

Nitika , Anju Gandhi www.ijetst.in Page 956

IJETST- Volume||01||Issue||06||Pages 956-960||August||ISSN 2348-9480 2014

 International Journal of Emerging Trends in Science and Technology

Research of Improved Association Rule Algorithms (Apriori and FP-Growth)

Authors

Nitika, Anju Gandhi

Kurukshetra University, Kurukshetra

Email: Nitikkaa_singh@yahoo.com

Abstract: - Association rule mining explores interesting relationships among items in a given data set. An

objective of association rule mining is to develop a systematic method using the given database and finds

relationships between the different items. Goal of association rules finding associations among items from

a set of transactions, which contain a set of items. In this paper we focused on explaining the

fundamentals of association mining and analyze implementations of the well-known association rule

algorithms. Study focuses on algorithms Apriori, FP-Growth, and Dynamic Itemset Counting. Moreover,

the algorithm generates frequent item sets in order so that the result can be used expediently.

Key Terms – Association Rule Mining, FP-Growth Algorithm, Apriori algorithm, Frequent Itemsets.

INTRODUCTION

Association rule mining is the most commonly

used data mining operation. It uses generation of

association rules based on the given set of data.

These rules are defined using a stochastic

approach, based on probabilities drawn up on the

various attributes of the database. An association

rule is a rule, which implies certain association

relationships among a set of objects (such as

``occur together'' or ``one implies the other'') in a

database. Given a set of transactions, where each

transaction is a set of literals (called items), an

association rule is an expression of the form “ X

=> Y has support s and confidence c”, where “X”

and “Y” are two attributes or sets of attributes

(called itemsets) in the given database.

I. Organization of ItemsetS In Association Rule

Mining

Transactions are needed to be count to find the

frequent itemsets. Generally, tree structure is used

to organize the itemsets. Aim of the itemset tree is

storing itemsets efficiently and supporting the

process of transaction. Some of the association

rule algorithms use different data structures which

may be used for the nodes of this tree, and the

other use different pruning techniques for

generating the frequent-itemsets.

Nitika , Anju Gandhi www.ijetst.in Page 957

IJETST- Volume||01||Issue||06||Pages 956-960||August||ISSN 2348-9480 2014

II. Frequent Itemsets Algorithms

The problem of mining association rules was first

proposed by. Agrawal has introduced one of the

most popular association rule algorithms called

Apriori to find frequent itemsets. Apriori and all

of the other algorithms based on the principles of

knowledge of frequent itemsets “all non-empty

subsets of a frequent itemset must also be

frequent”.

IMPROVED APRIORI ALGORITHM

Apriori, [1] the Apriori algorithm is the most

popular association rule algorithm. Apriori have

used bottom-up search. Using multiple database

scan would have been significantly slower.

Apriori algorithm works as follows:

1. The first, Apriori algorithm counts

occurrences for the each item in the entire

database and generates the set C1 of

candidate 1 – itemsets. Then, itemsets

count and minimum support value are

compared to find the set L1.

2. The second, algorithm use L1 to construct

the set C2 of candidate 2 – itemsets. The

process is finished when there are no more

candidates. In each phase, all the

transaction in the database is scanned.

Finally, all frequent itemsets are returned.

New algorithm to mine association rules is a

combination of Apriori, which is the most popular

mining algorithm, and set operations. Principles of

set operations, which are intersection and union,

are used. These principles are related to lattice

tree. In lattice tree, there are nodes holding

frequent itemsets and transactions containing

related itemsets. In order to construct (n+1)-

itemsets, frequently n-itemsets are used. Hence,

intersection operation is employed between the

transaction sets.

If the result is greater than minimum support, it

will be joined to lattice tree. If the result is lower

than minimum support, it will be pruned off.

The main idea of Algorithm is outlined as follows;

Lk : Frequent itemset of size k

Ck : Candidate itemset of size k

L1 = frequent 1- items;

Generate frequent 2- itemsets using lattice Tree

k=2;

For each frequent k- itemset nodes in lattice

Ck+1 = new node; // Generated from Lk

For each Xi in Nodes

For each Xj in Nodes //where j>i

Ck+1 =T(Xi) ∩ T(Xj)

If Ck+1 > min_support then {// Add Ck+1 in

lattice

(Node.transaction =T(Xi) ∩ T(Xj)) }

k++; End

This algorithms work as follows;

1. Scan database and find frequent 1-

itemsets, at the same time obtain

transaction sets, which includes the

itemsets.

2. Construct Lattice tree, in order to generate

all frequent 2-itemsets.

3. During the second step, prune off the

nodes whose node count is lower than

minimum support.

4. Find frequent itemsets by using lattice tree.

Consequently, for each frequent 3, 4 …,

n–itemset, scan the database to approve the

consistence of the itemsets.

5. Finally, itemsets are used to generate

strong rules having minimum confidence

in the lattice tree.

