000 data points and it is robust to 

noise. Based on the results, it appeared that ApEn 

is successfully detecting changes in the irregularity 

of EEG signals among the different time intervals 

of performing and completing the cognitive trials. 

In addition, ApEn studies had successfully 

classified EEG in psychiatric diseases [7] and here 

ApEn could distinguish well the different time 

intervals of performing the cognitive tasks. 

Mathews and Desmond (2002) stated that 

prolonged cognitive task exposure and multiple 

task demands could induce a great level of 
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information processing which subsequently 

increased the mental workload. Such increments in 

mental workloads caused a depletion of the 

cognitive system’s energy resources that were 

available for task completion and consequently 

promoted the development of fatigue [19, 20] as 

felt by the participants especially while completing 

the RVIP task over the MST task. Also, ApEn at Pz 

electrode showed positive associations with mental 

fatigue VAS which insinuates that this nonlinear 

metric could be used to reflect cognitive fatigue 

levels. So results found in this study support 

previous cognitive attention-related studies [4] 

where they found that EEG activities at Pz 

electrode had strong associations with attention 

and information processing as the EEG irregularity 

changes were clearly observed at the midline 

parietal lobe region.  

5. Conclusion 

Approximate entropy at the midline parietal (Pz) 

region of the brain reflects positively the perceived 

mental fatigue. Also it distinguishes well the 

regularity of the EEG signals among the different 

time intervals of performing cognitive tasks and 

thus, ApEn is a promising tool to distinguish the 

well the brain signal irregularity dynamics 

involved during increasing time on task of 

performing cognitive activities. Future studies 

could investigate changing the ApEn parameter, 

the filtering level r, and see whether there may be 

stronger or weaker associations with perceived 

mental fatigue scale measurements and also 

involve only one type of cognitive task for the 

same duration of 30 minutes. 
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