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ABSTRACT 

Infrastructure as a Service (IaaS) cloud computing has revolutionized the way we think of acquiring 

resources by introducing a simple change: allowing users to lease computational resources from the cloud 

provider’s datacenter for a short time by deploying virtual machines (VMs) on these resources. This new 

model raises  new challenges is the need to deploy a large number (hundreds or even thousands) of VM 

instances simultaneously. Once the VM instances are deployed, another challenge is to simultaneously take 

a snapshot of many images and transfer them to persistent storage to support management tasks, such as 

suspend-resume and migration. With datacenters growing rapidly and configurations becoming 

heterogeneous, it is important to enable efficient concurrent deployment and snapshotting that are at the 

same time hypervisor independent and ensure a maximum compatibility with different configurations. This 

paper addresses these challenges by proposing a virtual file system specifically optimized for virtual 

machine image storage. It is based on a lazy transfer scheme coupled with object versioning that handles 

snapshotting transparently in a hypervisor- independent fashion, ensuring high portability for different 

configurations. 

Keywords: Cloud computing, Infrastructure as a Service,  Multideployment,  Multisnapshotting, Virtual 

machine. 

 

1. INTRODUCTION 

Cloud computing can be viewed as a model for distributing 

information technology. In order to gain access to the 

resources from Internet without depending on direct 

connection with the server, the model can easily retrieve 

resources via web-based tools and applications. Here, the 

information which is to be accessed is stored in clouds and it 

gives the privileged to the user to access the information 

whenever every they want. Thereby, allowing the users to 

work remotely. In general cloud computing resources such as 

hardware and software which are distributed as a service 

across the network. It centralizes the data storage, processing 

and bandwidth which in turn provides efficient computing 

process to the users. Cloud computing entrusts remote services 

with a user’s data, software and computation. 

End-user access cloud based applications through a web 

browser or a light-weight desktop or mobile app while the 

business and user’s data are stored on servers at a remote 

location. Proponents claim that cloud computing allows 

enterprises to get their applications up and running faster, with 

improved manageability and less maintenance, and enables IT 

to more rapidly adjust resources to meet fluctuating and 

unpredictable business demand [1]. Cloud computing relies on 

sharing of resources to achieve coherence and economics of 

scale similar to a utility (like the electricity grid) over a 

network.  
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                  Figure1.Cloud computing services 

 

2. INFRASTRUCTURE AS A SERVICE  

In this most basic service model, cloud providers offer 

computers, as physical or more often as virtual machines, and 

other resources. The virtual machines are run as guests by a 

hypersior, such as Xen or KVM. Management of pools of 

hypervisors  by the cloud operational support system  leads to 

the ability to scale to support a large number of virtual 

machines. Other resources in IaaS clouds include images in a 

virtual machine image library, raw(block) and file-based 

storage, firewalls, load balancers, IP addresses, 

virtual(VLANs), and software bundles. IaaS cloud providers 

supply these resources on demand from their large pools 

installed in datacenters. For wide area connectivity, the 

Internet can be used or in carrier clouds dedicated virtual 

private networks can be configured. 

 To deploy their applications, cloud users then install 

operating system images on the machines as well as 

their application software. In this model, it is the 

cloud user who is responsible for patching and 

maintaining the operating systems and application 

software. Cloud providers typically bill IaaS services 

on a utility computing basis, that is, cost will reflect 

the amount of resources allocated and consumed. 

 IaaS refers not to a machine that does all the work, 

but simply to a facility given to business that offers 

users the leverage of extra storage space in servers 

and datacenters. 

 Examples of IaaS include: Amazon CloudFormation 

(and underlying services such as Amazon Ec2), 

Rackspace Cloud, Google Compute Engine, and 

Right Scale. 

          
 

Figure2. Cloud infrastructure 

Advantages: 

More and more companies are moving from traditional servers 

to virtual servers in the cloud, and many new service-based 

deployments are starting in the cloud. However, despite the 

overwhelming popularity of the cloud here, deployments in 

the cloud look a lot like deployments on traditional servers. 

Companies are not changing their systems architecture to take 

advantage of some of the unique aspects of being in the cloud. 