Nitika , Anju Gandhi www.ijetst.in Page 958

IJETST- Volume||01||Issue||06||Pages 956-960||August||ISSN 2348-9480 2014

Transaction DB3

Lattice Tree for transaction-DB3

Figure shows how this algorithm works in sample

database in table (transaction-DB3). If the

intersection result of the frequent nodes exceeds

the support thresholds, mark the node with a

square. Otherwise, mark node with a dotted circle.

In this example, firstly, find frequent 1-itemsets.

Next, use intersection operation to find frequently

2-itemset.

Intersection principles are used to find frequent

itemsets, then, for each frequent 3, 4 …, n –

itemset, The scanning of the database to approve

the consistence of the itemsets.

FP – Growth Algorithm

Given a transaction database and a minimum

support threshold, the problem of finding the

complete set of frequent patterns is called the

frequent pattern-mining problem. Fp – tree is a

compact data structure. FP-Growth is an

algorithm for generating frequent itemsets for

association rules. This algorithm compresses a

large database into a compact, frequent–pattern–

tree (FP tree) structure. Fp – tree structure stores

all necessary information about frequent itemsets

in a database.

Definition (FP-tree): A frequent pattern tree (or

FP-tree in short) is defined below,

1. The root labeled with “null” and set of

items as the children o the root. Frequent

item header table, which contains items in

their frequency descending order.

2. Each node contains of three fields: item

name (holds the frequent item), count

(number of transactions that share that

node), and node- link (next node in the FP

tree).

3. Frequent-item header table contains two

fields, item name and head of node link

(points to the first node in the FP-tree

holding the item-name).

FP- Growth method only needs two database

scans when mining all frequent itemsets. In the

first scan, all frequent items are found. Next scan,

constructs the first FP – tree that contains all

frequency information of the given database. Fp –

tree use compact data structure based on the

following properties:

 Frequent pattern generation mining

performs one scan of Database to

determine the set of frequent items.

 Method needs to store each item in a

compact structure, thus, more than two

databases scan unnecessary.

Nitika , Anju Gandhi www.ijetst.in Page 959

IJETST- Volume||01||Issue||06||Pages 956-960||August||ISSN 2348-9480 2014

 Each frequent item located in the FP – tree

and each node hold items and count of the

frequent item.

 Each item has to be sorted in their

frequency descending order. So, tree

construction operation performs easily.

In following example the database transaction-

DB2 in table is used and constructs FP-tree in

using the construction steps.

the transaction database transaction-DB2

FP-Tree

Details of this example as follows:

First, frequent pattern generation mining perform

one scan of Database to determine the set of

frequent items and itemset count and all

infrequent items are removed from the header

table. Items are reordered according to count

descending order. Then, create the root of a tree

labeled with “null”. Second, scan the all

transactions and construct the FP – Tree. The first

transaction form the first branch the tree {(D: 1),

(A: 1), (G: 1), (B: 1), (C: 1)}. For the second

transaction, (D, A, G, B, F) ordered frequent item

list shares a common prefix (D, A, G, B) with the

existing path (D, A, G, B, C), the count of each

node which share the same item is incremented by

1, and one new node (C:1) is created. Linked with

node of (B:2). For the third transaction (D, A, G,

F) ordered frequent item list shares a common

prefix (D, A, G) with the existing path. The count

of each node which share the same item is

incremented by 1, and one new node (F:1) is

created. Linked with node of (G:3). The fourth

transaction (D, F, C) ordered frequent item list

shares a common prefix (D) with the existing

path. The count of the node (D) which share the

same item is incremented by 1, and (F: 1) is

created and linked as a child of (D: 4) and (C: 1)

is created and linked as a child of (F:1). The last

transaction (B, C) form to the construction of the

second branch of the tree. (B: 1) is created and

linked as a child of the root and (C: 1) is created

and linked as a child of (B:1).

Nitika , Anju Gandhi www.ijetst.in Page 960

IJETST- Volume||01||Issue||06||Pages 956-960||August||ISSN 2348-9480 2014

REFRENCES

1. R. Agrawal, T. Imielinski, and A. Swami.

“Mining association rules between sets of

items in large databases”, SIGMOD'93,

207-216, Washington, D.C.

2. R. Agrawal and R. Srikant. “Fast

algorithms for mining association rules.”,

VLDB'94 487-499, Santiago, Chile.

3. S. Brin, R. Motwani, and C. Silverstein.

“Beyond market basket: Generalizing

association rules to correlations”,

SIGMOD'97, 265-276, Tucson, Arizona.

4. S. Brin, R. Motwani, J. D. Ullman, and S.

Tsur. “Dynamic itemset counting and

implication rules for market basket

analysis”, SIGMOD'97, 255-264, Tucson,

Arizona, May 1997.

5. J. Han, J. Pei, and Y. Yin. “Mining

frequent patterns without candidate

generation”, SIGMOD'00, 1-12, Dallas,

TX, May 2000.

