

Open accoses Journal International Journal of Emerging Trends in Science and Technology

IC Value: 76.89 (Index Copernicus) Impact Factor: 4.219 DOI: https://dx.doi.org/10.18535/ijetst/v4i9.21

(τ_i, τ_i) - ρ -Continuous Maps in Biopological Spaces

Authors

O. Uma Maheswari

Assistant Professor, Department of Mathematics, J. J. College of Arts and Science (Autonomous), Pudukkottai- 622 422, Tamil Nadu, India.

Abstract.

In this paper, to introduce (τ_i, τ_i) - ρ –continuous maps from a bitopological space (X, τ_1, τ_2) into a bitopological space (Y, σ_1, σ_2) and study some of their Properties.

2010 Mathematics Subject Classifications: 54A05, 54C08, 54E55

Key Words and Phrases: $D(\tau i, \tau j) - \rho_- \sigma_k$ –continuous, ρ – bicontinuous, ρ – strongly bi continuous and pairwise ρ – irresolute.

1. Introduction

In 1963, J.C. Kelly[14] defined a bitopological space (X, τ_1, τ_2) to be a set X equipped with two topologies τ_1, τ_2 on X and he initiated a systematic study of bitopological space. The study of generalized closed sets in a bitopological space was initiated by Levine in [15] and the concept of $T_{1/2}$ spaces was introduced. Various authors, like I. Arockiarani [2], S.P. Arya and T.M. Nour [3], R. Devi [8] and Y. Gnanambal [12] and have turned attention to the various concepts of topology by considering bitopological spaces instead of topological spaces. In 1996, H.Maki, J. Umehara and T. Noiri [16] introduced the classes of pregeneralized closed sets and used them to obtain properties of pre- $T_{1/2}$ spaces. The modified forms of generalized closed sets and generalized continuity were studied by K. Balachandran, P. Sundaram and H. Maki [4]. In 2008, S. Jafari, T. Noiri, N. Rajesh and M.L. Thivagar [13] introduced the concept of \tilde{g} -closed sets and their properties. In 2014, O. Uma Maheswari, A. Vadivel and D. Sivakumar[19] introduced the concept of (τ_i, τ_j) -#rg-closed sets and their properties. In 2016, O. Uma maheswari introduced (τ_i, τ_j) – ρ -closed sets in bitopological spaces.

In this paper, to introduce new classes of continuous functions called (τ_i, τ_j) - $\rho - \sigma_k$ —continuous functions in bitopological spaces. During this process, some of their properties are obtained. And also to introduce the concept of ρ — bicontinuous, ρ —strongly bi continuous and pairwise ρ —irresolute in bitopological spaces.

Before entering into our work we recall the following definitions, which are due to various authors.

2. Preliminaries

Throughout this paper (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, η_1, η_2) will always denote bitopological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of (X, τ_1, τ_2) , Cl(A), Int(A) and D[A] denote the closure, the interior and the derived set of A, respectively.

Definition 2.1. Let a subset A of a space (X, τ) is called

- 1. Regular open [18] if $A = \tau_i$ -int $(\tau_i cl(A))$ and regular closed if $A = \tau_i$ -cl $(\tau_i int(A))$.
- 2. π -open [22] if it is the finite union of (τ_i, τ_i) regular open sets.
- 3. Regular semiopen [6] if there is a regular open set U such that $U \subseteq A \subseteq cl(U)$.

Definition 2.2. Let (X,τ_1,τ_2) be a bitopological space and $A\subseteq X$.

