

D. Amulya
 et al www.ijetst.in Page 658

IJETST- Volume||01||Issue||05||Pages 658-664||July||ISSN 2348-9480 2014

 International journal of Emerging Trends in Science and Technology

 Multideployment and Multisnapshotting on IAAS Cloud Environments

Authors

D. Amulya
1
, Dr.N.Chandra Sekhar Reddy

2
, B. Srinivas Reddy

3

1
Student,M.Tech CSE Dept,Institute of Aeronautical Engineering, Hyderabad-500043, Telangana, India.

Email: amulya292@gmail.com

2
Professor, CSE Dept Institute of Aeronautical Engineering, Hyderabad -500043, Telangana, India

Email: naguchinni@gmail.com

3
Associate.Professor, H&BS Dept. Institute of Aeronautical Engineering, Hyderabad -500043,Telangana, India.

Email: bsreddy5555@gmail.com

ABSTRACT

Infrastructure as a Service (IaaS) cloud computing has revolutionized the way we think of acquiring

resources by introducing a simple change: allowing users to lease computational resources from the cloud

provider’s datacenter for a short time by deploying virtual machines (VMs) on these resources. This new

model raises new challenges is the need to deploy a large number (hundreds or even thousands) of VM

instances simultaneously. Once the VM instances are deployed, another challenge is to simultaneously take

a snapshot of many images and transfer them to persistent storage to support management tasks, such as

suspend-resume and migration. With datacenters growing rapidly and configurations becoming

heterogeneous, it is important to enable efficient concurrent deployment and snapshotting that are at the

same time hypervisor independent and ensure a maximum compatibility with different configurations. This

paper addresses these challenges by proposing a virtual file system specifically optimized for virtual

machine image storage. It is based on a lazy transfer scheme coupled with object versioning that handles

snapshotting transparently in a hypervisor- independent fashion, ensuring high portability for different

configurations.

Keywords: Cloud computing, Infrastructure as a Service, Multideployment, Multisnapshotting, Virtual

machine.

1. INTRODUCTION

Cloud computing can be viewed as a model for distributing

information technology. In order to gain access to the

resources from Internet without depending on direct

connection with the server, the model can easily retrieve

resources via web-based tools and applications. Here, the

information which is to be accessed is stored in clouds and it

gives the privileged to the user to access the information

whenever every they want. Thereby, allowing the users to

work remotely. In general cloud computing resources such as

hardware and software which are distributed as a service

across the network. It centralizes the data storage, processing

and bandwidth which in turn provides efficient computing

process to the users. Cloud computing entrusts remote services

with a user’s data, software and computation.

End-user access cloud based applications through a web

browser or a light-weight desktop or mobile app while the

business and user’s data are stored on servers at a remote

location. Proponents claim that cloud computing allows

enterprises to get their applications up and running faster, with

improved manageability and less maintenance, and enables IT

to more rapidly adjust resources to meet fluctuating and

unpredictable business demand [1]. Cloud computing relies on

sharing of resources to achieve coherence and economics of

scale similar to a utility (like the electricity grid) over a

network.

D. Amulya
 et al www.ijetst.in Page 659

IJETST- Volume||01||Issue||05||Pages 658-664||July||ISSN 2348-9480 2014

 Figure1.Cloud computing services

2. INFRASTRUCTURE AS A SERVICE

In this most basic service model, cloud providers offer

computers, as physical or more often as virtual machines, and

other resources. The virtual machines are run as guests by a

hypersior, such as Xen or KVM. Management of pools of

hypervisors by the cloud operational support system leads to

the ability to scale to support a large number of virtual

machines. Other resources in IaaS clouds include images in a

virtual machine image library, raw(block) and file-based

storage, firewalls, load balancers, IP addresses,

virtual(VLANs), and software bundles. IaaS cloud providers

supply these resources on demand from their large pools

installed in datacenters. For wide area connectivity, the

Internet can be used or in carrier clouds dedicated virtual

private networks can be configured.

