

Dr.K.Vikram, et al www.ijetst.in Page 6055

IJETST- Vol.||04||Issue||09||Pages 6055-6059||September||ISSN 2348-9480 2017

International Journal of Emerging Trends in Science and Technology
IC Value: 76.89 (Index Copernicus) Impact Factor: 4.219 DOI: https://dx.doi.org/10.18535/ijetst/v4i9.30

Convolution Neural Networks by Image Net

Authors

Dr.K.Vikram
1
, Dr. P.K. Gouda

2

 .Professor in C.E. Department,

Professor in E&TC. Department

G.H. Raisoni College of Engineering & management, Wagholi, Pune

Abstract

We trained a large, deep convolution neural network to classify the 1.2 million high-resolution images in the

Image Net LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5

error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural

network, which has 60 million parameters and 650,000 neurons, consists of five convolution layers, some of

which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way soft ax. To

make training faster, we used non-saturating neurons and a very efficient GPU implementation of the

convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed

regularization method called ―dropout‖ that proved to be very effective. We also entered a variant of this model

in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2%

achieved by the second-best entry

Introduction Current approaches to object recognition make essential use of machine learning methods. To

improve their performance, we can collect larger datasets, learn more powerful models, and use better

techniques for preventing overfitting. Until recently, datasets of labeled images were relatively small — on the

order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and CIFAR-10/100 [12]).

Simple recognition tasks can be solved quite well with datasets of this size, especially if they are augmented

with label-preserving transformations. For example, the currentbest error rate on the MNIST digit-recognition

task

Despite the attractive qualities of CNNs, and despite the relative efficiency of their local architecture, they have

still been prohibitively expensive to apply in large scale to high-resolution images. Luckily, current GPUs,

paired with a highly-optimized implementation of 2D convolution, are powerful enough to facilitate the training

of interestingly-large CNNs, and recent datasets such as ImageNet contain enough labeled examples to train

such models without severe overfitting. The specific contributions of this paper are as follows: we trained one

of the largest convolutional neural networks to date on the subsets of ImageNet used in the ILSVRC-2010 and

ILSVRC-2012 competitions [2] and achieved by far the best results ever reported on these datasets. We wrote a

highly-optimized GPU implementation of 2D convolution and all the other operations inherent in training

convolutional neural networks, which we make available publicly1 . Our network contains a number of new and

unusual features which improve its performance and reduce its training time, which are detailed in Section 3.

The size of our network made overfitting a significant problem, even with 1.2 million labeled training

examples, so we used several effective techniques for preventing overfitting, which are described in Section 4.

Dr.K.Vikram, et al www.ijetst.in Page 6056

IJETST- Vol.||04||Issue||09||Pages 6055-6059||September||ISSN 2348-9480 2017

Our final network contains five convolutional and three fully-connected layers, and this depth seems to be

important: we found that removing any convolutional layer (each of which contains no more than 1% of the

model’s parameters) resulted in inferior performance. In the end, the network’s size is limited mainly by the

amount of memory available on current GPUs and by the amount of training time that we are willing to tolerate.

Our network takes between five and six days to train on two GTX 580 3GB GPUs. All of our experiments

suggest that our results can be improved simply by waiting for faster GPUs and bigger datasets to become

available. 2 The Dataset ImageNet is a dataset of over 15 million labeled high-resolution images belonging to

roughly 22,000 categories. The images were collected from the web and labeled by human labelers using

Amazon’s Mechanical Turk crowd-sourcing tool. Starting in 2010, as part of the Pascal Visual Object

Challenge, an annual competition called the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)

has been held. ILSVRC uses a subset of ImageNet with roughly 1000 images in each of 1000 categories. In all,

there are roughly 1.2 million training images, 50,000 validation images, and 150,000 testing images. ILSVRC-

2010 is the only version of ILSVRC for which the test set labels are available, so this is the version on which

we performed most of our experiments. Since we also entered our model in the ILSVRC-2012 competition, in

Section 6 we report our results on this version of the dataset as well, for which test set labels are unavailable.

On ImageNet, it is customary to report two error rates: top-1 and top-5, where the top-5 error rate is the fraction

of test images for which the correct label is not among the five labels considered most probable by the model.

ImageNet consists of variable-resolution images, while our system requires a constant input dimensionality.

Therefore, we down-sampled the images to a fixed resolution of 256 × 256. Given a rectangular image, we first

rescaled the image such that the shorter side was of length 256, and then cropped out the central 256×256 patch

from the resulting image. We did not pre-process the images in any other way, except for subtracting the mean

activity over the training set from each pixel. So we trained our network on the (centered) raw RGB values of

the pixels. 3 The Architecture The architecture of our network is summarized in Figure 2. It contains eight

learned layers — five convolutional and three fully-connected. Below, we describe some of the novel or

unusual features of our network’s architecture. Sections 3.1-3.4 are sorted according to our estimation of their

importance, with the most important first.

