

Dr. T. Kokilavani, et al www.ijetst.in Page 6016

IJETST- Vol.||04||Issue||09||Pages 6016-6021||September||ISSN 2348-9480 2017

International Journal of Emerging Trends in Science and Technology
IC Value: 76.89 (Index Copernicus) Impact Factor: 4.219 DOI: https://dx.doi.org/10.18535/ijetst/v4i9.23

Enhanced Round Robin Technique with Variant Time Quantum for Task

Scheduling In Grid Computing

Authors

Dr. T. Kokilavani
1

Assistant Professor, Department of Computer Science

St. Joseph’s College, Tiruchirappalli – 2, India

1. Introduction

Grid computing is a distributed architecture where

large number of computers are connected to solve a

single complex problem. In the grid computing

model, the unused processor cycles of many

heterogeneous computers are used to create a pool

of large computing services. In the recent years, grid

computing has emerged as an alternative for

computation intensive jobs [1]. The Computers in

Grid may be connected directly or via scheduling

systems. Grid computing combines computers from

multiple administrative domains to reach a common

goal, to solve a single task, and may then disappear

just as quickly [2]. One of the main strategies of

grid computing is to use middleware to divide and

apportion pieces of a program among several

computers, sometimes up to many thousands. Grid

computing involves computation in a distributed

fashion, which may also involve the aggregation of

large-scale clusters. The size of a grid may vary

from small confined system to a network of

computer workstations within a corporation, for

example to large, public collaborations across many

companies and networks. Grids are a form of

distributed computing whereby a “super virtual

computer” is composed of many networked loosely

coupled computers acting together to perform very

large tasks. This technology has been applied to

computationally intensive scientific, mathematical,

and academic problems through volunteer

computing, and it is used in commercial enterprises

for such diverse applications as drug discovery,

economic forecasting, seismic analysis, and back

office data tasking in support for e-commerce and

Web services.

Grid computing tries to bring under one

umbrella all the work being done in high-

performance, cluster, peer-to-peer and internet

computing [3]. Coordinating applications on Grids

Abstract

Grid computing is a form of distributed architecture in which large number of computers are connected to

solve a complex problem. In the grid computing model, geographically distributed resources run

independent tasks and are loosely linked by the Internet or low-speed networks. Efficient scheduling

systems are needed to improve the performance of the Grid. Round robin scheduling algorithm (RR) is

designed especially for time sharing system.In real-time embedded systems, scheduling policy is

considered as one of the main factors that affect their performance. It helps to choose the best resource for

executing a task. Round Robin (RR) scheduling algorithm is widely used and its performance highly

depends on a Quantum time Qt, which is a predefined amount of time assigned by CPU to every task to be

executed. However, the performance degrades with respect to an average waiting time (AWT), an average

turnaround time (ATT) and a number of context switches (NCS). This paper presents an Enhanced Round

Robin Technique with variant time quantum to reduce the average waiting time, turnaround time and the

number of context switches in order to improve the overall Grid performance. It also presents a

comparative analysis between existing Round Robin algorithm and the proposed technique based on the

average waiting time, average turnaround time, average response time and number of context switches.

Keywords-Grid Computing, Task Scheduling, Round Robin, Time Quantum

Dr. T. Kokilavani, et al www.ijetst.in Page 6017

IJETST- Vol.||04||Issue||09||Pages 6016-6021||September||ISSN 2348-9480 2017

can be a complex task, especially when coordinating

the flow of information across distributed

computing resources. Grids started off in the mid-

90s to address large-scale computation problems

using a network of resource-sharing commodity

machines that deliver the computation power

affordable only by supercomputers and large

dedicated clusters at that time. The major

motivation was that these high performance

computing resources were expensive and hard to get

access to, so the starting point was to use federated

resources that could comprise compute, storage and

network resources from multiple geographically

distributed institutions, and such resources are

generally heterogeneous and dynamic.

