

Open access Journal International Journal of Emerging Trends in Science and Technology IC Value: 76.89 (Index Copernicus) Impact Factor: 2.838 DOI: https://dx.doi.org/10.18535/ijetst/v3i11.09 Relation Ship between Classes of Univalent Functions

> Author **Dr M.Aparna** Sr. Asst. Prof of Mathematics

Abstract

In this paper we investigated the relationship between f and $g(z) = g_{\gamma}(z) = z(f(z)/z)^{\gamma}$, We find sufficient conditions on f for g to be in $S^*(\alpha(p,q))$, $S_1^*(\alpha(p,q))$ or K. The sufficient conditions found by Reade Silverman, and Todorov.

Keywords: Univalent Function, Starlike Function, convex Function, Analytic Function.

1. INTRODUCTION

A function

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

is said to be in the family S if it is analytic and univalent in the unit disk $\Delta = \{z | < 1\}$. The subfamily of functions starlike of order α (p,q), denoted by $S^*(\alpha(p,q))$ consists of functions f for which $\operatorname{Re}(zf'/f) \ge \alpha(p,q), 0 \le \alpha(p,q), \le 1$, for $z \in \Delta$. We further denoted by $S_1^*(\alpha(p,q))$, the subfamily of $S^*(\alpha(p,q))$ consisting of functions f for which $|(zf'/f)-1| \le 1-\alpha(p,q)), 0 \le \alpha(p,q) \le 1$, for $z \in \Delta$. It is known as a sufficient condition, for f to be in $S_1^*(\alpha(p,q))$ is

(1.2)
$$\sum_{n=2}^{\infty} (n - \alpha(p,q)) |a_n| \leq 1 - \alpha(p,q)$$

and this condition is necessary if f is of the form

(1.3)
$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n$$
, $a_n \ge 0$.

The subfamily of $S^*(\alpha(p,q))$ consisting of functions of the form (1.3) and is denoted by $T^*(\alpha(p,q))$ ($\subset S^*_1(\alpha(p,q))$). Finally, a function f of the form .1.1) is said to be in K, if the family of convex functions Re(1+*zf*"/*f*') ≥ 0 for $z \in \Delta$.

In this paper we investigated the relationship between f and

(1.4) $g(z) = g_{\gamma}(z) = z(f(z)/z)^{\gamma}$

where γ is real.

When f is in S or in one of the above subclasses. In Theorem 2, We find sufficient conditions on f for g to be in $S^*(\alpha(p,q))$, $S_1^*(\alpha(p,q))$ or K. The sufficient conditions found by Reade Silverman, and Todorov for functions of the form $z / \left(1 + \sum_{n=1}^{\infty} b_n z^n\right)$ to be in $S^*(\alpha(p,q))$ or K follows from $\gamma = -1$ in (1.4). In

IJETST- Vol.||03||Issue||11||Pages 4777-4783||November||ISSN 2348-9480 2016

Theorem 11 we find necessary and sufficient conditions for g to be in $S^*(\alpha(p,q)), S_1^*(\alpha(p,q))$ or $T^*(\alpha(p,q))$ in terms of the corresponding f. This leads to the coefficient bounds on g. In Theorem 18, we show that $f \in S$ implies $g \in S$ only for $\gamma = 0, 1$.

In this chapter we have assumed unless otherwise stated, that f is of the form (1.1) with corresponding to g is of the form (1.4), γ is real. Note that the trivial case $\gamma = 0$, where g(z)=z for any f.

2. Theorem: The function g is in $S^*(\alpha(p,q))$ if

(2.1)
$$\sum_{n=2}^{\infty} |\gamma|(n-1) + |\gamma(n-1) + 2(1 - \alpha(p,q))||a_n| \le 2(1 - \alpha(p,q)).$$