The key difference between remotely-hosted, virtualized, On-

demand- by- API servers (the definition of the “cloud” for this 

post) and any other hardware-based deployment (e.g., 

dedicated, co-located, or not-on-demand-by-API virtualized 

servers) is that servers are software on the cloud. 

Application state   

The state of the VM deployment is defined at each moment in 

time by two main components:  

The state of each of the VM instances and the state of the 

communication channels between them. For VM instances 

that need large amounts of memory, the necessary storage 

space can explode to huge sizes. For example, saving 2GB of 

RAM for 1000 VMs consumes 2TB of space, which is 

unacceptable for a single one point-in-time deployment 

checkpoint. Therefore, can further be simplified such that the 

VM state is represented only by the virtual disk attached to it, 

which is used to store only minimal information about the 

state, such as configuration files that describe the environment 

and temporary files that were generated by the application. 

This information is then later used to reboot and reinitialize 

the software stack running inside the VM instance. 

Such as approach has two important practical benefits: 

1. Huge reductions in the size of the state, since the contents 

of RAM, CPU registers, and the like does not need to be 

saved; and 

2. Portability, since the VM can be restored on another host 

without having to worry about  restoring the state of hardware 

devices that are not supported or are incompatible between 

different hypervisors. 
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Since Model is the most widely used checkpointing 

mechanism in practice, we consider the multisnapshotting 

pattern. 

 

Application access pattern 

A VM typically does not access the whole initial image. For 

example, it may never access some applications and utilities 

that are installed by default with the operating system. In order 

to model this aspect, it is useful to analyze the life-cycle of a 

VM instance, which consists of three phases: 

 Boot phase: Involves reading configuration files and 

launching processes, which translates to random 

small reads and writes from/to the VM disk image 

acting as the initial state. 

 Application state: Translates to either negligible 

virtual disk access (e.g., CPU intensive applications 

that do not require persistent storage or data intensive 

applications that rely on dedicated storage services 

such as Amazon S3). 

 Shutdown phase: Generates negligible disk access to 

the image and is completely missing if the VM 

instance was terminated prematurely.(e.g., because of 

hardware failure). 

 

Objectives: 

Main aim of this paper is: 

1.With IaaS, users can lease storage and computation time 

from large datacenters. Leasing of computation time is 

accomplished by allowing users to deploy virtual 

machines(VMs) on the datacenter’s resources. Since the user 

has complete control over the configuration of the VMs using 

on-demand deployments. 

2. One of the commonly occurring patterns in the operation of 

IaaS is the need to deploy a large number of VMs on many 

nodes of a datacenter at the same time, starting from a set of 

VM images previously stored in a persistent fashion. 

3. To optimize the multisnapshotting. 

 

3. RELATED WORK 

Multideployment that relies on full broadcast-based 

prepropagation is a widely used technique. While this 

technique avoids read contention to the repository, it can incur 

a high overhead in both network traffic and execution time. 

Furthermore, since the VM images are fully copied locally on 

the compute nodes, multisnapshotting  becomes infeasible: 

large amounts of data are unnecessarily duplicated and cause 

unacceptable transfer delays, not to mention huge storage 

space and network traffic utilization[1]. 

Closer to our approach is Lithium, a fork-consistent 

replication system for virtual disks. Lithium supports instant 

volume creation with lazy space allocation and instant creation 

of writable snapshots. Unlike our approach, which is based on 

segment trees, Lithium is based on log structuring[5], which 

can potentially degrade read performance when increasing the 

number of consecutive snapshots for the same image: the log 

of incremental differences starts growing, making it more 

expensive to reconstruct the image. Cluster volume managers 

for virtual disks such as Parallax enable compute nodes to 

share access to a single, globally visible block device, which is 

collaboratively managed to present individual virtual disk 

images to the VMs. While this enables efficient frequent 

snapshotting, unlike our approach, sharing of images is 

intentionally not supported in order to eliminate the need for a 

distributed lock manager, which is claimed to dramatically 

simplify the design. Several storage systems, such as Amazon 

S3(backed dynamo), have been specifically designed as highly 

available key- value repositories for cloud infrastructures. 

