

Jnana Jyothi.K , Jayanthi.M.G www.ijetst.in Page 490

IJETST- Volume||01||Issue||04||Pages 490-496||June||ISSN 2348-9480 2014

 International journal of Emerging Trends in Science and Technology

Retrieving the Data from Cloud Using Differential Query Services

Authors

Jnana Jyothi.K
1
, Jayanthi.M.G

2

1
M.tech, Dept. of M.tech, Cambridge Institute of Technology, B’lore, INDIA

 E-mail: Vinus19@gmail.com
2
Asst. Prof, Cambridge Institute of Technology, B’lore, INDIA

E-mail: Jaykumar_singh@rediffmail.com

Abstract

Cloud computing refers to the delivery of computing resources over the Internet. In a cost

efficient cloud environment, a user will experience a degree of delay while retrieving information

from the cloud. In such an environment, two main issues facing by the users are efficiency and

privacy. This work first focuses on the private keyword based file retrieval scheme, permits users

to get the files without losing any information from an unsecured server on demand. The

disadvantage of this scheme is that, it leads to heavy querying cost. This work presents a new

scheme called EIRQ (Efficient Information Retrieval for Ranked Query), based on an ADL

(Aggregation and Distribution Layer), to lessen the querying cost. In EIRQ, user can select a

rank to his query, where a highest ranked query will retrieve a higher percent of matched files

and vice versa. This is beneficial whenever cloud retrieves large numbers of matched files, but

the user is in need of only few files. Valuations are performed to check the efficiency of the

scheme in the cloud.

Keywords: Cloud Computing, Ranking, Aggregation and Distribution layer

INTRODUCTION

Compute clouds are commonly used by

many different users those rely on the

existing computing infrastructure to deploy

their workloads[2]. Because of the

advantages of cloud like flexibility, cost-

effectiveness and scalability, many of the

enterprises try to share the data with the

cloud. For example, if an organisation starts

to use the cloud. Thus, the staff of the

organisation are authorised to share data

with the cloud. While sharing, each file is

associated with a group of keywords and

Staff can retrieve files by requesting the

cloud with the use of keywords on demand.

In this cloud environment, protection of

privacy of the users becomes a major issue.

There are 2 types of user privacy: access

privacy and search privacy. Access Privacy

is nothing but the cloud should not know

anything about files returned to the user.

Search Privacy is nothing but the cloud

should not know anything about which

files are being searched by the user. A

simple solution for the protection of privacy

of the user is to request for every file in the

collection. By this cloud will be able to get

in which file/files the user is interested.

Private searching [4] permits a user to get

files which are of interest from an unsecured

server without losing any useful information

on demand. The cloud has to execute the

mailto:Vinus19@gmail.com

Jnana Jyothi.K , Jayanthi.M.G www.ijetst.in Page 491

IJETST- Volume||01||Issue||04||Pages 490-496||June||ISSN 2348-9480 2014

query on all the files shared. It leads to

degradation of performance because the

cloud has to execute thousands of queries on

a collection of files.

To make private searching suitable for cloud

computing, middleware layer, aggregation

and distribution layer is deployed between

user and cloud inside an organization [1]. It

will perform two main functionalities:

Aggregation of user requests and

Distribution of results. By this, computation

cost will be reduced, because the cloud has

to execute a single query regardless of

number of users requesting. This work

introduces a new and better scheme called

differential query services, in order to get

the required percentage of matched files on

demand by giving a rank to his request. This

is beneficial, if there are large numbers of

files matching a user’s request but the user is

in need of only a few of them. To better

understand, consider if cloud holds 2,000

files, where {F1, , F1000} and

{F1001, . . . ,F2000} are associated with

keywords “A, B” and “A, C” respectively.

When Bob needs to get 20% files consisting

of keywords “A, B”, and Alice needs to get

5% of the files consisting of keywords “A,

C”. The COPS scheme will retrieve 2, 000

files. In EIRQ, the cloud will retrieve 400

files.

Efficient Information retrieval for Ranked

Query (EIRQ), the proposed system, lets

users to input a rank to his request to get the

required percent of matched files. The EIRQ

is based on the construction of a privacy

preserving mask matrix.

Objectives of this work:

1) EIRQ schemes provide a cost-

efficient way to make private

searching suitable in cloud

environment.

2) The EIRQ schemes ensures privacy

of the users, while providing a

differential query service that allows

each user to retrieve matched files

only on demand.