Proof: Let $p(z) = zg'(z)/g(z) = 1 + \gamma((zf'(z)/f(z)) - 1)$ and $q(z) = [1 - (p(z) - \alpha(p,q))/(1 - \alpha(p,q))]/[1 + (p(z) - \alpha(p,q))/(1 - \alpha(p,q))].$ Then Re $p(z) \ge \alpha(p,q)$ for $z \in \Delta$ if and only if $|q(z)| \le 1$. But

$$q(z) = \left| \frac{-\gamma((zf'/f) - 1)}{2(1 - \alpha(p,q)) + \gamma((zf'/f) - 1)} \right|$$
$$= \left| \frac{-\gamma \sum_{n=2}^{\infty} (n - 1)a_n z^{n-1}}{2(1 - \alpha(p,q)) + \sum_{n=2}^{\infty} [\gamma(n - 1) + 2(1 - \alpha(p,q))a_n] z^{n-1}} \right|$$
$$\leq \left| \frac{\sum_{n=2}^{\infty} |\gamma|(n - 1)|a_n|}{2(1 - \alpha(p,q)) - \sum_{n=2}^{\infty} |\gamma|(n - 1) + 2(1 - \alpha(p,q))|a_n|} \right|$$

Now from (2.1) is equivalent to this last expression being bounded above by (1.1). The proof is completed.

The conclusion of Theorem 2 split into three cases, which are in the following corollary **3.** Corollary: The function g is in $S^*(\alpha(p,q))$ if

(i)
$$\sum_{n=2}^{\infty} [\gamma(n-1) + (1-\alpha(p,q))] |a_n| \le 1-\alpha(p,q), \quad \gamma > 0,$$

(ii)
$$\sum_{n=2}^{\infty} [|\gamma|(n-1) - (1-\alpha(p,q))] |a_n| \le 1-\alpha(p,q), \gamma \le -2(1-\alpha(p,q)),$$

(iii)
$$\sum_{n=n_0+1}^{\infty} [|\gamma|(n-1) - (1-\alpha(p,q))] |a_n| \le 1-\alpha(p,q) \left(1-\sum_{n=2}^{n_0} |a_n|\right),$$

$$-2(1-\alpha(p,q)) < \gamma < 0,$$

where n_0 is smallest integer for which $n_0 \ge 2(1-\alpha(p,q))/|\gamma|$. Equality holds when $f(z) = z + (1-\alpha(p,q))z^n/[|\gamma|(n-1) + (1-\alpha(pq))]$ for $n \ge 2$ in the first two cases and for $n \ge n_0 + 1$ in the third case.

By the above theorem we have the following corollary

4. Corollary: The function
$$f(z) = z / \left(1 + \sum_{n=2}^{\infty} b_n z^n \right)$$
 is in $S^*(\alpha(p,q)), 0 \le \alpha(p,q) \le 1$, if

$$\sum_{n=2}^{\infty} (n-1+\alpha(p,q)) |b_n| \le \frac{(1-\alpha(p,q)) - (1-\alpha(p,q))}{(1-\alpha(p,q)) - \alpha(p,q)} |b_1|, \qquad 0 \le \alpha(p,q) \le \frac{1}{2},$$
 $(1-\alpha(p,q)) - \alpha(p,q) |b_1|, \qquad \frac{1}{2} \le \alpha(p,q) \le 1.$

Proof: By Putting $\gamma = -1$ and $a_n = b_n$ in Corollary 3 we get the proof of this corollary. By putting p=1, q=0 in the Theorem 2 we have the following corollary

5. Corollary: The function
$$f(z) = z / \left(1 + \sum_{n=2}^{\infty} b_n z^n \right)$$
 is in $S^*(\alpha), 0 \le \alpha \le 1$, if

$$\sum_{n=2}^{\infty} (n-1+\alpha) |b_n| \le \frac{(1-\alpha) - (1-\alpha) |b_1|}{(1-\alpha) - \alpha |b_1|}, \qquad 0 \le \alpha \le \frac{1}{2},$$

$$\frac{1}{2} \le \alpha \le 1.$$

Proof: By Putting $\gamma = -1$, $a_n = b_n$, p=1, q=0 in Corollary 3 we get the proof.

6. Theorem: The function g is in $S_1^*(\alpha(p,q))$ if

(6.1)
$$\sum_{n=2}^{\infty} [|\gamma|(n-1) + (1 - \alpha(p,q))]|a_n| \le 1 - \alpha(p,q),$$

which is equal to

$$f(z) = z + (1 - \alpha(p,q))z^n / [|\gamma|(n-1) + (1 - \alpha(pq))], \quad n \ge 2.$$

Proof: We have

$$\frac{\left|\frac{zg'}{g} - 1\right| = \left|\gamma\left(\frac{zf'}{f} - 1\right)\right| = \left|\frac{\sum_{n=2}^{\infty}\gamma(n-1)a_n z^{n-1}}{1 + \sum_{n=2}^{\infty}a_n z^{n-1}}\right|$$
$$\leq \frac{\left|\gamma\left|\sum_{n=2}^{\infty}(n-1)a_n\right|\right|}{1 - \sum_{n=2}^{\infty}a_n\right|} \leq 1 - \alpha(p,q)$$

if and only if (6.1) holds.

