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Abstract. By making use of the Hohlov operator given by

the class of Spirallike functions is introduced. The object of

the present paper is to obtain sharp upper bound for functional

|a2a4 − a23|.

1. Introduction, Definition and Motivation

Let A denotes the class of normalized analytic functions of the

form,

f(z) = z +
∞∑
k=2

akz
k (1.1)

where,

z ∈ E {z : z ∈ C & |z| < 1} (1.2)

Let S denotes the class of all functions in A which are univalent.

Robertson [14] introduce to class of starlike function of order β

as follows,

De�nition 1.1. Let δ ∈ [0,1], f ∈ S &

R

{
zf ′(z)

f(z)

}
> δ z ∈ E (1.3)
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We say that f is starlike function of order β & denoted by S∗(β).

Spacek[16] introduce the class of Spirallike function of type β as

follows,

De�nition 1.2. Let f ∈ S, −π/2 < β < π/2 then f(z) is spirallike

function of type β on E.

R

{
eiβzf ′(z)

f(z)

}
> 0 z ∈ E (1.4)

denoted class of Sβ.

From de�nition (1.1) & (1.2) it is easy to see [18] that Starlike

functions of order β & Spirallike functions of type β have some

relationship on geometry. Starlike functions of order β map E into

the right half complex plane whose real part is greater than β by

mapping zf ′(z)
f(z)

, while spirallike functions of type β map E into the

right half complex plane by the mapping eiβzf ′(z)
f(z)

. Since,

lim
z→0

eiβzf ′(z)

f(z)
= eiβ

We can deducted that if we restrict the image of the mapping
eiβzf ′(z)
f(z)

in the right complex plane whose real part is greater than

a certain constant, then the constant must be smaller than cos β.

Libra [16] introduced & studied the class Sβδ given as follows,

De�nition 1.3. Let δ ∈ [0,1], -π/2 < βπ/2 & f ∈ S then, f ∈ Sβδ
if and only if,

R

{
eiβzf ′(z)

f(z)

}
> δ cos β z ∈ E (1.5)

The qth determinant for q ≥ 1 and n ≥ 0 is stated by Noonan

and Thomas [10] as,
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Hq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣
This determinant has also been considered by several authors.

For example, Noorin [20] determined the rate of growth of Hq(n)

as n → ∞ for functions f given by (1.3) with bounded boundary.

Ehrenborg [21] studied the Hankel determinant of exponential poly-

nomials. The Hankel transform of an integer sequence and some of

its properties were discussed by Layman's article . It is well known

that [1] for f ∈ S and given by (1.5) the sharp inequality |a3−a2
2| ≤

1 hold. This corresponds to the Hankel determinant with q = 2

and k = 1. After that, Fekete-Szego further generalized the esti-

mate |a3 − µa2
2| with real µ and f ∈ S. For a given class of function

in A, the sharp bound for the non linear functional |a2a4 − a2
3| is

known as the second Hankel determinant. This corresponds to the

Hankel determinant with q = 2 and k = 2.

For the function f & g ∈ A given by the series,

f(z) =
∞∑
n=0

anz
n & g(z) =

∞∑
n=0

bnz
n z ∈ E (1.6)

The Hadamard product of f & g denoted by f ∗ g is de�ned as,

f ∗ g =
∞∑
n=0

anbnz
n = (g ∗ f)(z) (1.7)

By using the Hadamard product hohlov [12] introduced and studied

the linear operator Ia,bc : Ω→ Ω de�ned by,

Ia,bc f(z) = 2F1(a, b; c; z) ∗ f(z) f ∈ Ω z ∈ E (1.8)

where 2F1(z) known as Gaussian hypergeometric function is de�ned

by
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2F1(z) = 2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n(1)n

zn (1.9)

where (a, b ∈ C, c ∈ C\z0̄ = {0,−1,−2, . . .})
λnis the Pochhamer Symbol or Shifted factorial written in terms

of Gamma Function Γ by,

(λn) =
Γλ+ n

Γn
=

1 n = 0

λ(λ+ 1)(λ+ 2) n ∈ N = {1, 2, . . .}
(1.10)

