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Abstract  

We trained a large, deep convolution neural network to classify the 1.2 million high-resolution images in the 

Image Net LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 

error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural 

network, which has 60 million parameters and 650,000 neurons, consists of five convolution layers, some of 

which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way soft ax. To 

make training faster, we used non-saturating neurons and a very efficient GPU implementation of the 

convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed 

regularization method called ―dropout‖ that proved to be very effective. We also entered a variant of this model 

in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% 

achieved by the second-best entry 

Introduction Current approaches to object recognition make essential use of machine learning methods. To 

improve their performance, we can collect larger datasets, learn more powerful models, and use better 

techniques for preventing overfitting. Until recently, datasets of labeled images were relatively small — on the 

order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and CIFAR-10/100 [12]). 

Simple recognition tasks can be solved quite well with datasets of this size, especially if they are augmented 

with label-preserving transformations. For example, the currentbest error rate on the MNIST digit-recognition 

task  

Despite the attractive qualities of CNNs, and despite the relative efficiency of their local architecture, they have 

still been prohibitively expensive to apply in large scale to high-resolution images. Luckily, current GPUs, 

paired with a highly-optimized implementation of 2D convolution, are powerful enough to facilitate the training 

of interestingly-large CNNs, and recent datasets such as ImageNet contain enough labeled examples to train 

such models without severe overfitting. The specific contributions of this paper are as follows: we trained one 

of the largest convolutional neural networks to date on the subsets of ImageNet used in the ILSVRC-2010 and 

ILSVRC-2012 competitions [2] and achieved by far the best results ever reported on these datasets. We wrote a 

highly-optimized GPU implementation of 2D convolution and all the other operations inherent in training 

convolutional neural networks, which we make available publicly1 . Our network contains a number of new and 

unusual features which improve its performance and reduce its training time, which are detailed in Section 3. 

The size of our network made overfitting a significant problem, even with 1.2 million labeled training 

examples, so we used several effective techniques for preventing overfitting, which are described in Section 4. 
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Our final network contains five convolutional and three fully-connected layers, and this depth seems to be 

important: we found that removing any convolutional layer (each of which contains no more than 1% of the 

model’s parameters) resulted in inferior performance. In the end, the network’s size is limited mainly by the 

amount of memory available on current GPUs and by the amount of training time that we are willing to tolerate. 

Our network takes between five and six days to train on two GTX 580 3GB GPUs. All of our experiments 

suggest that our results can be improved simply by waiting for faster GPUs and bigger datasets to become 

available. 2 The Dataset ImageNet is a dataset of over 15 million labeled high-resolution images belonging to 

roughly 22,000 categories. The images were collected from the web and labeled by human labelers using 

Amazon’s Mechanical Turk crowd-sourcing tool. Starting in 2010, as part of the Pascal Visual Object 

Challenge, an annual competition called the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 

has been held. ILSVRC uses a subset of ImageNet with roughly 1000 images in each of 1000 categories. In all, 

there are roughly 1.2 million training images, 50,000 validation images, and 150,000 testing images. ILSVRC-

2010 is the only version of ILSVRC for which the test set labels are available, so this is the version on which 

we performed most of our experiments. Since we also entered our model in the ILSVRC-2012 competition, in 

Section 6 we report our results on this version of the dataset as well, for which test set labels are unavailable. 

On ImageNet, it is customary to report two error rates: top-1 and top-5, where the top-5 error rate is the fraction 

of test images for which the correct label is not among the five labels considered most probable by the model. 

ImageNet consists of variable-resolution images, while our system requires a constant input dimensionality. 