Remark: Since $S_1^*(\alpha(p,q)) \subset S^*(\alpha(p,q))$. The special case $\gamma > 0$ in Theorem 2 is a consequence of Theorem 6.

7. Theorem: The function g is in K if for some a, $0 \le a \le 1$,

(i)
$$\sum_{n=2}^{\infty} [|\gamma - 1|(n-1) + a]|a_n| \le a$$
 and
(ii) $\sum_{n=2}^{\infty} (n-a)|\gamma(n-1) + 1||a_n| \le 1-a.$

$$n=2$$

Proof: Write r(z) = 1 = zg''(z) / g'(z)

$$=1+\frac{(\gamma-1)\sum_{n=2}^{\infty}(n-1)a_nz^{n-1}}{1+\sum_{n=2}^{\infty}a_nz^{n-1}}+\frac{\sum_{n=2}^{\infty}(n-1)(\gamma(n-1)+1)a_nz^{n-1}}{1+\sum_{n=2}^{\infty}[\gamma(n-1)+1]a_nz^{n-1}}$$

Dr M.Aparna

A sufficient condition for $\operatorname{Re} r(z) \ge 0$ in Δ is

$$\frac{\sum_{n=2}^{\infty} (\gamma - 1)(n - 1)a_n z^{n-1}}{1 + \sum_{n=2}^{\infty} a_n z^{n-1}} \le \frac{\sum_{n=2}^{\infty} |\gamma - 1|(n - 1)|a_n|}{1 - \sum_{n=2}^{\infty} |a_n|} \le a$$

and the inequality

$$\left| \frac{\sum_{n=2}^{\infty} (n-1)(\gamma(n-1)+1)a_n z^{n-1}}{1+\sum_{n=2}^{\infty} (\gamma(n-1)+1)a_n z^{n-1}} \right| \le \frac{\sum_{n=2}^{\infty} (n-1)|\gamma(n-1)+1||a_n|}{1-\sum_{n=2}^{\infty} |\gamma(n-1)+1||a_n|} \le 1-a$$

holds for some a, $0 \le a \le 1$. But these inequalities are equivalent to (i) and (ii) being satisfied. The proof is completed.

When $\gamma > 0$ we may choose the real number a in Theorem 7, so that

(7.1).
$$[(n-1)|\gamma-1|+a]/a \le (n-a)(\gamma(n-1)+1)/(1-a)$$

holds for $n \ge 2$,

which means that condition (ii) implies condition (i). Choosing the smallest value of a, it leads to the following corollary which states

8. Corollary: The function g is in K if

$$\sum_{n=2}^{\infty} [\gamma n^2 + (1-\gamma - \gamma a)n - a(1-\gamma)] |a_n| \le 1-a,$$

where $a = \left(2 + \gamma - \sqrt{(5\gamma^2 + 4)}\right)/2\gamma$ when $0 < \gamma \le 1$ and $a = 3/2 - \sqrt{5/4 + 1/\gamma}$ when $\gamma > 1$. Equality holds for $f(z) = z + (1-a)z^2/(\gamma+1)(2-a)$.

Remark: The special case $\gamma = 1$ in Theorem 2 and

Theorem 6 reduces to the sufficient condition (1.2) for f to be in $S^*(\alpha(p,q))$ and $S_1^*(\alpha(p,q))$ respectively, and to the well known sufficient condition for convexity, $\sum_{n=2}^{\infty} n^2 |a_n| \le 1$, in Corollary 3 of the

Theorem 7.