Note that 2F1 is symmetric in a & b and that the series terminates if

at least one of the numerator parameter a & b is zero or a negative

integer. Observe that for the function f of the form (1.1) we have,

Ia,bc f(z) = z +
∞∑
n=2

(a)n−1(b)n−1

(c)n−1(1)n−1

anz
n (1.11)

De�nition 1.4 (16). A function f ∈ A is said to be in the class of

Sa,bc (β, δ) (|β| < π/2, 0 ≤ δ < 1) if it satis�es the inequality,

R

{
eiβIa,bc f(z)

z

}
> δ cos β (1.12)

De�nition 1.5. Let P be the family of all functions p analytic in

E for which, R{P (z)} > 0 & P(z) = 1 + C1 + C2 + . . ., z ∈ E.

f ∈ Sa,bc (β, δ)

⇔ eiβ
Ia,bc f(z)

z

= [(1− δ)p(z) + δ] cos β + i sin β (1.13)

where β is real, |β| ≤ π/2 & p(z) ∈ P. We note that,

S0,0
1 (β, δ) =

{
f : f ∈ A & R

{
eiβ
f(z)

f(z)

}
> δ cos β

}
(1.14)
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S0,1
1 (β, δ) =

{
f : f ∈ A & R

{
eiβf ′(z)

}
> δ cos β

}
(1.15)

S0,1
1 (0, 0) = S1,0

1 (0, 0) = S0,1
2 (0, 0)

= R =
{
f : f ∈ A & R{f ′(z)} > 0

} (1.16)

Janteng, Halim and Darus [3] have considered the functional

|a2a4 − a2
3| and found a sharp upper bound for the function f in

the subclass RT of S consisting of function whose derivative has a

positive real part studied by MacGregor [11]. In their work they

have show that if f ∈ RT then |a2a4−a2
3| ≤ 4

9
. Janteng et al obtain

the second Hankel determinant and sharp upper bounds for the

familiar subclass of S, namely starlike and convex functions denoted

by ST & CV and showed that |a2a4 − a2
3| ≤ 1 and |a2a4 − a2

3| ≤ 1
8

respectively.

Aabed Mohammed and Maslina Darus [1] for some recent work

[2][3][4][5] obtained sharp upper bound to the second hankel deter-

minant for the class of analytic function de�ned by linear operator.

Motivated by the above mentioned results by di�erent authors in

this direction. In this paper we generalized the results by �nding

sharp upper bounds for H2(2) for f in Sa,bc (β, δ) de�ned by Hohlov

Operator.

2. Preliminaries & Notations

Lemma 2.1. If the function p ∈ P is given by the series,

p(z) = 1 + p1z + p2z
2 + . . .

then the following sharp estimate holds,

|pk| ≤ 2 k = 1, 2, . . .

Lemma 2.2. If the function p ∈ P is given by the series then,

2p2 = p2
1 + x(4− p2

1)
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4p3 = p3
1 + 2p1(4− p2

1)x− p1(4− p2
1)x2 + 2(4− p2

1)(1− |x|2)z

for some x,z, |x| ≤ 1, |z| ≤ 1.

3. Main Results

Theorem 3.1. Let the function f given by (1.1) be in the class Sa,bc
(β, δ) then,

|a2a4 − a2
3| ≤

16c2(1− δ)2(c+ 1)2 cos2 β

a2b2(a+ 1)2(b+ 1)2

Proof. Let f ∈ Sa,bc (β, δ) then,

p ∈ P is given by (1.12) then

eiβ
Ia,bc f(z)

z
=
[
[1− δ]p(z) + δ

]
(cos β + i sin β) (3.1)

eiβ

{
1 +

∞∑
k=2

(a)k−1(b)k−1

(c)k−1(1)k−1

akz
k−1

}
= [(1− δ)[1 +

∞∑
k=1

pkz
k]

+δ](cos β + i sin β)

(3.2)

Comparing the coe�cients, we get,

eiβ
(a)(b)

c
a2 = (1− δ)p1 cos β (3.3)

∴ a2 × eiβ =
c(1− δ)p1 cos β

ab
(3.4)

a3 × eiβ =
2c(c+ 1)(1− δ)p2 cos β

ab(a+ 1)(b+ 1)
(3.5)

a4 × eiβ =
6c(c+ 1)(c+ 2)(1− δ)p3 cos β

ab(a+ 1)(a+ 2)(b+ 1)(b+ 2)
(3.6)
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|a2a4 − a2
3| =