- 1. (τ_i, τ_i) -Preopen [9] if $A \subseteq \tau_i$ -int $(\tau_i$ cl(A)) and preclosed if τ_i - $cl(\tau_i$ -int $(A)) \subseteq A$.
- 2. (τ_i, τ_i) -Semi-open [9] if $A \subseteq \tau_i$ $cl(\tau_i : int(A))$ and semi-closed if τ_i $int(\tau_i cl(A)) \subseteq A$.
- 3. (τ_i, τ_i) α -open [9] if $A \subseteq \tau_i$ -int $(\tau_i$ -cl $(\tau_i$ -int(A))) and α -closed if τ_i -cl $(\tau_i$ -int $(\tau_i$ -cl(A))) $\subseteq A$.
- 4. (τ_i, τ_j) Semi preopen [9] if $A \subseteq \tau_{j-} cl (\tau_i int (\tau_j cl (A)))$ and semi preclosed if $\tau_i int (\tau_j cl (\tau_i int(A)))$ $\subseteq A$.

The Pre-interior of A, denoted by pint(A), is the union of all preopen subsets of A.

The Pre-closure of A, denoted by Pcl(A), is the intersection of all Preclosed sets containing A.

Definition 2.5. Let (X,τ_1,τ_2) be a topological space. A subset $A\subseteq X$ is said to be

- 1. (τ_i, τ_i) -generalized closed (briefly g-closed)[10] if τ_i -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -open in X.
- 2. (τ_i, τ_j) -generalized preclosed (briefly gp-closed)[11] if τ_j -Pcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -open in X.
- 3. (τ_i, τ_j) -generalized preregular closed (briefly gpr-closed)[12] if τ_j -Pcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -regular open in X.
- 4. (τ_i, τ_j) -pregeneralized closed (briefly pg-closed)[11] if τ_j -Pcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -preopen in X.
- 5. (τ_i, τ_i) -g*-preclosed (briefly g*p-closed)[11] if τ_i -Pcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -g-open in X.
- 6. (τ_i, τ_j) -generalized semi-preclosed (briefly gsp-closed)[9] if τ_j -spcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -open in X.
- 7. (τ_i, τ_j) - πgp -closed [17] if τ_j - $Pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i - π -open in X.
- 8. (τ_i, τ_i) rw closed [5] if τ_i -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -regular semi open in X
- 9. (τ_i, τ_i) #rg- closed [19] if τ_i -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -rw-open in X

Definition 2.4. A map $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (i) $\tau_j \sigma_k$ -continuous [10] if $f^{-1}(V) \in \tau_j$, for every $V \in \sigma_k$.
- (ii) $\tau_i \sigma_k$ -semi-continuous [15] if $f^{-1}(V) \in \tau_i$ semiclosed, for every $V \in \sigma_k$.
- (iii) $\tau_i \sigma_k \alpha$ -continuous [15] if $f^{-1}(V) \in \tau_i \alpha closed$, for every $V \in \sigma_k$.
- (iv) τ_i σ_k -pre-continuous [15] if $f^{-1}(V) \in \tau_i$ -preclosed, for every $V \in \sigma_k$.
- (v) τ_i σ_k -semi-pre-continuous [15] if $f^{-1}(V) \in \tau_i$ -semi-preclosed, for every $V \in \sigma_k$.
- (vi) $D(i, j) \sigma_k$ -continuous [10] if $f^{-1}(V) \in D(i, j)$ for every σ_k -closed set in (Y, σ_1, σ_2) .
- (vii) $Dgs(i, j) \sigma_k$ -continuous [15] if $f^{-1}(V) \in Dgs(i, j)$ for every σ_k -closed set in (Y, σ_1, σ_2) .
- (viii) $Dgsp(i, j) \sigma_k$ -continuous [15] if $f^{-1}(V) \in Dgsp(i, j)$ for every σ_k closed set in (Y, σ_1, σ_2)
- (ix) $Dr(i, j) \sigma_k$ -continuous [1] if $f^{-1}(V) \in Dr(i, j)$ for every σ_k -closed set in (Y, σ_1, σ_2) .