3) Valuations are performed to check

the efficiency of the scheme in the

cloud.

RELATED WORK

This work aims to protect privacy and to

provide efficiency using differential query

services from the cloud. Similar research

was found in the stream of private searching

[3]. In searchable encryption [5], user

searches on encrypted data. While in private

searching it searches on unencrypted data

based on keyword. Private searching [3],[4],

helps to filter out data without considering

privacy of users. Private searching returns a

buffer with size O (f log (f)) when f’ files

matches with request. Each file has survival

rate associated with it. Survival rate is

nothing but the probability of a file

being recovered by the user successfully. As

per Paillier cryptosystem, the files that will

not match a query, will be having less

survival rate, thus reduces the

communication cost to O (f). The demerit of

private searching scheme is that the

computation, querying cost and

communication costs grow linearly with the

number of users executing queries. This is

not suitable in large scale cloud

environment. The previous work was to

make private searching work in cloud

environment. Private searching will retrieve

all the matched files, leads to waste of

bandwidth when user in need of few of the

files. A differential query service is

proposed to solve this problem.

EXISTING SYSTEM

Private keyword-based file retrieval scheme

is the existing system introduced by

Ostrovsky. This scheme permits users to get

the files without losing any information

from an unsecured server on demand.

Disadvantages: 1. Computational cost is

Jnana Jyothi.K , Jayanthi.M.G www.ijetst.in Page 492

IJETST- Volume||01||Issue||04||Pages 490-496||June||ISSN 2348-9480 2014

more, since the cloud has to execute the

query on every file in a collection. 2. It

incurs heavy querying overhead.

SYSTEM ARCHITECTURE

As shown in Fig. 1. There are 3 entities in

the system model: users, ADL, and the

cloud.

 Fig. 1 System model

In an organization, ADL will be deployed

to authorize its staff to share files with the

cloud. User’s send their requests to the

middleware server i.e. ADL, that will

combine the requests from multiple user’s

and sends a single request to the cloud.

The cloud executes the single query on

collection of files and returns all the

matched files to the aggregation and

distribution layer. ADL will send the results

to all the requested users. To aggregate

user requests, the ADL has to wait for

some time before running EIRQ schemes,

which will incur some querying delay.

Differential query service is introduced,

again to reduce the communication cost.

To get the required percentage of matched

files, user can input a rank to his request.

This is beneficial, if there are large

numbers of files matching a user’s request

but the user is in need of only a few of

them. User privacy is divided into search

and access privacy. In this work, queries

are divided into different ranks and thus

privacy of rank selected by the users also

needs to be ensured. Privacy of the rank

means, the cloud has to provide

differential query services regardless of the

rank selected by the users. Design goals:

Cost efficiency: The users can get the

matched files on demand to reduce the

communication cost.

User privacy: The cloud knows nothing

regarding what the user searching for,

which file has been returned and rank

chosen by the user.

EFFICIENT INFORMATION

RETRIEVAL FOR RANKED QUERY

(EIRQ)

Two issues should be solved are: Firstly,

It requires determining the dependency

between rank of a query

 and the percentage of matched

files to be returned. The queries are divided

into 0 ~ r ranks. Rank-0 is the top most

rank and Rank-r is the lower most rank.

This work, determines the dependency

between the rank of query and the matched

files returned by granting Rank-i queries

to recover (1 − i/r) percent of matched

files. So, Rank-0 will get 100% of matched

files, and Rank-r will not return any of the

files. Secondly, it requires determining

chance of a file being returned as

matched file. This work, determines the

chance of a file being returned based on

the many queries matching that file.

Specifically, ranking of keyword will be

done based on highest rank of queries

selected it and then ranks all the files by

the highest rank of file keywords. If the file

rank is i, then the chance of filtering a file

is i/r. Therefore, Rank-0 files will be

returned with probability 1 and Rank-r

files will not be returned. Since unneeded

files have been filtered before returning

files to ADL, the files present in the

buffer will be having probability 1 with

high survival rate. EIRQ Efficient mainly

consists of four algorithms, since Query

Gen and Result Divide algorithms are easily

understood; provide the details of

algorithms Matrix Construct and File Filter.

Jnana Jyothi.K , Jayanthi.M.G www.ijetst.in Page 493

IJETST- Volume||01||Issue||04||Pages 490-496||June||ISSN 2348-9480 2014

The working Process is as follows:

 Fig. 2 Working Process

Step 1:

The user executes the Query Gen

algorithm to generate a query that consists

of keywords and the rank. That will be sent

without encrypting to the middleware

server called ADL.