The main purpose of scheduling policy is to

ensure completely fairness between different tasks

in the ready queue, maximizing the throughput,

minimizing the average waiting and turnaround

times and the overhead that occurs due to context

switches, and makes sure no starvation happens at

all. Two types of scheduling algorithms are

followed in Grid computing namely, Preemptive

algorithms – where a task can be blocked by a

higher priority task and Non preemptive algorithms

– where the task completes its execution time even

if a higher priority task has arrived [4]. The factors

used to determine whether a scheduling policy is

good or not are:

(i)Waiting time: It is the time between the task

arrival and the first time of its execution.

(ii) Resource Utilization: The percentage of the

Resource being busy.

(iii) Turnaround time: The summation of waiting

and execution time for each task.

(iv) Fairness: Dividing the resource time equally

among all available jobs.

2. Literature Review

Scheduling maps the set of tasks to the

available resources based on user constraints. There

are two types of Grid scheduling, namely,

independent task scheduling and dependent task

scheduling. Independent task scheduling is done to

reduce the completion time of tasks. Each

independent task is scheduled to the available

suitable resources. When tasks are dependent on

each other, then the tasks require the result of

previous tasks to start their execution. First Come

First Serve (FCFS) is adequate for dependent task

[5].

Ajit et al [6] developed an algorithm which

reduces the number of context switching, average

waiting time and average turnaround time. This

algorithm performs by allocating the CPU to every

task in Round Robin fashion with an initial time

quantum (say k units). After completing first cycle,

it doubles the initial time quantum (2k units); selects

the shortest task from the waiting queue and assign

the CPU to it and after that, it selects the next

shortest task for execution by excluding the already

executed task. This algorithm assumes that all the

tasks arrive at the same time in the ready queue.

Ishwari et al [7] developed the Priority based

Round Robin CPU Scheduling Algorithm for Real

Time Systems. It reduces the problem of starvation

as the tasks with less remaining CPU burst time are

assigned with the higher priorities and are executed

first in the second round of algorithm. This

algorithm assumes that all tasks arrive at the same

time in the ready queue.

Manish et al [8] developed the Improved

Round Robin scheduling algorithm which picks the

first task from the ready queue and allocates the

CPU to it for a time interval of up to 1 time

quantum. After completion of task’s time quantum,

it checks the remaining CPU burst time of the

currently running task. If the remaining CPU burst

time of the currently running task is less than 1 time

quantum, the CPU is again allocated to the currently

running task for remaining CPU burst time.

Behera et al [9] developed an algorithm that

reduces the number of context switching, average

waiting time and average turnaround time. This

algorithm arranges the tasks in ascending order of

their burst times present in the ready queue. Then,

the time quantum is calculated. For finding an

optimal time quantum, median method is followed.

Then, the time quantum is assigned to the tasks.

Sunita et al [1] proposed a novel grid-

scheduling heuristic that adaptively and

dynamically schedules tasks without requiring any

prior information on the workload of incoming tasks.

The approach models the grid system in the form of

a state-transition diagram, employing a prioritized

round-robin algorithm with task replication to

optimally schedule tasks, using prediction

information on processor utilization of individual

nodes.

Pallab Banerjee et al [10] have presented a

new algorithm called Generic scheduling algorithm.

Dr. T. Kokilavani, et al www.ijetst.in Page 6018

IJETST- Vol.||04||Issue||09||Pages 6016-6021||September||ISSN 2348-9480 2017

In this scheduling algorithm the main idea is to

adjust the time Quantum dynamically so that the

generic algorithm performs better than the simple

Round Robin scheduling algorithm.

Since the Round Robin algorithm is simple

and efficient, it can be applied to Grid Computing

model to improve the performance. Normally fixed

time quantum is followed for round robin algorithm

which may increase the waiting time of tasks. In this

paper a novel round robin technique is proposed

which uses variant time quantum for every cycle

which reduces the waiting time of tasks.

3. Problem Definition

Round Robin scheduling is designed for

time-sharing systems [11]. It is similar to FCFS

scheduling, but preemption is added to the switch

between tasks. A small time unit called the time

quantum or time slice is defined. The ready queue is

maintained as a circular queue. The CPU scheduler

goes round the ready queue, allocating the CPU to

each task for a time interval of up to 1 time quantum.