Definition 2.5. A map $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called

- (i) bi-continuous [10] if f is $\tau_1 \sigma_1$ -continuous and $\tau_2 \sigma_2$ -continuous.
- (ii) regular generalized bi-continuous (rg -bi-continuous) [1] if f is $Dr(\tau_1, \tau_2)$ -
- σ_2 -continuous and $Dr(\tau_2, \tau_1)$ σ_1 -continuous.
- (iii) generalized semi pre-bi-continuous (gsp -bi-continuous) [15] if f is

 $Dgsp(\tau_1, \tau_2)$ - σ_2 -continuous and $Dgsp(\tau_2, \tau_1) - \sigma_1$ -continuous.

Definition 2.6. A function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (i) strongly bi-continuous (s-bi-continuous) [10] if f is bi-continuous, $\tau_1 \sigma_2$ -continuous and $\tau_2 \sigma_1$ -continuous.
- (ii) regular generalized strongly bi-continuous (rg s -bi-continuous) [1] if f is g -bi-continuous, $D(\tau_1, \tau_2) \sigma_1$ -continuous and $D(\tau_2, \tau_1) \sigma_2$ -continuous.
- (iii) generalized semi pre-strongly bi-continuous (gsp s -bi-continuous) [15]
- if f is gsp -bi-continuous, $Dgsp(\tau_2, \tau_1) \sigma_2$ -continuous and $Dgsp(\tau_1, \tau_2) \sigma_1$ -continuous.

3 (τ_i, τ_i) - ρ --Continuous functions in bitopological spaces

Definition 3.1. A map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $D\rho(\tau_i, \tau_j) - \sigma_k$ -continuous if the inverse image of every σ_k -closed set in (Y, σ_1, σ_2) is an (τ_i, τ_j) - ρ -closed set in (X, τ_1, τ_2) .

Remark 3.2. Suppose that $\tau_1 = \tau_2 = \tau$ and $\sigma_1 = \sigma_2 = \sigma$ in Definition 3.1., then the D_ρ (τ_i , τ_j) - σ_k -continuity of maps coincides with ρ -continuity [14] of maps in topological spaces.

Theorem 3.3. If a map $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is τ_j - σ_k -continuous,

then it is a D_{ρ} (τ_i , τ_j) - σ_k -continuous map.

Proof: Let V be a σ_k -closed set in (Y, σ_1, σ_2) . Then $f^{-1}(V)$ is τ_i -closed set.

By Theorem 3.1 in [16], so $f^{-1}(V)$ is (τ_i, τ_j) - ρ -closed set in (X, τ_1, τ_2) .

Therefore f is $D_{\rho}(\tau_i, \tau_i) - \sigma_k$ -continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 3.4. Let $X = \{a, b, c\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{a, c\}\}$, $\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $Y = \{p, q\}$, $\sigma_1 = \{Y, \emptyset, \{p\}\}$ and $\sigma_2 = \{Y, \emptyset, \{q\}\}$. Define a map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = f(c) = p and f(b) = q. Then f is $D_{\rho}(\tau_1, \tau_2) - \sigma_2$ -continuous but f is not $\tau_1 - \sigma_2$ -continuous.

Theorem 3.5. If a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\tau_j - \sigma_k - \text{pre continuous}$,

then it is a D_{ρ} (τ_i , τ_j) - σ_k -continuous map.

Proof: Let V be a σ_k -closed set in (Y, σ_1, σ_2) . Then $f^{-1}(V)$ is τ_i – pre closed set.

By Theorem 3.1 in [16], so $f^{-1}(V)$ is $(\tau_i, \tau_j) - \rho$ -closed set in (X, τ_1, τ_2) .

Therefore f is $D_{\rho}(\tau_i, \tau_i) - \sigma_k$ -continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 3.6. Let $X = \{a, b, c\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{a, c\}\}$, $\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $Y = \{p, q\}$, $\sigma_1 = \{Y, \emptyset, \{p\}\}$ and $\sigma_2 = \{Y, \emptyset, \{q\}\}$. Define a map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = f(c) = p and f(b) = q. Then f is $D_{\rho}(\tau_1, \tau_2) - \sigma_2$ -continuous but f is not $\tau_1 - \sigma_2$ - pre continuous.

