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Abstract
In this paper we investigated the relationship between f and g(z) =g, (z) = z(f (z)/z)”, We find sufficient

conditions on f for g to be in S™(a(p,q)), S, (a(p,q)) or K. The sufficient conditions found by Reade

Silverman, and Todorov.
Keywords: Univalent Function, Starlike Function, convex Function, Analytic Function.

1. INTRODUCTION
A function

(1.1) f()=2+Ya,2"

is said to be in the family S if it is analytic and univalent in the unit disk A:ﬂz| <1}. The subfamily of
functions starlike of order « (p,q), denoted by S’ (a(p,q)) consists of functions f for which
Re(zf'/ f)>a(p,q), 0<a(p.q),<1, for zeA.We further denoted by S, (« (p,q)), the subfamily of
S™(a(p,q)) consisting of functions f for which |(zf '/ f)—]j <l1-a(p,q)), 0<a(p,q)<1, for zeA.ltis

known as a sufficient condition, for fto be in S, (a(p,q)) is
12 S o-alp.aa/<1-a(po)
and this condition is necessary if f is of the fo:;n
13 f@=z-Yaz", a, >0
n—2

The subfamily of S™(a(p,q)) consisting of functions of the form (1.3) and is denoted by T (a(p,q))
(= S"1((p,q))) . Finally, a function f of the form .1.1) is said to be in K, if the family of convex functions
Re(l+zf"/f)>0 for zeA.
In this paper we investigated the relationship between f and

(1.4) 9(2)=9,(2) =z(f(2)/2)"

where y is real.
When fis in S or in one of the above subclasses. In Theorem 2, We find sufficient conditions on f for g to
be in S"(a(p,q)), S, (a(p,q)) or K. The sufficient conditions found by Reade Silverman, and Todorov

n=1

for functions of the form z/(l+2bnz”J to be in S”(a(p,q)) or K follows from y=-1 in (1.4). In
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Theorem 11 we find necessary and sufficient conditions for g to be in S™(a(p,q)),S, (a(p,q)) or

T (a(p,q)) in terms of the corresponding f. This leads to the coefficient bounds on g. In Theorem 18, we
show that f €S implies g € S only for y=0,1.

In this chapter we have assumed unless otherwise stated, that f is of the form (1.1) with corresponding to g is
of the form (1.4), y is real. Note that the trivial case y =0, where g(z)=z for any f.

2. Theorem: The function g isin S (a(p,q)) if

@D Y- +[rn-+20-a(p.a)a,|< 20~ a(p.a)

Proof: Let p(z) =29'(z)/ g(z) =1+ y((zf '(2)/ f(2))-1) and

q(z) =[1-(p(2) — a(p,9)) /L~ a(p, DY+ (p(2) - a(p,9)) /L~ a(p,q))].

Then Re p(z) > a(p,q) for z e A ifand only if |q(z)| <1. But

_| —7((zf '] £)-1) |
20— a(p,a)) + y((zf "1 ) -1)|

‘ -7>.(n-Da,z"* ‘
_ n=2

q(2)

‘2(1— a(p,q))+ i[y(n D +2(1-a(p,q))a,1z""

5o~ |

n=2

<

20-a(p.0) - Xl -D+ 20 a(p.)a,|

Now from (2.1) is equivalent to this last expression being bounded above by (1.1).
The proof is completed.

The conclusion of Theorem 2 split into three cases, which are in the following corollary
3. Corollary: The function gisin S™ (a(p,q)) if

() Y00-D+a-a(paa/<l-a(pa),  7>0
(i) S 10 -1 - @~ a(play | <1-a(p.a) < -2~ a(p.0))

@) 3 1A0-9-0-atpale <1-o(p.0[1- Do

n=ny+1

—21-a(p,q)) <y <0,
where ny, is smallest integer for which n,>2(1-«( p,q))/|7/|. Equality holds when
f(z)=z+@Q-a(p,q))z" /|]y|(n—1)+(1—a(pq))] for n>2 in the first two cases and for n>n, +1 in the

third case.
By the above theorem we have the following corollary
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4. Corollary: The function f(z) = z/(1+ ibnz"j isin S™(a(p,q),0< a(p,q) <1,if

< (1-a(p,a)) - (1-a(p,a))b, 0<a(p.g)<i,
“1+a(p.)b,| <
n§=2(n +a(p,q)) |<(1_a(p,q))—a(p,q)|bl|, 1<a(p,q) <l

Proof: By Putting » =—1 and a, =b, in Corollary 3 we get the proof of this corollary.
By putting p=1, g=0 in the Theorem 2 we have the following corollary

5. Corollary: The function f(z)=z/(1+2bnz“j isin S™(a),0<a <, if

n=2
S (1—a)—(1—a)|b1|, O<a<i,
Z;‘(n Lol < (1-a)—alb), l<a<l

Proof: By Putting y =-1, a, =b,, p=1, g=0 in Corollary 3 we get the proof.
6. Theorem: The function g isin S, (a(p,q)) if

6 Ylyn-1+@-ap.ala, <1-a(p.0)
which is equal to
f(z)=z+@1-a(p,))z" /I¥|(n-D+@-a(pg))], n=2.

Proof: We have

‘ 1+ianz”‘1 ‘
n=2
12 (n-Da,|

< | <l-a(p,q)

1—nZ:Z:|an|

if and only if (6.1) holds.