The advantages of Round Robin are:

1. Effective in a general-purpose, time-sharing

system or transaction-tasking system.

2. Fair treatment for all the tasks.

3. Low overhead on tasks.

4. Good response time for short tasks.

3.1 Scheduling criteria
To select an algorithm for a particular

situation, many criteria have been suggested. These

criteria are used for comparison and to make a

substantial difference in deciding the best algorithm.

The criteria include the following [6]:

Context Switch: A context switch is a task of storing

and restoring context (state) of a preempted task, so

that execution can be resumed from same point at a

later time. Context switching is usually

computationally intensive, that leads to wastage of

time and memory, which in turn increases the

overhead of scheduler, so the design of scheduling

algorithms is to optimize these switches.

Throughput: Throughput is defined as number of

tasks completed per unit time. Context switching

and throughput are inversely proportional to each

other.

Resource Utilization: This is a measure of how

much busy the resource is. Usually, the goal is to

maximize the resource utilization.

Turnaround Time: The time interval from the time

of submission of a task to the time of completion is

the turnaround time. Total turnaround time is the

sum of the periods spent waiting to get into memory,

waiting time in the ready queue, execution time on

the resource and doing I/O.

Waiting Time: Waiting time is the total time a task

has been waiting in ready queue. The scheduling

algorithm does not affect the amount of time during

which a task executes or does input-output; it affects

only the amount of time that a task spends waiting

in ready queue.

Response Time: Often, a task can produce some

output fairly early and can continue computing new

results while previous results are being produced to

the user. Thus, response time is the time from the

submission of a request until the first response is

produced. So the response time should be low for

the best scheduling.

It can be concluded that a good scheduling

algorithm for real time and time sharing system

must possess the following characteristics [6]:

Minimum context switches, Maximum CPU

utilization, Maximum throughput, Minimum

turnaround time, Minimum waiting time, and

Minimum response time.

4. Enhanced Round Robin Technique with

Variant Time Quantum

In the Enhanced Round Robin Technique

with Variant Time Quantum (ERRT), whenever a

task is scheduled in a particular Grid resource by the

Grid scheduler, it is immediately placed in the

SCHEDULE queue. Initially ERRT calculates the

average burst time of the tasks in the SCHEDULE

queue at time 0. Then it takes the floor value of the

average burst time as the time quantum for the

round robin method. The tasks which have

completed their execution in the first cycle are

removed from the SCHEDULE queue and placed in

the FINISHED queue. After the first cycle ERRT

checks whether there are some more tasks waiting

for the resource in the SCHEDULE queue. The

remaining burst times of the tasks which are

executed in the first cycle and the full burst times of

the newly arrived tasks are added and its average is

taken as the next time quantum for the next cycle.

Then the round robin method is continued with the

new time quantum. This step is repeated until there

are no more tasks in the SCHEDULE queue of the

resource.

Dr. T. Kokilavani, et al www.ijetst.in Page 6019

IJETST- Vol.||04||Issue||09||Pages 6016-6021||September||ISSN 2348-9480 2017

4.1 Pseudo-code of ERRT

Step 1: Place all the tasks that have arrived at time 0

in the SCHEDULE queue

Step 2: Find the average burst time (ABT) of the

tasks in the SCHEDULE queue

Step 3: Fix the Time Quantum tq=floor (ABT)

Step 4: Execute the Round Robin method for all the

tasks in the SCHEDULE queue with tq as time

quantum.

Step 5: Move the tasks with remaining burst time =

0 to the FINISHED queue.

Step 6: Place the newly arrived tasks in the

SCHEDULE queue.

Step 7: Add the remaining burst times of the

previously scheduled tasks and the full burst times

of the newly arrived tasks.

Step 8: Find the average burst time (ABT) of the

tasks and fix tq.

Step 9: Repeat Steps 4 to 8 until the SCHEDULE

queue becomes empty.

5. Experiments and Results

A job consists of 10 tasks. Their arrival

times and burst times are given in Table 1. As T1

arrives the system, it will be moved to the

SCHEDULE queue and the resource will be

allocated to it. This is because it is the first task that

arrives to the system. So, its burst time bt which

equals 10ms will be used as the time quantum.