Theorem 3.7. If a map $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $D_\rho(\tau_i, \tau_j)$ - σ_k -continuous map, then it is a $D_{gp}(\tau_i, \tau_j)$ - σ_k -continuous map.

Proof: Let V be a σ_k -closed set in (Y, σ_1, σ_2) . Then $f^{-1}(V)$ is $\tau_j - \rho$ closed set.

By Theorem 3.1 in [16], so $f^{-1}(V)$ is (τ_i, τ_j) - gp -closed set in (X, τ_1, τ_2) .

Therefore f is $D_{qp}(\tau_i, \tau_i) - \sigma_k$ -continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 3.8. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}$. $Y = \{p, q\}$, $\sigma_1 = \{Y, \phi, \{p\}\}$ and $\sigma_2 = \{Y, \phi, \{q\}\}$. Define a map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = p and f(b) = f(c) = f(d) = q. Then f is $D_{gp}(\tau_i, \tau_j) - \sigma_k$ -continuous but not $D_{\rho}(\tau_i, \tau_j) - \sigma_k$ -continuous in (X, τ_1, τ_2) .

Theorem 3.9. If a map $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $D_{\rho}(\tau_i, \tau_j) - \sigma_k$ -continuous map, then it is a $D_{gpr}(\tau_i, \tau_j) - \sigma_k$ -continuous map.

Proof: Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $D_{\rho}(\tau_i, \tau_j) - \sigma_k$ -continuous map.

Let G be any σ_k -closed set in (Y, σ_1, σ_2) . Then $f^{-1}(G)$ is $(\tau_i, \tau_j) - \rho$ - closed set in (X, τ_1, τ_2) .

And by Theorem 3.3 in [16], $f^{-1}(G)$ is (τ_i, τ_i) - gpr – closed set in (X, τ_1, τ_2) .

Hence f is $D_{qpr}(\tau_i, \tau_j) - \sigma_k$ -continuous map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.10. In *example 3.4*,

 $(\tau_{\rm i},\tau_{\rm j}) - \rho - closed\ set: \{\ \phi,\ \{b\},\ \{c\},\ \{a,b\},\ \{a,c\},\ \{b,c\ \},X\},\ \ (\tau_{\rm i},\tau_{\rm j}) - {\rm gpr}\ closed\ set:} P(X),$ Then the set $A=\{a\}$ is $(\tau_{\rm i},\tau_{\rm j})$ - $gpr\ closed\ but\ not\ (\tau_{\rm i},\tau_{\rm j})$ - ρ - $closed\ in\ (X,\tau_1,\tau_2)$. Then f is a $D_{gpr}\ (\tau_{\rm i},\tau_{\rm j})$ - $\sigma_{\rm k}$ -continuous map but not $D_{\rho}\ (\tau_{\rm i},\tau_{\rm j})$ - $\sigma_{\rm k}$ -continuous map.

Theorem 3.11. If a map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $D_\rho(\tau_i, \tau_j) - \sigma_k$ -continuous map, then it is a $D_{gsp}(\tau_i, \tau_j) - \sigma_k$ -continuous map.

Proof: Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $D_{\rho}(\tau_i, \tau_j) - \sigma_k$ -continuous map.

Let G be any σ_k -closed set in (Y, σ_1, σ_2) . Then $f^{-1}(G)$ is $(\tau_i, \tau_i) - \rho$ - closed set in (X, τ_1, τ_2) .

And by Theorem 3.3 in [16], $f^{-1}(G)$ is (τ_i, τ_j) - gsp - closed set in (X, τ_1, τ_2) .

Hence f is $D_{qsp}(\tau_i, \tau_j)$ - σ_k -continuous map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.12. In Example 3.8,

The set $A = \{a, c\}$ is (τ_i, τ_j) -gsp- closed but not (τ_i, τ_j) - ρ -closed in (X, τ_1, τ_2) . Then f is $D_{gsp}(\tau_i, \tau_j)$ - σ_k -continuous map but not $D_{\rho}(\tau_i, \tau_j)$ - σ_k -continuous map.