When $\gamma < 0$, in (7.1) need not hold for all n. In fact the right side of (1.3) vanishes when $\gamma = -1/(n-1)$. For $\gamma < -\frac{1}{2}$ we can still find a expression in which, for some a, inequality (7.1) holds for $n \ge 3$ but not for n=2. This leads to the following Corollary which states

9. Corollary: The function g is in K for $\gamma < -\frac{1}{2}$ if

$$((1+|\gamma|+a)/a)|a_2| + \sum_{n=3}^{\infty} (n-a)[|\gamma|(n-1)-1]/(1-a) \le 1,$$

where $a = \frac{(\sqrt{12\gamma^2 + 8\gamma + 5} + 1 + 4\gamma)/2(1+\gamma)}{2/3}, \quad \gamma \ne -1,$
 $\gamma = -1.$

W

By above theorem we have the following corollary

10. Corollary: The function $f(z) = z/(1 + \sum_{n=1}^{\infty} b_n z^n)$ is in K if

$$4|b_1| + \sum_{n=2}^{\infty} (n-1)(3n+1)|b_n| \le 1.$$

Proof: By Putting $\gamma = -1$, $a = \frac{2}{3}$ and $a_n = b_{n-1}$, p=1, q=0 in Corollary 9 we get the proof.

11. Theorem:

(i) The function f is in $S^*(\alpha(p,q))$ if and only if $g \in S^*(1-\gamma(1-\alpha(p,q)))$, $0 \le \gamma(1-\alpha(p,q)) \le 1$, and $g \in S^*(\alpha(p,q))$ if and only if $f \in S^*(1-(1-\alpha(p,q))/\gamma)$, $(1-\alpha(p,q))/\gamma \le 1$;

(ii) The function f is in $S_1^*(\alpha(p,q))$ if and only if $g \in S_1^*(1-|\gamma|(1-\alpha(p,q))), |\gamma|(1-\alpha(p,q)) \le 1$, and $g \in S_1^*(\alpha(p,q))$

if and only if $f \in S_1^*(1 - (1 - \alpha(p, q))/|\gamma|), \quad (1 - \alpha(p, q))/|\gamma| \le 1.$

Proof: The first result follows from the identity $zg'/g = 1 + \gamma((zf'/f) - 1)$ and the second follows from the identity $|(zg'/g) - 1| = |\gamma||(zf'/f) - 1|$.

By the above theorem we have the following corollary

12. Corollary: For $0 \le \gamma \le 1$, $g \in S^*(\alpha(p,q))$ whenever $f \in S^*(\alpha(p,q))$ and for $|\gamma| \le 1$,

 $g \in \mathbf{S}_1^*(\alpha(p,q))$ whenever $f \in \mathbf{S}_1^*(\alpha(p,q))$.

The coefficient bounds on f in $S^*(\alpha(p,q))$ and $S_1^*(\alpha(p,q))$ lead to corresponding coefficient bounds on g. Also by the above theorem we have the following corollary

13. Corollary: If
$$f \in \mathbf{S}^*(\alpha(p,q)), 0 \leq \gamma(1-\alpha(p,q)) \leq 1$$
, and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, then

 $|b_n| = \prod_{k=2}^n [(k-2) + 2\gamma(1 - \alpha(p,q))]/(n-1)!.$ Equality holds for $g_0(z) = z(f_0(z)/z)^{\gamma}$, where $f_0(z) = z/(1-z)^{2(1-\alpha(p,q))}.$

Proof: The function $f_0(z)$ is to maximize the coefficients of functions in $S^*(\alpha(p,q))$, $0 \le \alpha(p,q) \le 1$. By Putting p=1, q=0 in Theorem 11 we have the following Corollary

14. Corollary: If $f \in \mathbf{S}^*(\alpha), 0 \le \gamma(1-\alpha) \le 1$, and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, then

 $|b_n| = \prod_{k=2}^n [(k-2) + 2\gamma(1-\alpha)]/(n-1)!$. Equality holds for $g_0(z) = z(f_0(z)/z)^{\gamma}$, where $f_0(z) = z/(1-z)^{2(1-\alpha)}$.

Proof: The function $f_0(z)$ is to maximize the coefficients of functions in $S^*(\alpha)$, $0 \le \alpha \le 1$. By the above theorem we have the following corollary

15. Corollary: If $f \in S_1^*(\alpha(p,q)), |\gamma|(1-\alpha(p,q)) \le 1$, and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, then

 $|b_n| \le |\gamma| (1 - \alpha(p,q))/(n-1)$. Equality holds for $g_n(z) = z(f_n(z)/z)^{\gamma}$, where $f_n(z) = z \exp((1 - \alpha(p,q)) z^{n-1}/(n-1))$.