 To deploy their applications, cloud users then install

operating system images on the machines as well as

their application software. In this model, it is the

cloud user who is responsible for patching and

maintaining the operating systems and application

software. Cloud providers typically bill IaaS services

on a utility computing basis, that is, cost will reflect

the amount of resources allocated and consumed.

 IaaS refers not to a machine that does all the work,

but simply to a facility given to business that offers

users the leverage of extra storage space in servers

and datacenters.

 Examples of IaaS include: Amazon CloudFormation

(and underlying services such as Amazon Ec2),

Rackspace Cloud, Google Compute Engine, and

Right Scale.

Figure2. Cloud infrastructure

Advantages:

More and more companies are moving from traditional servers

to virtual servers in the cloud, and many new service-based

deployments are starting in the cloud. However, despite the

overwhelming popularity of the cloud here, deployments in

the cloud look a lot like deployments on traditional servers.

Companies are not changing their systems architecture to take

advantage of some of the unique aspects of being in the cloud.

The key difference between remotely-hosted, virtualized, On-

demand- by- API servers (the definition of the “cloud” for this

post) and any other hardware-based deployment (e.g.,

dedicated, co-located, or not-on-demand-by-API virtualized

servers) is that servers are software on the cloud.

Application state

The state of the VM deployment is defined at each moment in

time by two main components:

The state of each of the VM instances and the state of the

communication channels between them. For VM instances

that need large amounts of memory, the necessary storage

space can explode to huge sizes. For example, saving 2GB of

RAM for 1000 VMs consumes 2TB of space, which is

unacceptable for a single one point-in-time deployment

checkpoint. Therefore, can further be simplified such that the

VM state is represented only by the virtual disk attached to it,

which is used to store only minimal information about the

state, such as configuration files that describe the environment

and temporary files that were generated by the application.

This information is then later used to reboot and reinitialize

the software stack running inside the VM instance.

Such as approach has two important practical benefits:

1. Huge reductions in the size of the state, since the contents

of RAM, CPU registers, and the like does not need to be

saved; and

2. Portability, since the VM can be restored on another host

without having to worry about restoring the state of hardware

devices that are not supported or are incompatible between

different hypervisors.

D. Amulya
 et al www.ijetst.in Page 660

IJETST- Volume||01||Issue||05||Pages 658-664||July||ISSN 2348-9480 2014

Since Model is the most widely used checkpointing

mechanism in practice, we consider the multisnapshotting

pattern.

Application access pattern

A VM typically does not access the whole initial image. For

example, it may never access some applications and utilities

that are installed by default with the operating system. In order

to model this aspect, it is useful to analyze the life-cycle of a

VM instance, which consists of three phases:

 Boot phase: Involves reading configuration files and

launching processes, which translates to random

small reads and writes from/to the VM disk image

acting as the initial state.

 Application state: Translates to either negligible

virtual disk access (e.g., CPU intensive applications

that do not require persistent storage or data intensive

applications that rely on dedicated storage services

such as Amazon S3).

 Shutdown phase: Generates negligible disk access to

the image and is completely missing if the VM

instance was terminated prematurely.(e.g., because of

hardware failure).

Objectives:

Main aim of this paper is:

1.With IaaS, users can lease storage and computation time

from large datacenters. Leasing of computation time is

accomplished by allowing users to deploy virtual

machines(VMs) on the datacenter’s resources. Since the user

has complete control over the configuration of the VMs using

on-demand deployments.

2. One of the commonly occurring patterns in the operation of

IaaS is the need to deploy a large number of VMs on many

nodes of a datacenter at the same time, starting from a set of

VM images previously stored in a persistent fashion.

3. To optimize the multisnapshotting.

3. RELATED WORK

Multideployment that relies on full broadcast-based

prepropagation is a widely used technique. While this

technique avoids read contention to the repository, it can incur

a high overhead in both network traffic and execution time.