Therefore, we down-sampled the images to a fixed resolution of 256 × 256. Given a rectangular image, we first 

rescaled the image such that the shorter side was of length 256, and then cropped out the central 256×256 patch 

from the resulting image. We did not pre-process the images in any other way, except for subtracting the mean 

activity over the training set from each pixel. So we trained our network on the (centered) raw RGB values of 

the pixels. 3 The Architecture The architecture of our network is summarized in Figure 2. It contains eight 

learned layers — five convolutional and three fully-connected. Below, we describe some of the novel or 

unusual features of our network’s architecture. Sections 3.1-3.4 are sorted according to our estimation of their 

importance, with the most important first. 

3.1 ReLU Nonlinearity Figure 1: A four-layer convolutional neural network with ReLUs (solid line) reaches a 

25% training error rate on CIFAR-10 six times faster than an equivalent network with tanh neurons (dashed 

line). The learning rates for each network were chosen independently to make training as fast as possible. No 

regularization of any kind was employed. The magnitude of the effect demonstrated here varies with network 

architecture, but networks with ReLUs consistently learn several times faster than equivalents with saturating 

neurons. The standard way to model a neuron’s output f as a function of its input x is with f(x) = tanh(x) or f(x) 

= (1 + e −x ) −1 . In terms of training time with gradient descent, these saturating nonlinearities are much slower 

than the non-saturating nonlinearity f(x) = max(0, x). Following Nair and Hinton [20], we refer to neurons with 

this nonlinearity as Rectified Linear Units (ReLUs). Deep convolutional neural networks with ReLUs train 

several times faster than their equivalents with tanh units. This is demonstrated in Figure 1, which shows the 

number of iterations required to reach 25% training error on the CIFAR-10 dataset for a particular four-layer 

convolutional network. This plot shows that we would not have been able to experiment with such large neural 

networks for this work if we had used traditional saturating neuron models. We are not the first to consider 

alternatives to traditional neuron models in CNNs. For example, Jarrett et al. [11] claim that the nonlinearity 

f(x) = |tanh(x)| works particularly well with their type of contrast normalization followed by local average 
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pooling on the Caltech-101 dataset. However, on this dataset the primary concern is preventing overfitting, so 

the effect they are observing is different from the accelerated ability to fit the training set which we report when 

using ReLUs. Faster learning has a great influence on the performance of large models trained on large datasets. 

3.2 Training on Multiple GPUs A single GTX 580 GPU has only 3GB of memory, which limits the maximum 

size of the networks that can be trained on it. It turns out that 1.2 million training examples are enough to train 

networks which are too big to fit on one GPU. Therefore we spread the net across two GPUs. Current GPUs are 

particularly well-suited to cross-GPU parallelization, as they are able to read from and write to one another’s 

memory directly, without going through host machine memory. The parallelization scheme that we employ 

essentially puts half of the kernels (or neurons) on each GPU, with one additional trick: the GPUs communicate 

only in certain layers. This means that, for example, the kernels of layer 3 take input from all kernel maps in 

layer 2. However, kernels in layer 4 take input only from those kernel maps in layer 3 which reside on the same 

GPU. Choosing the pattern of connectivity is a problem for cross-validation, but this allows us to precisely tune 

the amount of communication until it is an acceptable fraction of the amount of computation. The resultant 

architecture is somewhat similar to that of the ―columnar‖ CNN employed by Cire¸san et al. [5], except that our 

columns are not independent (see Figure 2). This scheme reduces our top-1 and top-5 error rates by 1.7% and 

1.2%, respectively, as compared with a net with half as many kernels in each convolutional layer trained on one 

GPU. The two-GPU net takes slightly less time to train than the one-GPU net2 . 