Step 2:

After combining queries from all the users,

the ADL executes the Matrix Construct

algorithm to construct mask matrix and that

will be sent to the cloud. Consider d is the

no. of keywords in the dictionary, and r is

the query rank, the mask matrix M is a d-

row and r-column matrix. M[i, j] denotes

the element in the i-th row and the j-th

column, and if l is the highest rank of

queries that choose the i-th keyword Dic[i]

from the dictionary. M is constructed as

follows: for the i-th row of M that

corresponds to Dic[i], M[i, 1], . . . , M[i, r

− l] are adjusted to 1, and M[i, r − l + 1], . .

. M[i, r] are fixed to 0, then each bit is

encrypted using the ADL’s public key pk.

For the rows that correspond to Rank-l

keywords, the ADL sets the first r − l

elements to 1. Given Fj with Rank-l, when

selected any number k, the probability of

all the k-th elements of all the rows that

correspond Fj’s keywords being 0 is l/r,

this can be determined by the highest rank

of Fj keywords.

Step 3:

The cloud executes the File Filter algorithm

to filter the files which are unneeded. A

buffer will be returned to Aggregation and

distribution layer that includes files those

matching with the request. Specifically,

the cloud multiplies the k-th elements of

the rows that correspond to Fj keywords to

get cj, where k = j mod r. To get ej, it

powers| Fj | to cj and maps the c-e pair into

multiple entries of a buffer.

Step 4:

The ADL executes the Result Divide

algorithm to send search results to all the

users requested. File contents are recovered

by executing File Recover algorithm. To

let the ADL correctly deliver files to all of

the users, the cloud required to send

keywords along with the file content. By

this, ADL will get to know files matching

the user requests and then sends the files

to particular user.

MODULE DESCRIPTION

There are 4 modules: The user, ADL,

Storage and Ranked Queries.

User: In this user module, the unauthorised

user can register with the cloud. If user is

a registered user, he can request the data

from the cloud on demand

by using keywords associating with the file.

User can select the rank to his own

request in order to retrieve the required

percentage of files.

Storage: In this module, only the cloud

admin will be having permissions to share

the files with cloud along with the file

details.

ADL: In this module, the ADL will

aggregate the queries from multiple users

and sends a combined query to cloud.

After the cloud process, the cloud returns a

buffer containing matched files. Then the

ADL will distribute the files to the

respective users.

Jnana Jyothi.K , Jayanthi.M.G www.ijetst.in Page 494

IJETST- Volume||01||Issue||04||Pages 490-496||June||ISSN 2348-9480 2014

Ranked Queries: In this module, the user

can select the rank of the query in order to

get required percent of matched files. The

lower ranked query will retrieve less

percent matched files and vice versa.

SCHEMES OF EIRQ

In this section, the EIRQ scheme and one

of the two extensions have been explained.

The EIRQ schemes are EIRQ-Efficient,

EIRQ-Simple and EIRQ-Privacy. This

work differentiates EIRQ-Efficient, EIRQ-

Simple. The EIRQ-Efficient is based on the

construction of a privacy-preserving mask

matrix. Before mapping the matched files

to a buffer, the cloud can filter unneeded

files. The survival rate of a file is

determined by the size of the buffer and no.

of times mapped. Therefore, the basic idea

of other two schemes is that, for each rank

i ranging from (0, . . . , r), the ADL sets

the buffer size and the no. Of times

mapped to make the file survival rate qi

approach 1-i/r.

The EIRQ-Efficient Scheme

This scheme works as shown in the

following algorithm. If file rank is i, then

the chance of that file being filtered is i/r.

So, Rank-0 will return the files with the

probability 1 and Rank-r will not return

anything. Since unneeded files have been

filtered before returning files to the

Aggregation and Distribution Layer.

The files present in the buffer will be

having probability 1 with high survival

rate. Duplicate files will not be returned.

The EIRQ-Simple Scheme

The working process of EIRQ-Simple is

same as in Fig. 2- (b). This scheme works

as shown in the following algorithm.