After it finishes its execution; T2, T3, T4, T5, T6,

T7 and T8 must have arrived the system and will be

placed in the SCHEDULE queue. At this point,

these 7 tasks will be considered for execution. So

the average of their burst times is computed (which

is 5.4ms) and the floor value (i.e. 5ms) will be taken

as the new time quantum. The same procedure is

followed for every cycle until the SCHEDULE

queue becomes empty.

Table 1 Tasks with their Arrival Times and Burst

Times (in ms)

TASK_ID AT BT

T1 0 10

T2 2 5

T3 4 3

T4 5 2

T5 6 4

T6 8 6

T7 9 10

T8 10 8

T9 12 12

T10 14 11

Four performance criteria namely, average waiting

time (AWT), average turnaround time (ATAT),

average response time (ART) and numbers of

context switches were studied. Round Robin (RR)

and the proposed ERRT were simulated to observe

these criteria. All tasks are independent and CPU

bound, no task was I/O bound. The formulae used to

calculate AWT, ART and ATAT are given in

equations 1, 2 and 3.

Waiting time =Time first scheduled – Arrival Time

Average waiting time =∑

 Eq 1

Turnaround time = Time of task completion-

Arrival Time

Average Turnaround time =∑

 Eq 2

Response Time = Time of task’s first response –

Arrival Time

Average Response Time =∑

 Eq 3

T1 T2 T3 T4 T5 T6 T7 T8

 0 10 15 18 20 24 29 34 39

T6 T7 T8 T9 T10 T9 T10 T9

 39 40 45 48 54 60 65 70

71

Fig. 1 Gantt Chart for Enhanced Round Robin

Technique

Average waiting time, average turnaround time,

average response time and number of context

switches for the set of tasks given in table 1 are

calculated using the equations 1,2 and 3 and the

results are given in Table 2.

Waiting Time for ERRT

T1=0; T2=10; T3=15; T4=18; T5=20;

T6=24+10=34; T7=29+6=35; T8=34+6=40;

T9=48+6+5=59; T10=54+5=59;

Average Waiting Time =

(0+10+15+18+20+34+35+40 +59+59) / 10 = 29

Dr. T. Kokilavani, et al www.ijetst.in Page 6020

IJETST- Vol.||04||Issue||09||Pages 6016-6021||September||ISSN 2348-9480 2017

Turnaround Time for ERRT

T1=10-0=10; T2=15-2=13; T3=18-4=14; T4=20-

5=15; T5=24-6=18; T6=40-8=32; T7=45-9=36;

T8=48-10=38; T9=71-12=59; T10=70-14=56;

Average Turnaround Time =

(10+13+14+15+18+32+36+ 38+59+56) / 10 = 29.1

Response Time for ERRT

T1=0-0=0; T2=10-2=8; T3=15-4=11; T4=18-5=13;

T5=20-6=14; T6=24-8=16; T7=29-9=20; T8=34-

10=24; T9=48-12=36; T10=54-14=40;

Average Response Time =

(0+8+11+13+14+16+20+ 24+36+40) / 10 = 18.2

Table 2 Parameters used for Scheduling Algorithm

Scheduling Criteria
Round

Robin
ERRT

Average Waiting Time 32 29

Average Turnaround

Time
32.1 29.1

Average Response Time 18.2 18.2

Number of Context

Switches
18 16

From Table 2 it is observed that ERRT produces

Minimum context switches, Minimum turnaround

time, Minimum waiting time and Minimum

response time. Through these minimized values

ERRT achieves Maximum CPU utilization and

Maximum throughput. Table 3 shows the Total

Turnaround Times produced by Round Robin

scheduling and Round Robin Algorithm with

Different Time Quantum Scheduling algorithms for

different set of tasks. Graphical representation of the

results are shown in figure 2.From Table 3 and

Figure 2 it is observed that the proposed ERRT

produces less completion time than Round Robin

algorithm in all the cases.