Theorem 3.13. If a map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $D_\rho(\tau_i, \tau_j) - \sigma_k$ -continuous map, then it is a $D_{\pi gp}(\tau_i, \tau_j) - \sigma_k$ -continuous map.

Proof: Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $D_{\rho}(\tau_i, \tau_j) - \sigma_k$ -continuous map.

Let G be any σ_k -closed set in (Y, σ_1, σ_2) . Then $f^{-1}(G)$ is $(\tau_i, \tau_i) - \rho$ - closed set in (X, τ_1, τ_2) .

And by Theorem 3.3 in [16], $f^{-1}(G)$ is $(\tau_i, \tau_j) - \pi gp$ – closed set in (X, τ_1, τ_2) .

Hence f is $D_{\pi qp}(\tau_i, \tau_j) - \sigma_k$ -continuous map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.14. Let $X = \{a, b, c\}$ and $\tau_1 = \{\phi, \{a\}, \{a, c\}, X\}, \tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}.$ $Y = \{p, q\}, \sigma_1 = \{Y, \emptyset, \{p\}\} \text{ and } \sigma_2 = \{Y, \emptyset, \{q\}\} \text{ . Define a map } f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \text{ by } f(a) = p \text{ and } f(b) = f(c) = f(d) = q.$

The set $A = \{a\}$ is (τ_i, τ_j) - πgp -closed but not (τ_i, τ_j) - ρ -closed in (X, τ_1, τ_2) . Then f is $D_{\pi gp}(\tau_i, \tau_j)$ - σ_k -continuous map but not $D_{\rho}(\tau_i, \tau_j)$ - σ_k -continuous map.

Remark 3.15. (τ_i, τ_j) - ρ - σ_k -continuous and (τ_i, τ_j) - σ_k pre continuous are independent concepts as we illustrate by means of the following examples.

Example 3.16.

As in Example 3.7, the set $A = \{a, b\}$ is (τ_i, τ_j) - ρ - closed but not (τ_i, τ_j) - Preclosed in (X, τ_1, τ_2) , then f is (τ_i, τ_i) - ρ - σ_k -continuous but not (τ_i, τ_i) - σ_k pre continuous

Remark 3.17. (τ_i, τ_j) - ρ - σ_k -continuous are independent concepts of (τ_i, τ_j) - σ_k semi- continuous and (τ_i, τ_j) - σ_k Semi-Pre continuous as we illustrate by means of the following example.

Example 3.18. Let $X = \{a, b, c, d\}$ and $\tau_1 = \{\phi, \{b\}, \{c\}, \{b, c\}, \{b, c, d\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. $Y = \{p, q\}, \sigma_1 = \{Y, \emptyset, \{p\}\}$ and $\sigma_2 = \{Y, \emptyset, \{q\}\}$.

Define a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = f(b) = f(c) = p and f(d) = q

 (τ_i, τ_j) - ρ closed set : $\{\phi, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$,

 (τ_i, τ_i) -Semi closed set: { ϕ , {c}, {d}, {a, c}, {b, c}, {c, d}, {a, c, d}, {b, c, d}, X},

 (τ_i, τ_i) –Semi pre closed set: { ϕ , {a},{c}, {d}, {a, b}, {a, c}, {a, d}, {c, d}, {a, c, d}, {b, c, d}, X}

Then the set $A = \{a, b, c\}$ is (τ_i, τ_j) - ρ -closed but neither (τ_i, τ_j) - semi-closed nor (τ_i, τ_j) - semi-pre-closed then (τ_i, τ_j) - ρ - σ_2 -continuous but neither (τ_i, τ_j) - σ_2 -semi-continuous and (τ_i, τ_j) - σ_2 - Semi-Pre continuous.