3.3 Local Response Normalization ReLUs have the desirable property that they do not require input 

normalization to prevent them from saturating. If at least some training examples produce a positive input to a 

ReLU, learning will happen in that neuron. However, we still find that the following local normalization 

scheme aids generalization. Denoting by a i x,y the activity of a neuron computed by applying kernel i at 

position (x, y) and then applying the ReLU nonlinearity, the response-normalized activity b i x,y is given by the 

expression b i x,y = a i 

over n ―adjacent‖ kernel maps at the same spatial position, and N is the total 

number of kernels in the layer. The ordering of the kernel maps is of course arbitrary and determined before 

training begins. This sort of response normalization implements a form of lateral inhibition inspired by the type 

found in real neurons, creating competition for big activities amongst neuron outputs computed using different 

kernels. The constants k, n, α, and β are hyper-parameters whose values are determined using a validation set; 

we used k = 2, n = 5, α = 10−4 , and β = 0.75. We applied this normalization after applying the ReLU 

nonlinearity in certain layers (see Section 3.5). This scheme bears some resemblance to the local contrast 

normalization scheme of Jarrett et al. [11], but ours would be more correctly termed ―brightness normalization‖, 

since we do not subtract the mean activity. Response normalization reduces our top-1 and top-5 error rates by 

1.4% and 1.2%, respectively. We also verified the effectiveness of this scheme on the CIFAR-10 dataset: a 

four-layer CNN achieved a 13% test error rate without normalization and 11% with normalization3 . 

3.4 Overall Architecture 

Now we are ready to describe the overall architecture of our CNN. As depicted in Figure 2, the net contains 

eight layers with weights; the first five are convolution and the remaining three are fully connected. The output 

of the last fully-connected layer is fed to a 1000-way soft ax which produces 

a distribution over the 1000 class labels. Our network maximizes the multinomial logistic regression objective, 

which is equivalent to maximizing the average across training cases of the log-probability of the correct label 

under the prediction distribution. The kernels of the second, fourth, and fifth convolution layers are connected 

only to those kernel maps in the previous layer which reside on the same GPU (see Figure 2). The kernels of the 
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third convolutional layer are connected to all kernel maps in the second layer. The neurons in the fully 

connected layers are connected to all neurons in the previous layer. Response-normalization layers follow the 

first and second convolution layers. Max-pooling layers, of the kind described in Section 3.4, follow both 

response-normalization layers as well as the fifth convolutional layer. The ReLU non-linearity is applied to the 

output of every convolution and fully-connected layer 

 
Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities 

between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts 

at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and 

the number of neurons in the network’s  emaining layers is given by 253,440–186,624–64,896–64,896–43,264– 

4096–4096–1000. 

 

Qualitative Evaluations 

Figure 3 shows the convolutional kernels learned by the network’s two data-connected layers. The network has 

learned a variety of frequency- and orientation-selective kernels, as well as various colored blobs. Notice the 

specialization exhibited by the two GPUs, a result of the restricted connectivity described in Section 3.5. The 

kernels on GPU 1 are largely color-agnostic, while the kernels on on GPU 2 are largely color-specific. This kind 

of specialization occurs during every run and is independent of any particular random weight initialization 

(modulo a renumbering of the GPUs). 

 

 
 

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model. 

The correct label is written under each image, and the probability assigned to the correct label is also shown 

with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The 
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remaining columns show the six training images that produce feature vectors in the last hidden layer with the 

smallest Euclidean distance from the feature vector for the test image. 

 

Discussions 

Our results show that a large, deep convolutional neural network is capable of achieving recordbreaking results 

on a highly challenging dataset using purely supervised learning. It is notable that our network’s performance 

degrades if a single convolutional layer is removed. For example  emoving any of the middle layers results in a 

loss of about 2% for the top-1 performance of the network. So the depth really is important for achieving our 

results. 

To simplify our experiments, we did not use any unsupervised pre-training even though we expect that it will 

help, especially if we obtain enough computational power to significantly increase the size of the network 

without obtaining a corresponding increase in the amount of labeled data. Thus far, our results have improved 

as we have made our network larger and trained it longer but we still  have many orders of magnitude to go in 

order to match the infero-temporal pathway of the human  visual system. Ultimately we would like to use very 

large and deep convolutional nets on video sequences where the temporal structure provides very helpful 

information that is missing or far less obvious in static images. 
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