3.1 ReLU Nonlinearity Figure 1: A four-layer convolutional neural network with ReLUs (solid line) reaches a

25% training error rate on CIFAR-10 six times faster than an equivalent network with tanh neurons (dashed

line). The learning rates for each network were chosen independently to make training as fast as possible. No

regularization of any kind was employed. The magnitude of the effect demonstrated here varies with network

architecture, but networks with ReLUs consistently learn several times faster than equivalents with saturating

neurons. The standard way to model a neuron’s output f as a function of its input x is with f(x) = tanh(x) or f(x)

= (1 + e −x) −1 . In terms of training time with gradient descent, these saturating nonlinearities are much slower

than the non-saturating nonlinearity f(x) = max(0, x). Following Nair and Hinton [20], we refer to neurons with

this nonlinearity as Rectified Linear Units (ReLUs). Deep convolutional neural networks with ReLUs train

several times faster than their equivalents with tanh units. This is demonstrated in Figure 1, which shows the

number of iterations required to reach 25% training error on the CIFAR-10 dataset for a particular four-layer

convolutional network. This plot shows that we would not have been able to experiment with such large neural

networks for this work if we had used traditional saturating neuron models. We are not the first to consider

alternatives to traditional neuron models in CNNs. For example, Jarrett et al. [11] claim that the nonlinearity

f(x) = |tanh(x)| works particularly well with their type of contrast normalization followed by local average

Dr.K.Vikram, et al www.ijetst.in Page 6057

IJETST- Vol.||04||Issue||09||Pages 6055-6059||September||ISSN 2348-9480 2017

pooling on the Caltech-101 dataset. However, on this dataset the primary concern is preventing overfitting, so

the effect they are observing is different from the accelerated ability to fit the training set which we report when

using ReLUs. Faster learning has a great influence on the performance of large models trained on large datasets.

3.2 Training on Multiple GPUs A single GTX 580 GPU has only 3GB of memory, which limits the maximum

size of the networks that can be trained on it. It turns out that 1.2 million training examples are enough to train

networks which are too big to fit on one GPU. Therefore we spread the net across two GPUs. Current GPUs are

particularly well-suited to cross-GPU parallelization, as they are able to read from and write to one another’s

memory directly, without going through host machine memory. The parallelization scheme that we employ

essentially puts half of the kernels (or neurons) on each GPU, with one additional trick: the GPUs communicate

only in certain layers. This means that, for example, the kernels of layer 3 take input from all kernel maps in

layer 2. However, kernels in layer 4 take input only from those kernel maps in layer 3 which reside on the same

GPU. Choosing the pattern of connectivity is a problem for cross-validation, but this allows us to precisely tune

the amount of communication until it is an acceptable fraction of the amount of computation. The resultant

architecture is somewhat similar to that of the ―columnar‖ CNN employed by Cire¸san et al. [5], except that our

columns are not independent (see Figure 2). This scheme reduces our top-1 and top-5 error rates by 1.7% and

1.2%, respectively, as compared with a net with half as many kernels in each convolutional layer trained on one

GPU. The two-GPU net takes slightly less time to train than the one-GPU net2 .

3.3 Local Response Normalization ReLUs have the desirable property that they do not require input

normalization to prevent them from saturating. If at least some training examples produce a positive input to a

ReLU, learning will happen in that neuron. However, we still find that the following local normalization

scheme aids generalization. Denoting by a i x,y the activity of a neuron computed by applying kernel i at

position (x, y) and then applying the ReLU nonlinearity, the response-normalized activity b i x,y is given by the

expression b i x,y = a i

over n ―adjacent‖ kernel maps at the same spatial position, and N is the total

number of kernels in the layer. The ordering of the kernel maps is of course arbitrary and determined before

training begins. This sort of response normalization implements a form of lateral inhibition inspired by the type

found in real neurons, creating competition for big activities amongst neuron outputs computed using different

kernels. The constants k, n, α, and β are hyper-parameters whose values are determined using a validation set;

we used k = 2, n = 5, α = 10−4 , and β = 0.75. We applied this normalization after applying the ReLU

nonlinearity in certain layers (see Section 3.5). This scheme bears some resemblance to the local contrast

normalization scheme of Jarrett et al. [11], but ours would be more correctly termed ―brightness normalization‖,

since we do not subtract the mean activity. Response normalization reduces our top-1 and top-5 error rates by

1.4% and 1.2%, respectively. We also verified the effectiveness of this scheme on the CIFAR-10 dataset: a

four-layer CNN achieved a 13% test error rate without normalization and 11% with normalization3 .