Remark 3.20. (τ_i, τ_j) - ρ - σ_k -continuous and (τ_i, τ_j) - g^*p - σ_k - continuous are independent concepts as we illustrate by means of the following example.

Example 3.21.

Let $X = \{a, b, c, d, e\}$. Let $\tau_1 = \{\phi, \{a, b\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b, d, e, \}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{d, e\}, \{b, d, e\}, \{a, c, d, e, \}, X\}$. $Y = \{p, q, r\}$, $\sigma_1 = \{Y, \emptyset, \{p\}, \{r\}, \{p, r\}\}$ and $\sigma_2 = \{Y, \emptyset, \{q\}\}$. Define a map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(b) = f(c) = f(d) = p, f(e) = r and f(a) = q

The set $B = \{a\}$ is (τ_i, τ_j) - g*p-closed but not (τ_i, τ_j) - ρ -closed in (X, τ_1, τ_2) . Then (τ_i, τ_j) - ρ - σ_k -continuous and (τ_i, τ_j) - g*p- σ_k - continuous are independent

Remark 3.22. (τ_i, τ_j) - ρ - σ_k -continuous and (τ_i, τ_j) - α - σ_k -continuous are independent concepts as we illustrate by means of the following examples.

Example 3.23. As in Example 3.4

The set $A = \{a, b\}$ is (τ_i, τ_j) - ρ -closed but not (τ_i, τ_j) - α -closed in (X, τ_1, τ_2) . Then (τ_i, τ_j) - ρ - σ_k -continuous and (τ_i, τ_j) - α - σ_k -continuous are independent

Remark 3.24. (τ_i, τ_j) - ρ - σ_k -continuous and (τ_i, τ_j) - # rg- σ_k -continuous are independent concepts as we illustrate by means of the following examples.

Example 3.25.

Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$, $\tau_2 = \{\phi, \{a\}, \{a, c\}, X\}$. Let $Y = \{p, q\}$, $\sigma_1 = \{Y, \emptyset, \{p\}\}$ and $\sigma_2 = \{Y, \emptyset, \{q\}\}$. Define a map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = f(b) = q and f(c) = p. Then set $A = \{c\}$ is (τ_i, τ_j) - ρ -closed but not (τ_i, τ_j) - # rg-closed in (X, τ_1, τ_2) . Then (τ_i, τ_j) - ρ - σ_k -continuous and (τ_i, τ_j) - # rg- σ_k -continuous are independent.

Remark 3.29. From the above discussions and known results should be accompanied by a reference we have the following implications $A \rightarrow B$ (A=B) represents A implies B but not conversely (A and B are independent of each other \rightarrow . See Figure 1. \ Figure 1: Implications.

4 Some stronger forms of ρ –continuous functions in bitopological spaces

Definition 4.1. A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (i) ρ -bi-continuous if f is $D\rho(\tau_1, \tau_2)$ σ_2 -continuous and $D\rho(\tau_2, \tau_1)$ σ_1 -continuous.
- (ii) ρ -strongly-bi-continuous (briefly ρ s-bi-continuous) if f is ρ -bi-continuous, $D\rho$ (τ_1 , τ_2)- σ_1 continuous and $D\rho$ (τ_2 , τ_1) - σ_2 -continuous.

Theorem 4.2. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map.

- (i) If f is bi-continuous, then f is ρ -bi-continuous.
- (ii) If f is s -bi-continuous, then f is ρ s -bi-continuous.

Proof (i) Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a bi-continuous. Then f is τ_1 - σ_1 -continuous and τ_2 - σ_2 - continuous. Since every τ_j - σ_k -continuous map is $D\rho(\tau_i, \tau_j)$ - σ_k -continuous. If follows that f is $D\rho(\tau_1, \tau_2)$ - σ_2 -continuous and $D\rho(\tau_2, \tau_1)$ - σ_1 -continuous. Thus f is ρ -bi-continuous.