Furthermore, since the VM images are fully copied locally on

the compute nodes, multisnapshotting becomes infeasible:

large amounts of data are unnecessarily duplicated and cause

unacceptable transfer delays, not to mention huge storage

space and network traffic utilization[1].

Closer to our approach is Lithium, a fork-consistent

replication system for virtual disks. Lithium supports instant

volume creation with lazy space allocation and instant creation

of writable snapshots. Unlike our approach, which is based on

segment trees, Lithium is based on log structuring[5], which

can potentially degrade read performance when increasing the

number of consecutive snapshots for the same image: the log

of incremental differences starts growing, making it more

expensive to reconstruct the image. Cluster volume managers

for virtual disks such as Parallax enable compute nodes to

share access to a single, globally visible block device, which is

collaboratively managed to present individual virtual disk

images to the VMs. While this enables efficient frequent

snapshotting, unlike our approach, sharing of images is

intentionally not supported in order to eliminate the need for a

distributed lock manager, which is claimed to dramatically

simplify the design. Several storage systems, such as Amazon

S3(backed dynamo), have been specifically designed as highly

available key- value repositories for cloud infrastructures.

They can be valuable building blocks for block-level storage

volumes that host virtual machine images; however, they are

not optimized for snapshotting[4].

Our approach is intented to complement existing cloud

computing platforms, both from industry (Amazon Elastic

Compute Cloud: EC2) and from academia (Nimbus ,

OpenNebula[10]). While the details for EC2 are not publicly

available, it is widely acknowledged that all these platforms

rely on several of the techniques presented above. Claims to

instantiate multiple VMs in “minutes”, however, are

insufficient for meeting our performance objectives; hence, we

believe our work is a welcome addition in this context.

4. EXISTING SYSTEM

In our existing cloud computing platforms, both from industry

(Amazon Elastic Compute Cloud) and from

academia(Nimbus[9]). While the details for EC2 are not

publicly available, it is widely acknowledged that all these

platforms rely on several of the techniques presented above.

Claims to instantiate multiple VMs in “minutes”, however, are

insufficient for meeting our performance objectives; hence, we

believe our work is a welcome addition in this context. In

addition to incurring significant delays and raising

manageability issues, these patterns may also generate high

network traffic that interferes with the execution of

applications on leased resources and generates high utilization

costs for the user.

5. PROPOSED SYSTEM

This paper proposes a distributed virtual file system

specifically optimized for both the multideployment and

multisnapshotting patterns. Since the patterns are

complementary, we investigate them in conjunction. Our

proposal offers a good balance between performance, storage

D. Amulya
 et al www.ijetst.in Page 661

IJETST- Volume||01||Issue||05||Pages 658-664||July||ISSN 2348-9480 2014

space, and network traffic consumption, while handling

snapshotting transparently and exposing standalone, raw

image files(understood by most hypervisors) to the outside.

Our contributions are can be summarized as follows:

 We introduce a series of design principles that

optimize multideployment and multisnapshotting

patterns and describe how our design can be

integrated with IaaS infrastructures.

 We show how to realize these design principles by

building a virtual file system[4] that leverages

versioning-based distributed storage services.

 We evaluate our approach in a series of experiments,

each conducted on hundreds of nodes provisioned on

the Grid’5000 test bed, using both synthetic traces

and real-life applications.

 We propose a solution that addresses these three

requirements by leveraging two features proposed by

versioning systems: shadowing and cloning.

Shadowing means to offer the illusion of creating a

new standalone snapshot of the object for each

update to it but to physically store only the

differences and manipulate metadata in such way that

the illusion is upheld. This effectively means that

from the user’s point of view, each snapshot is a first-

class object that can be accessed independently.

6. ARCHITECTURE

Figure3: Cloud architecture that integrates our approach(dark

background)

7. DESIGN MODEL

We rely on four key principles: aggregate the storage space,

optimize VM disk access, reduce contention, and optimize

multisnapshotting.