Proof: In the function $f_n(z)$ was shown to maximize the nth coefficient for functions in $S_1^*(\alpha(p,q))$, $0 \le \alpha(p,q) \le 1$.

In the previous corollaries the extremal f in $S^*(\alpha(p,q))$ and $S_1^*(\alpha(p,q))$ was transformed into g that was extremal in $S^*(1-\gamma(1-\alpha(p,q)))$ and $S_1^*(1-|\gamma|(1-\alpha(p,q)))$, respectively. This made the determination of

IJETST- Vol.||03||Issue||11||Pages 4777-4783||November||ISSN 2348-9480

2016

coefficient bounds on g straight forward. We now consider a special subclass of $S_1^*(\alpha(p,q))$ for which this is not the case. Since $T^*(\alpha(p,q)) \subset S^*_1(\alpha(p,q))$, it follows from Theorem 8 if $f \in T^*(\alpha(p,q))$ then $g \in S_1^*(1-|\gamma|(1-\alpha(p,q))), |\gamma|(1-\alpha(p,q)) \leq 1$. The extremal functions g_n for the coefficients, however, were not associated with corresponding functions $f \in T^*(\alpha(p,q))$. To determine such coefficient bounds. we need the Lemma 16.

16. Lemma: If $\left(1 + \sum_{n=2}^{\infty} a_n z^n\right)^{\gamma} = 1 + \sum_{n=2}^{\infty} b_n z^n$ is analytic in a neighborhood of the origin γ real, then $b_{k+1} = \sum_{i=0}^{k} [\gamma - (\gamma + 1)j/(k+1)]a_{k+1-j}b_j$ $(k = 0, 1, \dots, j; b_0 = 1).$

17. Theorem: If $f(z) = z - \sum_{n=2}^{\infty} a_n z^n \in T^*(\alpha(p,q)), \quad |\gamma|(1 - \alpha(p,q)) \le 1$, and $g(z) = z(f(z)/z)^{\gamma} = z + \sum_{n=2}^{\infty} b_n z^n$, then $|b_n| \le |\gamma|(1 - \alpha(p,q))/(n - \alpha(p,q))$.

Equality holds for $g_n(z) = z(f_n(z)/z)^{\gamma}$, where $f_n(z) = z - (1 - \alpha(p,q))z^n/(n - \alpha(p,q))$.

Proof: By the Lemma 7.16, $b_2 = \gamma a_2$ and

(17.1).
$$b_{k+1} = \gamma a_{k+1} + \sum_{j=1}^{k-1} [\gamma - (\gamma - 1)j/k] a_{k+1-j} b_{j+1}$$

From (1.2) we may get $a_k = \lambda_k (1 - \alpha(p,q))/(k - \alpha(p,q))$ with $\sum_{k=2}^{\infty} \lambda_k \le 1$ and write (17.1) as $b_{k+1} = \gamma \lambda_k ((1 - \alpha(p,q))/(k + 1 - \alpha(p,q)) + \sum_{j=1}^{k-1} [\gamma - ((\gamma + 1)j/k)]$

 $\lambda_{k+1-j}((1-\alpha(p,q))/(k+1-j-\alpha(p,q)))b_{j+1}$. It suffices to show that $|b_{k+1}|$ is uniquely maximized when $\lambda_{k+1} = 1$, which is true if

(17.2)
$$\left| \gamma \right| \left(\frac{1 - \alpha(p,q)}{k + 1 - \alpha(p,q)} \right) > \left| \gamma - \frac{(\gamma + 1)j}{k} \right| \left(\frac{1 - \alpha(p,q)}{k + 1 - j - \alpha(p,q)} \right) \left| b_{j+1} \right|,$$
$$1 \le j \le k - 1.$$

Since $|b_2| = \gamma \lambda_2 (1 - \alpha(p,q))/(2 - \alpha(p,q)) \le |\lambda| (1 - \alpha(p,q))/(2 - \alpha(p,q))$, We may assume that

(17.3) $|b_j| \leq |\lambda|(1-\alpha(p,q))/(j-\alpha(p,q))$ for j=1,2,...,k. Note that