They can be valuable building blocks for block-level storage 

volumes that host virtual machine images; however, they are 

not optimized for snapshotting[4]. 

Our approach is intented to complement existing cloud 

computing platforms, both from industry (Amazon Elastic 

Compute Cloud: EC2) and from academia (Nimbus , 

OpenNebula[10]). While the details for EC2 are not publicly 

available, it is widely acknowledged that all these platforms 

rely on several of the techniques presented above. Claims to 

instantiate multiple VMs in “minutes”, however, are 

insufficient for meeting our performance objectives; hence, we 

believe our work is a welcome addition in this context. 

 

4. EXISTING SYSTEM 

In our existing cloud computing platforms, both from industry 

(Amazon Elastic Compute Cloud) and from 

academia(Nimbus[9]). While the details for EC2 are not 

publicly available, it is widely acknowledged that all these 

platforms rely on several of the techniques presented above. 

Claims to instantiate multiple VMs in “minutes”, however, are 

insufficient for meeting our performance objectives; hence, we 

believe our work is a welcome addition in this context. In 

addition to incurring significant delays and raising 

manageability issues, these patterns may also generate high 

network traffic that interferes with the execution of 

applications on leased resources and generates high utilization 

costs for the user.   

 

5. PROPOSED SYSTEM 

This paper proposes a distributed virtual file system 

specifically optimized for both the multideployment and 

multisnapshotting patterns. Since the patterns are 

complementary, we investigate them in conjunction. Our 

proposal offers a good balance between performance, storage 
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space, and network traffic consumption, while handling 

snapshotting transparently and exposing standalone, raw 

image files(understood by most hypervisors) to the outside. 

Our contributions are can be summarized as follows: 

 We introduce a series of design principles that 

optimize multideployment and multisnapshotting 

patterns and describe how our design can be 

integrated with IaaS infrastructures. 

 We show how to realize these design principles by 

building a virtual file system[4] that leverages 

versioning-based distributed storage services. 

 We evaluate our approach in a series of experiments, 

each conducted on hundreds of nodes provisioned on 

the Grid’5000 test bed, using both synthetic traces 

and real-life applications. 

 We propose a solution that addresses these three 

requirements by leveraging two features proposed by 

versioning systems: shadowing and cloning. 

Shadowing means to offer the illusion of creating a 

new standalone snapshot of the object for each 

update to it but to physically store only the 

differences and manipulate metadata in such way that 

the illusion is upheld. This effectively means that 

from the user’s point of view, each snapshot is a first-

class object that can be accessed independently. 

 

6. ARCHITECTURE 

 
Figure3: Cloud architecture that integrates our approach(dark 

background) 

 

7. DESIGN MODEL 

We rely on four key principles: aggregate the storage space, 

optimize VM disk access, reduce contention, and optimize 

multisnapshotting. 

Aggregate the storage space locally available on the 

compute nodes 

We propose to aggregate the storage space from the compute 

nodes in a shared common pool that is managed in a 

distributed fashion, on top of which we build our virtual file 

system. This approach has two key advantages. First, it has a 

potential for high scalability, as a growing number of compute 

nodes automatically leads to a larger VM image repository, 

which is not the case if the repository is hosted by dedicated 

machines. Second, it frees a large amount of storage nodes, 

which can improve performance and/or quality-of-service 

guarantees for specialized storage services that the 

applications running inside the VMs require and are offered by 

the cloud provider (e.g., database engines, distributed hash 

tables, special purpose file systems, etc). 

Optimize VM disk 

When a new VM needs to be instantiated, the underlying VM 

image is presented to the hypervisor as a regular file 

accessible from the local disk. Read and write accesses to the 

file, however, are trapped and treated in a special fashion. A 

read that is issued on a fully or partially empty region in the 

file that has not been accessed before(by either a previous read 

and write) results in fetching the missing content remotely 

from the VM repository, mirroring it on the local disk and 

redirecting the read to the local copy. If the whole region is 

available locally, no remote read is performed. Writes, on the 

other hand, are always performed locally. 