Remark: Since S, (a(p,q)) = S”(a(p,q)). The special case y >0 in Theorem 2 is a consequence of
Theorem 6.
7. Theorem: The function g is in K if for some a, 0 <a <1,

o0

(i) Z[|y—]4(n—1)+a]|an| <a and

(i) i(n—a)|y(n—l)+]j|an| <l-a.
Proof: Write
r(z)=1=129"(2)/9'(2)

G-DY (-Daz™ Y (-1)(r(n-1) +1a,z"
:1+ n=2 + n=2

1+> a,z" 1+ [y(n-1) +1]a,z"*
n=2

n=2
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A sufficient condition for Rer(z) >0 in A is
2 (r-D(n-Da,z""| > |r-Yn-Da,|
n=2 — < n=2 B <a
‘ 143 82" 1-Sa,|
n=2 n=2

and the inequality

o0

> (n=-Dp(n-1)+a,z""

> (-Bjy(n-1+1a,

< <l-a

o0

1-> |r(n-1)+1a,|

n=2

1+3 (#(n-1) +Da, 2"

n=2

holds for some a, 0 <a <1. But these inequalities are equivalent to (i) and (ii) being satisfied.
The proof is completed.
When y >0 we may choose the real number a in Theorem 7, so that

(7.1).  [(-Dy-1+al/a<(n-a)(r(n-1)+1)/(1-a)

holds for n> 2,

which means that condition (ii) implies condition (i). Choosing the smallest value of a, it leads to the
following corollary which states

8. Corollary: The function g is in K if

i[}/n2 +(1-y-)n-al-y)la,|<1-a,

where a= (2+}/—\/(5]/2 +4))/2;/ when 0<y <1 and a=3/2-.5/4+1/y when y >1. Equality holds
for f(z)=z+@1-a)z’ /(y +1)(2-a).
Remark: The special case y =1 in Theorem 2 and

Theorem 6 reduces to the sufficient condition (1.2) for f to be in  S™(a(p,q)) and S, (a(p,q))

respectively, and to the well known sufficient condition for convexity, > n?[a | <1, in Corollary 3 of the
n=2

Theorem 7.
When y <0, in (7.1) need not hold for all n. In fact the right side of (1.3) vanishes when y =—-1/(n-1). For

7 <—+ we can still find a expression in which, for some a, inequality (7.1) holds for n> 3 but not for n=2.

This leads to the following Corollary which states
9. Corollary: The function g isin K for y < -1 if

((L+]y|+a) /a)fa,|+ i(n —a)y[(n-1)-1]/(1-a) <1

2
where a=(127 +87+5+1+47)/2(1+7), y# -1

2/3 y=-1.
By above theorem we have the following corollary

10. Corollary: The function f (z) = z/(1+2bnz”) isin Kif
n=1
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4|+ (n-1)3n+D, | <1.
n=2

Proof: By Putting y =—1, a=% and a, =b,_;, p=1, g=0 in Corollary 9 we get the proof.
11. Theorem:
(i) The function fis in S™(a(p,q)) if and only if geS (1-yA-a(p,q)), 0<y@-a(p,q) <1, and

ge S (a(p,q) ifandonlyif f €S"(1-(1-a(p,a)/y), @A-a(p,))/ <L

(i) The function fis in S, (a(p.q)) if and only if geS, (L-[/|l-a(p.a))), |7|d-a(p,q))<1 and
ge S, (a(p.9)

ifandonly if f S, (1-(L-a(p.a))/y), @-a(p.))/y <L

Proof: The first result follows from the identity zg'/g =1+ y((zf '/ f)—1) and the second follows from the

identity |(zg'/ g) -1 = |y|(zf '/ f)-1.
By the above theorem we have the following corollary
12. Corollary: For 0<y <1 ge S'(a(p.q)) whenever f e S"(a(p,q)) and for [y <1,

ge S, (a(p,q)) whenever f € S, (a(p.q)).
The coefficient bounds on fin S™(a(p,q)) and S, (a(p,q)) lead to corresponding coefficient bounds on g.
Also by the above theorem we have the following corollary

13. Corollary: If f € S (a(p,q)),0< ;/(l—a(p,q))gl, and g(z) = z+ibnz", then
n=2

Iby| =TT, [k —2) + 21— (p, ) ]/(n —1)!. Equality holds for g,(z) = 2(f,(2)/2)”, where
f,(2) = z/(L— z)>¢= ),
Proof: The function f,(z) is to maximize the coefficients of functions in S™(a(p,q)), 0<a(p,q) <1.

By Putting p=1, g=0 in Theorem 11 we have the following Corollary
14. Corollary: If f e S™(a),0<y{1-a)<1, and g(z)=z+ » b,z", then
n=2

by =TT._,[(k —2) + 2y(1— a)]/(n—1)!. Equality holds for g,(z) = z(f,(z)/z)”, where
fo(2) = z/(1—2)*.
Proof: The function f,(z) is to maximize the coefficients of functions in S™(«), 0<a <1.