(ii) Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a s-bi-continuous. Then f is bi-continuous and τ_1 - σ_2 -continuous and τ_2 - σ_1 -continuous. By (i), it follows that f is $D\rho(\tau_1, \tau_2)$ - σ_2 -continuous, $D\rho(\tau_2, \tau_1)$ - σ_1 -continuous and ρ bi-continuous. Thus f is ρ - s-bi-continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 4.3. Let $X = \{a, b, c\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}\}$, $\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}\}\}$ and $Y = \{p, q\}$, $\sigma_1 = \{Y, \emptyset, \{q\}\}\}$ and $\sigma_2 = \{Y, \emptyset, \{p\}\}\}$. Define a map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = q and f(b) = f(c) = p.

Then the map f is ρ - s -bi-continuous but not s -bi-continuous. This map is also ρ -bi-continuous but not bi-continuous.

Theorem 4.4. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map.

- (i) If f is ρ -bi-continuous, then f is gsp-bi-continuous.
- (ii) If f is ρ s -bi-continuous, then f is gsp s -bi-continuous.

Proof (i) Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a ρ -bi-continuous. Then f is $D \rho (\tau_1, \tau_2)$ - σ_2 -continuous and $D \rho (\tau_2, \tau_1)$ - σ_1 -continuous. By Theorem 3.3., f is $Dgsp(\tau_1, \tau_2)$ - σ_2 -continuous and $Dgsp(\tau_2, \tau_1)$ - σ_1 -continuous. Thus f is gsp-bi-continuous.

(ii) Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be ρ - s -bi-continuous. Then f is $D \rho (\tau_1, \tau_2)$ - σ_2 -continuous, $D \rho (\tau_2, \tau_1)$ - σ_1 -continuous and ρ -s -bi-continuous, By (i), it follows that f is $Dr(\tau_1, \tau_2)$ - σ_2 -continuous and $Dr(\tau_2, \tau_1)$ - σ_1 -continuous and gsp -bi-continuous. Thus f is gsp - s -bicontinuous map. The converse of the above theorem need not be true as seen from the following example.

Example 4.5. In the Example 4.2, Define a map $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = f(b) = q and f(c) = p. The map f is gsp - s-bi-continuous but not ρ - s-bi-continuous. This map is also gsp-bi-continuous but not ρ - bi-continuous.

Definition 4.6. A map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called pairwise ρ -irresolute map if $f^{-1}(A) \in D\rho$ (τ_i, τ_j) in (X, τ_1, τ_2) for every $A \in D\rho(\sigma_k, \sigma_e)$ in (Y, σ_1, σ_2) .

Theorem 4.7. If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is pairwise ρ -irresolute then f is $D\rho$ (τ_i, τ_j) - σ_k -continuous.

Proof: Let F be any σ_k -closed set in Y. Then f is (σ_k, σ_e) - ρ -closed set.

Since every τ -closed set is (τ_i, τ_j) - ρ -closed set. And so $F \in D\rho$ (σ_k, σ_e) .

Since f is pairwise ρ -irresolute, $f^{-1}(F) \in D\rho$ - (τ_i, τ_j) . Therefore f is

 $D\rho (\tau_i, \tau_i) - \sigma_k$ -continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 4.8. Let $X = Y = \{a, b, c\}$, $\tau_1 = \{X, \emptyset, \{a\}\}$, $\tau_2 = \{X, \emptyset, \{a\}, \{a, c\}\}$ and $\sigma_1 = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}\}$, $\sigma_2 = \{Y, \emptyset, \{a, c\}\}\}$. Define a map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = c, f(b) = b and f(c) = a. Then f is $D\rho$ (τ_1, τ_2) - σ_2 -continuous but f is not a pairwise ρ -irresolute map.

Theorem 4.6. If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ are pairwise ρ -irresolute maps, then their composition gof is also pairwise ρ -irresolute.