 Table 3 Comparison of RR and ERRT

Fig. 2 Turnaround Time for Different Set of Tasks

6. Conclusion

Simple Round Robin algorithm is efficient, because

it shares the available time among all the tasks

which reduces the waiting time of tasks. But RR

uses a fixed time quantum for all cycles which may

decrease the system performance. In this paper a

novel method called Enhanced Round Robin

Technique is proposed which can be applied to Grid

Computing model to improve the performance. The

Results shows that the proposed technique is more

efficient because it has less average waiting time,

average turnaround time and number of context

switches as compared to simple round robin.

Performance of time sharing systems can be

improved with the proposed technique and can also

be modified to enhance the performance of real time

system.

References

1. Sunita Bansal , Bhavik Kothari ,

ChittaranjanHota, “Dynamic Task-

Scheduling in Grid Computing using

Prioritized Round Robin Algorithm”,

International Journal of Computer Science

Issues, Vol. 8, Issue 2, March 2011, pp. 472

- 477.

2. A. R. Dash. S. K. Sahu and S. K. Samantra,

"An Optimized Round Robin CPU

Scheduling Algorithm with Dynamic Time

Quantum", International Journal of

Computer Science, Engineering and

Information Technology (lJCSEIT), Vol. 5,

No.I, February 2015.

3. V.Vasudevan,R.Vijayalakshmi,“Heuristic

Algorithm for Balancing Load in Grid Task

Scheduling”, International Journal of

Computer Applications (0975 – 8887)

Volume 67– No.15, April 2013, pp 38 -41.

0

100

200

300

400

500

600

5 8 10 13

Number of Tasks

RR

ERRT

Illustration

No
No Of Tasks

Milli Seconds

RR ERRT

1 5 122 102

2 8 198 164

3 10 251 232

4 13 482 457

Dr. T. Kokilavani, et al www.ijetst.in Page 6021

IJETST- Vol.||04||Issue||09||Pages 6016-6021||September||ISSN 2348-9480 2017

4. M. K. Mishra and F. Rashid, "An Improved

Round Robin CPU Scheduling Algorithm

with Varying Time Quantum", International

Journal of Computer Science, Engineering

and Applications (T.TCSEA), Vol. 4, No. 4,

August 2014.

5. Marish Kr. Singla, “Task Scheduling

Algorithms for Grid Computing with Static

Jobs: A Review”, International Journal of

Computer Science Engineering (IJCSE),

Vol. 2 No.05 Sep 2013, pp. 218 – 221.

6. Ajit, S, Priyanka, G and Sahil, B, “An

Optimized Round Robin Scheduling

Algorithm for CPU Scheduling”,

International Journal on Computer Science

and Engineering (IJCSE), Vol. 02, No. 07,

2010, pp 2382-2385.

7. Ishwari, S. R and Deepa, G, “A Priority

based Round Robin CPU Scheduling

Algorithm for Real Time Systems”,

International Journal of Innovations in

Engineering and Technology (IJIET), Vol. 1

Issue 3, 2012, pp 1-11.

8. Manish K. M. and Abdul Kadir K, “An

Improved Round Robin CPU Scheduling

Algorithm”, Journal of Global Research in

Computer Science, ISSN: 2229- 371X,

Volume 3, No. 6, 2012, pp 64-69.

9. Behera, H.S, Mohanty, R and Debashree, N,

“A New Proposed Dynamic Quantum with

Re-Adjusted Round Robin Scheduling

Algorithm and Its Performance Analysis”,

International Journal of Computer

Applications (0975 – 8887) Volume 5, No.5,

August 2010, pp 10-15.

10. Pallab Banerjee, Riya Shree,

RichaKumariVerma, “Generic Round Robin

Scheduling for Real Time Systems”,

International Journal of Advanced Research

in Computer Science and Software

Engineering Research, Volume 7, Issue 5,

May 2017, pp. 148 – 155.

11. Mohammad Saber Iraji, "Time Sharing

Algorithm with Dynamic Weighted

Harmonic Round Robin", Journal of Asian

Scientific Research,Vol. 5, No. 3, 2015, pp.

131-142