Aggregate the storage space locally available on the

compute nodes

We propose to aggregate the storage space from the compute

nodes in a shared common pool that is managed in a

distributed fashion, on top of which we build our virtual file

system. This approach has two key advantages. First, it has a

potential for high scalability, as a growing number of compute

nodes automatically leads to a larger VM image repository,

which is not the case if the repository is hosted by dedicated

machines. Second, it frees a large amount of storage nodes,

which can improve performance and/or quality-of-service

guarantees for specialized storage services that the

applications running inside the VMs require and are offered by

the cloud provider (e.g., database engines, distributed hash

tables, special purpose file systems, etc).

Optimize VM disk

When a new VM needs to be instantiated, the underlying VM

image is presented to the hypervisor as a regular file

accessible from the local disk. Read and write accesses to the

file, however, are trapped and treated in a special fashion. A

read that is issued on a fully or partially empty region in the

file that has not been accessed before(by either a previous read

and write) results in fetching the missing content remotely

from the VM repository, mirroring it on the local disk and

redirecting the read to the local copy. If the whole region is

available locally, no remote read is performed. Writes, on the

other hand, are always performed locally.

Reduce contention by striping the image

Each VM image is split into small, equal-sized chunks that are

evenly distributed among the local disks participating in the

shared pool. When a read accesses a region of the image that

is not available locally, the chunks that hold this region are

determined and transferred in parallel from the remote disks

that are responsible for storing them. Under concurrency, this

scheme effectively enables the distribution of the I/O

workload, because accesses to different parts of the image are

served by different disks. While splitting the image into

chunks reduces contention, the effectiveness of this approach

depends on the chunk size and is subject to a trade-off. A

chunk that is too large may lead to false sharing; that is, many

small concurrent reads on different regions in the image might

fall inside the same chunk, which leads to a bottleneck. A

chunk that is too small, on the other hand, implies a higher

access overhead, both because of higher network overhead,

resulting from having to perform small data transfers, and

because of higher metadata access overhead, resulting from

having to manage more chunks.

Optimize multisnapshotting by means of shadowing and

cloning

Saving a full VM image for each VM is not feasible in the

context of multisnapshotting. Since only small parts of the

VMs are modified, this would mean massive unnecessary

duplication of data, leading not only to an explosion of utilized

storage space but also to an unacceptably high snapshotting

time and network bandwidth utilization.

D. Amulya
 et al www.ijetst.in Page 662

IJETST- Volume||01||Issue||05||Pages 658-664||July||ISSN 2348-9480 2014

We propose a solution that addresses these three requirements

by leveraging two features proposed by versioning systems:

shadowing and cloning[3]. Shadowing means to the illusion of

creating a new standalone snapshot of the object for each

update to it but to physically store only the differences and

manipulate metadata in such way that the illusion is upheld.

This effectively means that from the user’s point of view, each

snapshot is a first-class object that can be accessed

independently. For example, let’s assume a small part of a

large file needs to be updated. With shadowing, the user sees

the effect of the update as a second file that is identical to the

original expect for the updated part. Cloning means to

duplicate an object in such way that it looks like a standalone

copy that can evolve in a different direction from the original

but physically shares all initial content with the original.

Zoom on mirroring

One important aspect of on-demand mirroring is the decision

of how much to read from the repository when data is

unavailable locally, in such way as to obtain a good access

performance. A straightforward approach is to translate every

read issued by the hypervisor in either a local or remote read,

depending on whether the requested content is locally

available. While this approach works, its performance is

questionable. More specifically, many small remote read

requests to the same chunk generate significant network track

overhead(because of the latencies of the requests that add up).

Moreover, in the case of many scattered small writes, a lot of

small fragments need to be accounted for, in order to

remember what is available locally for reading and what is

not. Fragmentation is costly in this case and incurs a

significant management overhead, negatively impacting

access performance. For this reason, we propose two strategies

that aim to limit the negative impact of small reads and writes.