By the above theorem we have the following corollary

15. Corollary: If f e Sj(a(p.q)), |[7|l—a(p,q))<1 and g(z) = z+ibnz”, then
n=2

Ib,| <|7/@—a(p,a))/(n—1).. Equality holds for g,(z) = z(f,(2)/2)”, where

f,(2) = zep((1-a(p,q))z"" /(n-1)).

Proof: In the function f_(z) was shown to maximize the nth coefficient for functions in S, (a(p,q)),
0<a(p,q)<1.

In the previous corollaries the extremal fin S™(a(p,q)) and S, (a(p,q)) was transformed into g that was

extremal in S"(1-y(@-a(p,q))) and Sl*(1—|7|(1—a(p,q))), respectively. This made the determination of
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coefficient bounds on g straight forward. We now consider a special subclass of S, (a(p,q)) for which this
is not the case. Since T (a(p,q)) = S’1(a(p,q)), it follows from Theorem 8 if f T (a(p,q)) then
geS; -/ |@-a(p.a))), |7|l—a(p,q))<1. The extremal functions g, for the coefficients, however,

were not associated with corresponding functions f e T (a(p,q)). To determine such coefficient bounds.
we need the Lemma 16 .

0 4 o0
16. Lemma: If (1+Zanz"j :1+anz" is analytic in a neighborhood of the origin » real, then

Kk

k+1 z 7+1)J/(k+1)]ak+1 ij (k 01 ......... ’;bO :1)

i=0

17. Theorem: If f(z) = z—ianz” eT (a(p.a), |r|@-a(p ) <land
n=2

9(2) = 2(1(2)/2)" =2+ 3b,2", then |o,| <[s{A- a(p,@))/(n - (p,a)).

Equality holds for g,(z) = z(f,(z)/z)”, where f (z)=z—(1—-a(p,q))z" /(n—a(p,q)).

Proof: By the Lemma 7.16, b, = ya, and

k-1
(17.2). bes =7 + 2 [r — (=1 j/Kla, b,

=1

From (1.2) we may get a, =4, (Q—a(p,q))/(k—-—a(p,q)) with iﬂksl and write (17.1) as
k=2

b =74 (A-a(p.q)/(k+1-a(p,q)) + 2[7 —((»+1j/k)]

=
A (A=a(p,a) [(k+1- j—a(p,@))b,.,. It suffices to show that |b,| is uniquely maximized when
A1 =1, which is true if

(17.2) ||( 1-a(p.9) J>|7_(7+1)j|[ 1-a(p.q) jb
k+1-a(p,q) k |\k+1-j—a(p.q)

1<j<k-1.

Since |b,| = 74, (1-a(p,9))/(2-a(p,q)) <|A|L—a(p,q)) /(2 a(p,q)),
We may assume that

j+L[

(17.3) |oj|<[Al@-a(p.a))/(i-a(p.q) forj=12,......... k.
Note that
aray |y 0| DT k=) + i alp.a)
k| k k(L—a(p,))
. _k=a(p.q)
k(l-e(p,q))

Substituting the upper bounds of (17.3) and (17.4) into the right side of (17.2) we get

1-a(p,
(17.5) |¥ (#mj
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>[ k —a(p,q) j{ 1-a(p,q) j{|y|(1—a(p,q»J
k—a(p,a)) )\k+1-j—a(p.a) )\ j+1-a(p,q)
Since the right side of (17.5) is maximized when j=1, inequality (17.5) will be true if

1/(k+1-—a(p,q)) >1/k(2—a(p,q)), which is valid for k>1.
This completes the proof of the theorem.

Remark: If 0<y <1, then g(z)= z[l—ianz“jy = z{l—y[z anz“J — (;/(1—;/)/2!)(i anz“j ___}

8

n=2 n=2 n=2
=z->bz", b, >0.
n=2

Thus, in addition to g being in S, (1-y(1L—a(p,q))), we have g e T (1-y(1—a(p,q))).
While g,(z) =z(f(z)/z)” usually it seems to share many of the nice properties of f, at least when f is in

different subclasses of S, the same does not hold when the only restriction on f is that it is a member of S. In
this case, g, need not be locally univalent.

18. Theorem: For every y real, y = 0,1. there existsan f € S for which g (z) =z(f(z)/z2)" ¢S.
Proof: We have

, f(2)Y TA-9)f(2)+yzfs
g(z):( ()j {( @ +y }:0
z z

if zf'(z)/ f(z)=(-1/y. Since zf'/ f maps A onto the right half plane when f(z)=1z/(1-z2)?, the

corresponding g, will not be univalent when <0 or y >1. Now we consider y e (0,1). For every fixed

z € A, the region of values of log(zf'(z)/ f(2)) for f €S is the disk | <log((L+|z])/(1—|Z))). In particular,
for any real number t we can find zeA and f eS for which log(zf'(z)/ f(z))=t+zi. Thus,
2f'(z)1 £ (2)) = —e' = (¥ —1)/ y when

t =log((y —1)/ ). This completes the proof of the theorem.
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