 

Reduce contention by striping the image 

Each VM image is split into small, equal-sized chunks that are 

evenly distributed among the local disks participating in the 

shared pool. When a read accesses a region of the image that 

is not available  locally, the chunks that hold this region are 

determined and transferred in parallel from the remote disks 

that are responsible for storing them. Under concurrency, this 

scheme effectively enables the distribution of the I/O 

workload, because accesses to different parts of the image are 

served by different disks. While splitting the image into 

chunks reduces contention, the effectiveness of this approach 

depends on the chunk size and is subject to a trade-off. A 

chunk that is too large may lead to false sharing; that is, many 

small concurrent reads on different regions in the image might 

fall inside the same chunk, which leads to a bottleneck. A 

chunk that is too small, on the other hand, implies a higher 

access overhead, both because of higher network overhead, 

resulting from having to perform small data transfers, and 

because of higher metadata access overhead, resulting from 

having to manage more chunks. 

 

Optimize multisnapshotting by means of shadowing and 

cloning  

Saving a full VM image for each VM is not feasible in the 

context of multisnapshotting. Since only small parts of the 

VMs are modified, this would mean massive unnecessary 

duplication of data, leading not only to an explosion of utilized 

storage space but also to an unacceptably high snapshotting 

time and network bandwidth utilization. 
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We propose a solution that addresses these three requirements 

by leveraging two features proposed by versioning systems: 

shadowing and cloning[3]. Shadowing means to the illusion of 

creating a new standalone snapshot of the object for each 

update to it but to physically store only the differences and 

manipulate metadata in such way that the illusion is upheld. 

This effectively means that from the user’s point of view, each 

snapshot is a first-class object that can be accessed 

independently. For example, let’s assume a small part of a 

large file needs to be updated. With shadowing, the user sees 

the effect of the update as a second file that is identical to the 

original expect for the updated part. Cloning means to 

duplicate an object in such way that it looks like a standalone 

copy that can evolve in a different direction from the original 

but physically shares all initial content with the original. 

Zoom on mirroring  

One important aspect of on-demand mirroring is the decision 

of how much to read from the repository when data is 

unavailable locally, in such way as to obtain a good access 

performance. A straightforward approach is to translate every 

read issued by the hypervisor in either a local or remote read, 

depending on whether the requested content is locally 

available. While this approach works, its performance is 

questionable. More specifically, many small remote read 

requests to the same chunk generate significant network track 

overhead(because of the latencies of the requests that add up). 

Moreover, in the case of many scattered small writes, a lot of 

small fragments need to be accounted for, in order to 

remember what is available locally for reading and what is 

not. Fragmentation is costly in this case and incurs a 

significant management overhead, negatively impacting 

access performance. For this reason, we propose two strategies 

that aim to limit the negative impact of small reads and writes. 

First, a read operation on a region that is not fully available 

locally triggers remote reads that fetch the full minimal set of 

chunks that cover the requested region. While this leads to 

more network track than is strictly required, it improves the 

performance of correlated reads(i.e., a read on one region that 

is followed by a read “in the neighborhood”) at a minimal cost 

when using chunk sizes. The second strategy we propose 

limits fragmentation by forcing a single contiguous region to 

be mirrored locally for each chunk. More specifically, a 

second write that falls on the same chunk as a previous write 

such that the gap between them is not available locally will 

trigger a remote read that will fill the gap. With this approach 

only the limits of a single contiguous region need to be 

maintained for each chunk, which places an upper limit on 

fragmentation overwritten to. 

 

8. EVALUATION 

Performance of multideployment 

The first series of experiments evaluates how well our 

approach performs under the multideployment pattern, when a 

single initial VM image is used to concurrency instantiate a 

large number of VM instances. 

 

 

 

 

 

 

 

 

 

         Figure4. Cloning and Shadowing by means of segment trees 

 

Prepropagation 

Prepropagation is the most common method used on clouds. It 

consists of two phases. In the first phase the VM image is 

broadcast to the local storage of all compute nodes that will 

run a VM instance. Once the VM image is available locally on 

all compute nodes, in the second phase all VMs are launched 

simultaneously. Since in this phase all contents is available 

locally, no remote read access to the repository is necessary. 