First, a read operation on a region that is not fully available

locally triggers remote reads that fetch the full minimal set of

chunks that cover the requested region. While this leads to

more network track than is strictly required, it improves the

performance of correlated reads(i.e., a read on one region that

is followed by a read “in the neighborhood”) at a minimal cost

when using chunk sizes. The second strategy we propose

limits fragmentation by forcing a single contiguous region to

be mirrored locally for each chunk. More specifically, a

second write that falls on the same chunk as a previous write

such that the gap between them is not available locally will

trigger a remote read that will fill the gap. With this approach

only the limits of a single contiguous region need to be

maintained for each chunk, which places an upper limit on

fragmentation overwritten to.

8. EVALUATION

Performance of multideployment

The first series of experiments evaluates how well our

approach performs under the multideployment pattern, when a

single initial VM image is used to concurrency instantiate a

large number of VM instances.

 Figure4. Cloning and Shadowing by means of segment trees

Prepropagation

Prepropagation is the most common method used on clouds. It

consists of two phases. In the first phase the VM image is

broadcast to the local storage of all compute nodes that will

run a VM instance. Once the VM image is available locally on

all compute nodes, in the second phase all VMs are launched

simultaneously. Since in this phase all contents is available

locally, no remote read access to the repository is necessary.

Qcow2 over PVFS

The second method we compare against is closer in concept to

our own approach. We assume that the initial VM image is

stored in a striped fashion on a distributed file system. We

have chosen to use PVFS to fill this role, as it is specifically

geared to high performance and employs a distributed

metadata management scheme that avoids any potential

bottlenecks due to metadata centralization. PVFS is deployed

on all available compute nodes, as is our approach, and is

responsible for aggregating their local storage space in a

common pool. To instantiate a new set of VM instance on the

compute nodes, in a first initialization phase we create a new

qcow2[2] copy-on-write image in the local file system of each

compute nodes, using the initial raw 2GB VM image stored in

PVFS as the backing image

.

Multisnapshotting performance

This evaluates the performance of our approach in the context

of the multisnapshotting access pattern. Since it is infeasible to

copy back to the NFS server the whole set of full VM images

that include the local modifications done by each VM

instance, we limit the comparison of our approach with qcow2

over PVFS only.

The experimental setup is similar to the one used in the

previous section: Blobseer[4] and PVFS are deployed on the

D. Amulya
 et al www.ijetst.in Page 663

IJETST- Volume||01||Issue||05||Pages 658-664||July||ISSN 2348-9480 2014

compute nodes, and initial 2GB VM image stored in a striped

fashion on them, in chunks of 256KB. The local modifications

of each VM image are considered to be small, around 15MB;

this corresponds to the operating system and application

writing configuration files and contextualizing the

deployment, which simulates a setting with negligible disk

access. In the case of qcow2 over PVFS, snapshot is taken by

concurrently copying the set of qcow2 files locally available

on the compute nodes back to PVFS. In case of our approach,

the images are snapshotted in the following fashion: first a

CLONE, followed by a COMMIT is broadcast to all compute

nodes hosting the VMs. In both cases, the snapshotting

process is synchronized to start at the same time.

The average time to snapshot per instance is depicted in

Figure 5(a). As can be observed, both in our approach and

qcow2 over PVFS, average snapshotting time increases almost

imperceptibly at a very slow rate. The reason is that an

increasing number of compute nodes will always have at least

as many local disks available to distribute I/O workload,

greatly reducing write contention. Since Blobseer uses an

asynchronous write strategy that returns to the client before

data was committed to disk, initially the average snapshotting

time is much better, but it gradually degrades as more

concurrent instances generate more write pressure that

eventually has to be committed to disk. The performance level

is closing to the same level as qcow2 over PVFS, which

essentially is a parallel copy of the qcow2 files.