The only difference between EIRQ-

efficient and simple are in Matrix Construct

and FileFilter algorithms. Queries are

classified into 0-r ranks; ADL sends r

combined queries to the cloud, each with a

different rank. For Qi, the ADL sets the j-th

bit to an encryption of 1 if the j-th keyword

Dic[j] from the dictionary is chosen by at

least one Rank-i query. The cloud generates

r buffers, each with a different file

survival rate. For Bi, the ADL adjusts the

mapping time i and the buffer size i so that

the survival rate of files in Bi is qi = 1-i/r,

where 0<= i<= r-1. The main drawback of

EIRQ-simple is that it returns redundant

files when there are files satisfying more

than one ranked query. For example, if Fi

is of interest by Rank-0 and Rank-1

queries, it will be returned twice (in Rank-

0 buffer and Rank-1 buffer, respectively),

which wastes the bandwidth.

Jnana Jyothi.K , Jayanthi.M.G www.ijetst.in Page 495

IJETST- Volume||01||Issue||04||Pages 490-496||June||ISSN 2348-9480 2014

EIRQ MODEL PERFORMANCE

ANALYSIS

This section compares 2 EIRQ schemes

based on file survival rate and transfer

time.

A. File Survival Rate

The queries are classified into 0 ~ 4 ranks,

Rank-0, Rank-1, Rank-2, Rank-3, and

Rank-4 should retrieve 100%, 75%, 50%,

25%, 0% of matched files, respectively.

Fig.3 File Survival rate under Ostrovsky

Settings

As shown in Fig.3, the failure rate in

EIRQ-Simple is lower than i/r, and thus,

EIRQ-Efficient has file survival rate

higher than the desired value of 1−i/r

(about 25% and 50% of files are

redundantly returned). Only EIRQ-

Efficient filters a certain percentage of

matched files before mapping them to a

buffer, provides differential query services.

B. Transfer Time in a Real Cloud

To verify the feasibility of our schemes,

we deploy our program in Amazon EC2,

to test the transfer-in (receiving query) and

transfer-out (sending buffer) time at the

cloud. The local machine has an Intel Core

2 Duo E8400 3.0 GHz CPU and 8 GB Linux

RAM. We subscribe EC2 amzn- ami-

2011.02.1.i386-ebs (ami-8c1fece5) AMI and

a small type instance with the following

specifications: 32-bit platform, a single

virtual core equivalent to 1 compute unit

CPU, and 1.7 GB RAM. The average

bandwidth from EC2 to the local machine is

33.43 MB/s, and from the local machine to

EC2 is 42.98 MB/s.

CONCLUSION AND FUTURE

ENHANCEMENT

This work proposed two EIRQ schemes

based on an ADL to provide efficiency and

privacy using differential query services.

With these schemes, a user can able to

decide the percentage of files to be returned

from the cloud by choosing queries of

different ranks. The EIRQ schemes make

the private searching technique to a cost-

efficient cloud environment by further

reducing the communication cost. For future

work, framework can be designed to provide

flexible ranking mechanism for EIRQ

schemes.

ACKNOWLEDGEMENT

This work reported here has been guided by

Mrs. JAYANTHI.M.G, Assistant professor,

Department of Computer Science &

Engineering, CAMBRIDGE INSTITUTE

OF TECHNOLOGY, BANGALORE.

Her support is gratefully acknowledged.

REFERENCES

[1] Qin Liu, Chiu C.Tan, Jie Wu and Fellow

(2013) “Towards Differential Query

Services in Cost-Efficient Clouds” IEEE

Transactions On Parallel and Distributed

Systems, vol. 20, no.10, pp-1- 11.

[2] P.Mell and T.Grance, The nist definition

of cloud computing (draft), NIST Special

Publication, 2011.

[3] X. Yi and E. Bertino, Private searching

for single and conjunctive keywords on

streaming data, in Proc. of ACM Workshop

on Privacy in the Electronic Society, 2011.

[4] Private searching on streaming data,

Journal of Cryptology, 2007.

[5] R. Curtmola, J. Garay, S. Kamara, and

R. Ostrovsky, Searchable symmetric

encryption: improved definitions and e cient

Jnana Jyothi.K , Jayanthi.M.G www.ijetst.in Page 496

IJETST- Volume||01||Issue||04||Pages 490-496||June||ISSN 2348-9480 2014

constructions, in Proc. of ACM CCS, 2006.

[6] R.Ostrovsky and W. Skeith, Private

searching on streaming data, in Proc. of

CRYPTO, 2005.

[7] Shucheng Yu, Cong Wang, Kui Ren†

and Wenjing Lou “Achieving Secure,

Scalable, and Fine-grained Data Access

Control in Cloud Computing” IEEE

Transactions On Parallel and Distributed

Systems, vol. 20, no.8, pp-1-9.