3.4 Overall Architecture

Now we are ready to describe the overall architecture of our CNN. As depicted in Figure 2, the net contains

eight layers with weights; the first five are convolution and the remaining three are fully connected. The output

of the last fully-connected layer is fed to a 1000-way soft ax which produces

a distribution over the 1000 class labels. Our network maximizes the multinomial logistic regression objective,

which is equivalent to maximizing the average across training cases of the log-probability of the correct label

under the prediction distribution. The kernels of the second, fourth, and fifth convolution layers are connected

only to those kernel maps in the previous layer which reside on the same GPU (see Figure 2). The kernels of the

Dr.K.Vikram, et al www.ijetst.in Page 6058

IJETST- Vol.||04||Issue||09||Pages 6055-6059||September||ISSN 2348-9480 2017

third convolutional layer are connected to all kernel maps in the second layer. The neurons in the fully

connected layers are connected to all neurons in the previous layer. Response-normalization layers follow the

first and second convolution layers. Max-pooling layers, of the kind described in Section 3.4, follow both

response-normalization layers as well as the fifth convolutional layer. The ReLU non-linearity is applied to the

output of every convolution and fully-connected layer

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities

between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts

at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and

the number of neurons in the network’s emaining layers is given by 253,440–186,624–64,896–64,896–43,264–

4096–4096–1000.

Qualitative Evaluations

Figure 3 shows the convolutional kernels learned by the network’s two data-connected layers. The network has

learned a variety of frequency- and orientation-selective kernels, as well as various colored blobs. Notice the

specialization exhibited by the two GPUs, a result of the restricted connectivity described in Section 3.5. The

kernels on GPU 1 are largely color-agnostic, while the kernels on on GPU 2 are largely color-specific. This kind

of specialization occurs during every run and is independent of any particular random weight initialization

(modulo a renumbering of the GPUs).

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.

The correct label is written under each image, and the probability assigned to the correct label is also shown

with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The

Dr.K.Vikram, et al www.ijetst.in Page 6059

IJETST- Vol.||04||Issue||09||Pages 6055-6059||September||ISSN 2348-9480 2017

remaining columns show the six training images that produce feature vectors in the last hidden layer with the

smallest Euclidean distance from the feature vector for the test image.

Discussions

Our results show that a large, deep convolutional neural network is capable of achieving recordbreaking results

on a highly challenging dataset using purely supervised learning. It is notable that our network’s performance

degrades if a single convolutional layer is removed. For example emoving any of the middle layers results in a

loss of about 2% for the top-1 performance of the network. So the depth really is important for achieving our

results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect that it will

help, especially if we obtain enough computational power to significantly increase the size of the network

without obtaining a corresponding increase in the amount of labeled data. Thus far, our results have improved

as we have made our network larger and trained it longer but we still have many orders of magnitude to go in

order to match the infero-temporal pathway of the human visual system. Ultimately we would like to use very

large and deep convolutional nets on video sequences where the temporal structure provides very helpful

information that is missing or far less obvious in static images.

References

1. R.M. Bell and Y. Koren. Lessons from the netflix prize challenge. ACM SIGKDD Explorations

Newsletter, 9(2):75–79, 2007.

2. Berg, J. Deng, and L. Fei-Fei. Large scale visual recognition challenge 2010. www.imagenet.

org/challenges. 2010.

3. L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

4. D. Cire¸san, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification.

Arxiv preprint arXiv:1202.2745, 2012.

5. D.C. Cire¸san, U. Meier, J. Masci, L.M. Gambardella, and J. Schmidhuber. High-performance neural

networks for visual object classification. Arxiv preprint arXiv:1102.0183, 2011.

6. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical

Image Database. In CVPR09, 2009.

7. J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. Fei-Fei. ILSVRC-2012, 2012. URL

8. http://www.image-net.org/challenges/LSVRC/2012/.

9. L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An

incremental bayesian approach tested on 101 object categories. Computer Vision and Image

Understanding, 106(1):59–70, 2007.

10. G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694,

California Institute of Technology, 2007. URL http://authors.library.caltech.edu/7694.

11. G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov. Improving neural

networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

12. K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. What is the best multi-stage architecture for

object recognition? In International Conference on Computer Vision, pages 2146–2153. IEEE, 2009.

13. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Department of

Computer Science, University of Toronto, 2009.

14. Krizhevsky. Convolutional deep belief networks on cifar-10. Unpublished manuscript, 2010.

15. Krizhevsky and G.E. Hinton. Using very deep autoencoders for content-based image retrieval. In

ESANN, 2011.

16. Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, et al.

Handwritten digit recognition with a back-propagation network. In Advances in neural information

processing systems, 1990.

http://www.imagenet/