Proof: Let $A \in D\#rg(\eta_m, \eta_n)$ in (Z, η_1, η_2) . Since g is pairwise ρ -irresolute, $g^{-1}(A) \in D$ ρ (σ_k, σ_e) in (Y, σ_1, σ_2) . Again by hypothesis, $f^{-1}(g^{-1}(A)) = (gof)^{-1}(A) \in D$ ρ (τ_i, τ_i) in (X, τ_1, τ_2) .

And so gof is pairwise ρ -irresolute map.

References:

- 1. D.Andrijevic. Semi- preopen sets, Mat. Vesnik, 38 (1), 24-32. 1986.
- 2. I. Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph. D. thesis, Bharathiar Univ. Coimbatore, 1997.
- 3. S. P. Arya, T. M. Nour, Separation axioms for bitopological spaces, Indian J. Pure Appl. Math., 1988, 19(1): 42-50.
- 4. K. Balachandran, P. Sundaram and H. Maki. On generalized continuous maps in topological
- 5. spaces, Mem Fac. Sci. Kochi Univ.ser. A. Math 12. 5-13. 1991
- 6. S.S. Benchalli and R. S. Wali, On rw –closed sets in topological spaces, Bull. Malays. Math., Sci. Soc. (2) 30 (2) (2007), 99-110
- 7. D. E. Cameron, Properties of s-closed spaces, Proc. Amer. Math. Soc., 1978, 72: 581 586.
- 8. C. Devamanoharan, S. Pious Missier and S. Jafari, ρ -closed sets in topological spaces, Europeans journal of pure and applied mathematics, Vol. 5, No. 4, 2012, 554-566.
- 9. R. Devi, Studies on generalizations of closed maps and homeomorphism in topological spaces, Ph. D. thesis, Bharathiar Univ. Coimbatore, 1994.
- 10. O. A. El-Tantawy, H. M. Abu- Donia, Generalised separation axioms in bitopological spaces, The Arabian JI for Science and Engg., 2005, 30(1)A: 117 -129.
- 11. T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 1986, 35: 19 28.
- 12. T. Fukutake, P. Sundaram and M. Shaik John, w- closed sets, w- open sets and w- continuity in Bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 51 (2002), 1-9.
- 13. Y. Gnanambal. Generalized Pre-regular closed sets in topological spaces, Indian J. Pure Appl. Maths., 28 (3), 351-360. 1997.
- 14. S. Jafari, T. Noiri, N. Rajesh and M.L. Thivagar. Another generalization of closed sets, Kochi J.Math, 3, 25-38. 2008.
- 15. J. C. Kelly, Bitopological Spaces, Proc. Londan Math. Soc., 13 (1963), 71-81.
- 16. N. Levine. Semi-open sets, semi-continuity in topological spaces, Amer Math, Monthly, 70, 36-41. 1963.
- 17. T.Noiri, H.Maki and J.Umehara. Generalized preclosed functions, Mem.Fac.Sci. Kochi.Univ.Ser A.Maths., 19.13-20. 1998.
- 18. J.H. Park. On _gp-closed sets in topological spaces, Indian J.Pure Appl. Math (to appear).
- 19. M. H. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 1937, 41: 374 481.
- 20. O. Uma Maheswari, A. Vadivel and D. Sivakumar, (τ_i, τ_j) -#rg-continuous sets in bitopological spaces, NCRTAAM 2013, May 9-10, National Institute of Technology, Trichy, India, Page No. 214-219. [20] O. Uma Maheswari, ρ -closed sets in bitopological spaces, Advances in Applied Mathematical Analysis, Volume 11, Number 1, 2016.
- 21. M.K.R.S Veerakumar. g*-preclosed sets,Acta Ciencia Indica(mathematics) Meerut, XXVIII (M) (1). 51-60. 2002.
- 22. V.Zaitov. On certain classes of topological spaces and their bicompactification, Dokl Akad Nauk SSSR. 178: 778-9. 1968.