9. CONCLUSION

As cloud computing becomes increasingly popular, efficient

management of VM images, such as image propagation to

compute nodes and image snapshotting for checkpointing or

migration, is critical. The performance of these operations

directly affects the usability of the benefits offered by cloud

computing systems. This paper introduced several techniques

that integrate with cloud middleware to efficiently handle two

patterns: multideployment and multisnapshotting. We

demonstrated the benefits of our approach through

experiments on hundreds of nodes using benchmarks as well

as real-life applications. Compared with simple approaches

based on prepropagation, our approach shows a major

improvement in both execution time and resource usage: the

total time to perform a multideployment was reduced by up to

a factor of 25, while the storage and bandwidth usage was

reduced by as much as 90%.

10. FUTURE ENHANCEMENTS

The propose a lazy VM deployment scheme that fetches VM

image content as need by the application executing in the VM,

thus reducing the pressure on the VM storage service for

heavily concurrent deployment requests. Furthermore, we

leverage object versioning to save only local VM image

differences back to persistent storage when a snapshot is

created, yet provide the illusion that the snapshot is a different,

fully independent image. This has two important benefits.

First, it handles the management of updates independently of

the hypervisor, thus greatly improving the portability of VM

images and compensating for the lack of VM image format

standardization. Second, it handles snapshotting transparently

at the level of the VM image repository, greatly simplifying

the management of snapshots. With respect to

multisnapshotting, interesting reductions in time and storage

space can be obtained by introducing reduplication schemes.

We also plan to fully integrate the current work with Nimbus

and explore its benefits for more complex HPC applications in

the real world.

ACKNOWLEDGEMENT

 We thank our H.O.D Prof. Dr. N. Chandra Sekhar Reddy

for giving us the eminent facilities to perform my project

work. I am obliged to of CSE department, IARE for their

timely help and support.

11. REFERENCES

1. M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.

Stoica, and M. Zaharia. A view of cloud computing.

Commun. ACM, 53:50–58, April 2010.

2. Bar-Noy and S. Kipnis. Designing broadcasting

algorithms in the postal model for message-passing

systems. In SPAA ’92: Proceedings of the 4th Annual

ACM Symposium on Parallel Algorithms and

Architectures, pages 13–22, New York, 1992. ACM.

3. P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur.

Pvfs: A parallel file system for Linux clusters. In

Proceedings of the 4th Annual Linux Showcase and

Conference, pages 317–327, Atlanta, GA, 2000.

USENIX Association.

D. Amulya
 et al www.ijetst.in Page 664

IJETST- Volume||01||Issue||05||Pages 658-664||July||ISSN 2348-9480 2014

4. B. Claudel, G. Huard, and O. Richard. Taktuk,

adaptive deployment of remote executions. In HPDC

’09: Proceedings of the 18th ACM International

Symposium on High Performance Distributed

Computing, pages 91–100, New York, 2009. ACM.

5. G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels.

Dynamo: Amazon’s highly available key-value store.

In SOSP ’07: Proceedings of 21st ACM SIGOPS

Symposium on Operating Systems Principles, pages

205–220, New York, 2007. ACM.

6. M. Gagn´e. Cooking with Linux—still searching for

the ultimate Linux distro? Linux J., 2007(161):9,

2007.

7. J. G. Hansen and E. Jul. Scalable virtual machine

storage using local disks. SIGOPS Oper. Syst. Rev.,

44:71–79, December 2010.

8. M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C.

Barb. Fast, scalable disk imaging with Frisbee. In

ATC ’03: Proceedings of the 2003 USENIX Annual

Technical Conference, pages 283–296, San Antonio,

TX, 2003.

9. Y. J´egou, S. Lant´eri, J. Leduc, M. Noredine, G.

Mornet, R. Namyst, P. Primet, B. Quetier, O.

Richard, E.-G. Talbi, and T. Ir´ea. Grid’5000: A large

scale and highly reconfigurable experimental grid

testbed. International Journal of High Performance

Computing Applications, 20(4):481–494, November

2006.

10. K. Keahey and T. Freeman. Science clouds: Early

experiences in cloud computing for scientific

applications. In CCA’08: Proceedings of the 1
st

Conference on Cloud Computing and Its

Applications, 2008.