 

Qcow2 over PVFS 

The second method we compare against is closer in concept to 

our own approach. We assume that the initial VM image is 

stored in a striped fashion on a distributed file system. We 

have chosen to use PVFS to fill this role, as it is specifically 

geared to high performance and employs a distributed 

metadata management scheme that avoids any potential 

bottlenecks due to metadata centralization. PVFS is deployed 

on all available compute nodes, as is our approach, and is 

responsible for aggregating their local storage space in a 

common pool. To instantiate a new set of VM instance on the 

compute nodes, in a first initialization phase we create a new 

qcow2[2] copy-on-write image in the local file system of each 

compute nodes, using the initial raw 2GB VM image stored in 

PVFS as the backing image 

. 

Multisnapshotting performance 

This evaluates the performance of our approach in the context 

of the multisnapshotting access pattern. Since it is infeasible to 

copy back to the NFS server the whole set of full VM images 

that include the local modifications done by each VM 

instance, we limit the comparison of our approach with qcow2 

over PVFS only. 

The experimental setup is similar to the one used in the 

previous section: Blobseer[4] and PVFS  are deployed on the 
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compute nodes, and initial 2GB VM image stored in a striped 

fashion on them, in chunks of 256KB. The local modifications 

of each VM image are considered to be small, around 15MB; 

this corresponds to the operating system and application 

writing configuration files and contextualizing the 

deployment, which simulates a setting with negligible disk 

access. In the case of qcow2 over PVFS, snapshot is taken by 

concurrently copying the set of qcow2 files locally available 

on the compute nodes back to PVFS. In case of our approach, 

the images are snapshotted in the following fashion: first a 

CLONE, followed by a COMMIT is broadcast to all compute 

nodes hosting the VMs. In both cases, the snapshotting 

process is synchronized to start at the same time. 

 
 

The average time to snapshot per instance is depicted in 

Figure 5(a). As can be observed, both in our approach and 

qcow2 over PVFS, average snapshotting time increases almost 

imperceptibly at a very slow rate. The reason is that an 

increasing number of compute nodes will always have at least 

as many local disks available to distribute I/O workload, 

greatly reducing write contention. Since Blobseer uses an 

asynchronous write strategy that returns to the client before 

data was committed to disk, initially the average snapshotting 

time is much better, but it gradually degrades as more 

concurrent instances generate more write pressure that 

eventually has to be committed to disk. The performance level 

is closing to the same level as qcow2 over PVFS, which 

essentially is a parallel copy of the qcow2 files. 

9. CONCLUSION   

As cloud computing becomes increasingly popular, efficient 

management of VM images, such as image propagation to 

compute nodes and image snapshotting for checkpointing or 

migration, is critical. The performance of these operations 

directly affects the usability of the benefits offered by cloud 

computing systems. This paper introduced several techniques 

that integrate with cloud middleware to efficiently handle two 

patterns: multideployment and multisnapshotting. We 

demonstrated the benefits of our approach through 

experiments on hundreds of nodes using benchmarks as well 

as real-life applications. Compared with simple approaches 

based on prepropagation, our approach shows a major 

improvement in both execution time and resource usage: the 

total time to perform a multideployment was reduced by up to 

a factor of 25, while the storage and bandwidth usage was 

reduced by as much as 90%. 

 

10. FUTURE ENHANCEMENTS   

The propose a lazy VM deployment scheme that fetches VM 

image content as need by the application executing in the VM, 

thus reducing the pressure on the VM storage service for 

heavily concurrent deployment requests. Furthermore, we 

leverage object versioning to save only local VM image 

differences back to persistent storage when a snapshot is 

created, yet provide the illusion that the snapshot is a different, 

fully independent image. This has two important benefits. 

First, it handles the management of updates independently of 

the hypervisor, thus greatly improving the portability of VM 

images and compensating for the lack of VM image format 

standardization. Second, it handles snapshotting transparently 

at the level of the VM image repository, greatly simplifying 

the management of snapshots. With respect to 

multisnapshotting, interesting reductions in time and storage 

space can be obtained by introducing reduplication schemes. 

We also plan to fully integrate the current work with Nimbus 

and explore its benefits for more complex HPC applications in 

the real world. 
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