(17.4)
$$\left| \gamma - \frac{(\gamma+1)j}{k} \right| \leq \frac{\left| \gamma \right| (k-j) + j}{k} \leq \frac{(k-j) + j(1-\alpha(p,q))}{k(1-\alpha(p,q))}$$
$$\leq \frac{k - \alpha(p,q)}{k(1-\alpha(p,q))}$$

Substituting the upper bounds of (17.3) and (17.4) into the right side of (17.2) we get

(17.5)
$$\left|\gamma\right|\left(\frac{1-\alpha(p,q)}{k+1-\alpha(p,q)}\right)$$

$$> \left(\frac{k-\alpha(p,q)}{k(1-\alpha(p,q))}\right) \left(\frac{1-\alpha(p,q)}{k+1-j-\alpha(p,q)}\right) \left(\frac{|\gamma|(1-\alpha(p,q))}{j+1-\alpha(p,q)}\right)$$

Since the right side of (17.5) is maximized when j=1, inequality (17.5) will be true if $1/(k+1-\alpha(p,q)) > 1/k(2-\alpha(p,q))$, which is valid for k>1.

This completes the proof of the theorem.

Remark: If
$$0 \le \gamma \le 1$$
, then $g(z) = z \left(1 - \sum_{n=2}^{\infty} a_n z^{n-1} \right)^{\gamma} = z \left[1 - \gamma \left(\sum_{n=2}^{\infty} a_n z^{n-1} \right) - (\gamma (1 - \gamma) / 2!) \left(\sum_{n=2}^{\infty} a_n z^{n-1} \right)^2 - - \right]$
 $= z - \sum_{n=2}^{\infty} b_n z^n, \qquad b_n \ge 0.$

Thus, in addition to g being in $S_1^*(1-\gamma(1-\alpha(p,q)))$, we have $g \in T^*(1-\gamma(1-\alpha(p,q)))$.

While $g_{\gamma}(z) = z(f(z)/z)^{\gamma}$ usually it seems to share many of the nice properties of f, at least when f is in different subclasses of S, the same does not hold when the only restriction on f is that it is a member of S. In this case, g_{γ} need not be locally univalent.

18. Theorem: For every γ real, $\gamma \neq 0,1$. there exists an $f \in S$ for which $g_{\gamma}(z) = z(f(z)/z)^{\gamma} \notin S$. Proof: We have

$$g'(z) = \left(\frac{f(z)}{z}\right)^{\gamma-1} \left[\frac{(1-\gamma)f(z) + \gamma z f'z}{z}\right] = 0$$

if $zf'(z)/f(z) = (\gamma - 1)/\gamma$. Since zf'/f maps Δ onto the right half plane when $f(z) = z/(1-z)^2$, the corresponding g_{γ} will not be univalent when $\gamma < 0$ or $\gamma > 1$. Now we consider $\gamma \in (0,1)$. For every fixed $z \in \Delta$, the region of values of $\log(zf'(z)/f(z))$ for $f \in S$ is the disk $|w| \leq \log((1+|z|)/(1-|z|))$. In particular, for any real number t we can find $z \in \Delta$ and $f \in S$ for which $\log(zf'(z)/f(z)) = t + \pi i$. Thus, $zf'(z)/f(z)) = -e^t = (\gamma - 1)/\gamma$ when

 $t = \log((\gamma - 1)/\gamma)$. This completes the proof of the theorem.

REFERENCES

- 1. Duren P.L.: Univalent Functions, Springer-Verlag Berlin Heidelberg and Tokyo, 1983.
- 2. J.S.Jack: "Functions starlike and convex of order α ". J.London Math Soc. 3,(1971), 469–474.
- 3. Conway J.B, Functions of complex variables, Narosa Publishing House, 1985.
- 4. D.R.Wilken and J.Feng, "A remark on convex and starlike functions", Proc.Amer.Math. Soc, (1979), 287-290.
- 5. V.Ravichandran, C.Selvaraj and R.Rajalaksmi, "Sufficient conditions for starlike functions of order α ", and Appl.Math, 1443-5756.
- 6. Herb Silverman, "Convex and starlike criteria", Internat.J.Math. & Math. Sci,Vol. 22, No.1(1999) ,75-79.
- 7. H.Silverman, "Univalent functions with negative coefficients", Proc. Amer. Math. Soc. 51(1975), 109-116.