∣∣∣∣∣6c2(1− δ)2p1p3 cos2 β(c+ 1)(c+ 2)

a2b2(a+ 1)(a+ 2)(b+ 1)(b+ 2)

−4c2(c+ 1)2(1− δ)2p2
2 cos2 β

a2b2(a+ 1)2(b+ 1)2

∣∣∣∣∣
=
c2(1− δ)2(c+ 1)cos2β

a2b2(a+ 1)(b+ 1)

∣∣∣∣∣ 6(c+ 2)p1p3

(a+ 2)(b+ 2)

− 4(c+ 1)p2
2

(a+ 1)(b+ 1)

∣∣∣∣∣

(3.7)

�

Since the function p(z) and p(eiθ2) (θ ∈ R) are members of the

class p, simultaneously we assume without loss of generality p1 >

0 for convenience of notation. We take p1 = P, p ∈ [0,2] by using

lemma,

|a2a4 − a2
3| =

c2(1− δ)2(c+ 1) cos2 β

a2b2(a+ 1)(b+ 1)

∣∣∣∣∣ 6(c+ 2)

(a+ 2)(b+ 2)

(
p4

4
+

(4− p2)xp2

2
−

p2(4− p2)x2

4
+

2p(4− p2)

4
(1− |x|2z)

)

− 4(c+ 1)

(a+ 1)(b+ 1)

[
p4 + 2p2x(4− p2) + x2(4− p2)2

4

]∣∣∣∣∣
(3.8)

An application of triangle inequality and replacement of |x| by y

gives,
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|a2a4 − a2
3| ≤

c2(1− δ)2(c+ 1) cos2 β

a2b2(a+ 1)(b+ 1)

[{
6(c+ 2)

(a+ 2)(b+ 2)(
p4

4
+

(4− p2)p2y

2
+
p2(4− p2)

4
y2 +

p(4− p2)

2
(1− y2)

)}]

+
(c+ 1)

(a+ 1)(b+ 1)

[
p4 + 2p2y(4− p2) + y2(4− p2)2

]
= G(p, y) 0 ≤ p ≤ z 0 ≤ y ≤ 1

(3.9)

We maximize the function G(p,y) on closed rectangle [0,2] × [0,1]

since,

δG

δy
=
c2(1− δ)2(c+ 1) cos2 β

a2b2(a+ 1)(b+ 1)

[(
6(c+ 2)

(a+ 2)(b+ 2)

)
(4− p2)2p

2

− 2p2y(4− p2)

4
− 2y(4− p2)p

2

]
+

4(c+ 1)

(a+ 1)(b+ 1)[2p2(4− p2) + 2y(4− p2)2

4

]

G(p, 1) = F (p)

=
c2(1− δ)2(c+ 1) cos2 β

a2b2(a+ 1)(b+ 1)

{[(
c+ 2

(a+ 2)(b+ 2)

)
p2

4
+

3

4
p2(4− p2)

]

+
4(c+ 1)

(a+ 1)(b+ 1)

[
p4 + 2p2(4− p2) + (4− p2)2

4

]}

F ′(p) =
c2(1− δ)2(c+ 1) cos2 β

a2b2(a+ 1)(b+ 1)

{[
6(c+ 2)

(a+ 2)(b+ 2)

(
2p

4
+

3(8p− 4p3)

4

)

+
4(c+ 1)

(a+ 1)(b+ 1)

[
4p3 + 16p− 8p3 + 2(4− p2)2p

4

]]}
(3.10)
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Where, F′(p) < 0, 0 < p < 2, p = 0, F(p) > F(2)

Max0≤p≤2 F(p) occurs at p = 0. ∴ Upper bound (3.10) to y =

1, P = 0. Hence

|a2a4 − a2
3| ≤

16c2(1− δ)(c+ 1)2 cos2 β

a2b2(a+ 1)2(b+ 1)2
(3.11)

Remark: For β = 0, δ = 0, a = c = 1, b = 2, |a2a4−a2
3| ≤ 4

9
.

We get a recent result due to the Janteng et al. [3]
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