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Abstract 

In this paper we investigated the relationship between f and 
 )/)(()()( zzfzzgzg  , We find sufficient 

conditions on f for g to be in )),((* qpS  , )),((
*

1 qpS   or K. The sufficient conditions found by Reade 

Silverman, and Todorov.  
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1. INTRODUCTION 

 A function 

(1.1)             





2

)(
n

n

n zazzf  

is said to be in the family S if it is analytic and univalent in the unit disk  .1 z  The subfamily of 

functions starlike of order  ),( qp , denoted by )),((* qpS   consists of functions f for which 

,1, ),(0),,()/Re(  qpqpffz  for z . We further denoted by  ),q)(p, (
*

1 S  the subfamily of 

)),((* qpS   consisting of functions f for which )),,(11)/( qpffz   ,1),(0  qp for z . It is 

known as a sufficient condition, for f to be in  )),((
*

1 qpS   is 

        (1.2) 





2

),(1)),((
n

n qpaqpn   

and  this condition is necessary if f is of the form 

(1.3)      





2

)(
n

n

n zazzf ,   .0na  

The subfamily of )),((* qpS   consisting of functions of the form (1.3) and is denoted by )),((* qpT   

))),((( 1
* qpS  . Finally, a function f of the form .1.1) is said to be in K, if the family of convex functions 

0)/1Re(  ffz for z . 

 In this paper we investigated the relationship between f and  

(1.4)         


 )/)(()()( zzfzzgzg   

                                                        where   is real. 

When f is in S or in one of the above subclasses. In Theorem 2,  We find sufficient conditions on f for g to 

be in )),((* qpS  ,  )),((
*

1 qpS   or K. The sufficient conditions found by Reade Silverman, and Todorov 

for functions of the form 











1

1
n

n

n zbz  to be in )),((* qpS   or K follows from  =-1 in (1.4). In 
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Theorem 11 we find necessary and sufficient conditions for g to be in )),((* qpS  , )),((
*

1 qpS   or 

)),((* qpT   in terms of the corresponding f. This leads to the coefficient bounds on g. In Theorem 18, we 

show that Sf   implies Sg   only for  =0,1. 

In this chapter we have assumed unless otherwise stated, that f is of the form (1.1) with corresponding to g is 

of the form (1.4),   is real. Note that the trivial case  =0, where g(z)=z for any f. 

2. Theorem: The function g is in )),((* qpS   if 

(2.1)      )).,(1(2)),(1(2)1()1(
2

qpaqpnn n

n

 




 

Proof: Let  )1))(/)(((1)(/)()(  zfzfzzgzgzzp   and   

))].,(1/()),()((1/[)],(1/()),()((1[)( qpqpzpqpqpzpzq    

Then  ),()(Re qpzp   for z  if and only if .1)( zq  But 

)1)/(()),(1(2

)1)/((
)(






ffzqp

ffz
zq




 






















2

1

2

1

])),(1(2)1([)),(1(2

)1(

n

n

n

n

n

n

zaqpnqp

zan





 


















2

2

)),(1(2)1()),(1(2

)1(

n

n

n

n

aqpnqp

an





 

Now from (2.1) is equivalent to this last expression being bounded above by (1.1).  

The proof is completed. 

The conclusion of Theorem 2 split into three cases, which are in the following corollary 

3. Corollary: The function g is in )),((* qpS   if 

(i)  ,0),,(1))],(1()1([
2






 qpaqpn
n

n  

(ii) 





2

)),,(1(2),,(1))],(1()1([
n

n qpqpaqpn   

(iii)  


 










1 20

0

,1),(1))],(1()1([
nn

n

n

nn aqpaqpn   

,0)),(1(2   qp  

where 0n  is smallest integer for which ./)),(1(20  qpn   Equality holds when 

))](1()1(/[)),(1()( pqnzqpzzf n    for 2n  in the first two cases and for 10  nn  in the 

third case. 

By the above theorem we have the following corollary 
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4. Corollary: The function 







 



2

1)(
n

n

n zbzzf  is in )),((* qpS  , ,1),(0  qp if      




 




2 2
1

1

2
1

1

.1),(,),()),(1(

,),(0,)),(1()),(1(
)),(1(

n

n
qpbqpqp

qpbqpqp
bqpn




  

Proof: By Putting 1  and nn ba   in Corollary 3 we get the proof of this corollary. 

By putting p=1, q=0 in the Theorem 2 we have the following corollary  

5. Corollary: The function 







 



2

1)(
n

n

n zbzzf  is in )(* S , ,10   if 




 




2 2
1

1

2
1

1

.1,)1(

,0,)1()1(
)1(

n

n
b

b
bn




  

Proof: By Putting 1 , nn ba  , p=1, q=0  in Corollary 3 we get the proof. 

6. Theorem: The function g is in )),((
*

1 qpS   if  

(6.1)     ),,(1))],(1()1([
2

qpaqpn
n

n  




 

which is equal to  

))](1()1(/[)),(1()( pqnzqpzzf n   ,   2n  . 

 

Proof: We have  


































2

1

2

1

1

)1(

11

n

n

n

n

n

n

za

zan

f

fz

g

gz


  

),(1

1

)1(

2

2 qp

a

an

n

n

n

n






















  

if and only if (6.1) holds. 

Remark: Since  )),((
*

1 qpS    )),((* qpS  . The special case 0  in Theorem 2 is a consequence of 

Theorem 6. 

7. Theorem: The function g is in K if for some a, ,10  a  

  (i)           aaan
n

n 


2

])1(1[      and 

  (ii)         .11)1()(
2

aanan
n

n 




  

Proof:  Write 

     )(/)(1)( zgzgzzr    












































2

1

2

1

2

1

2

1

]1)1([1

)1)1()(1(

1

)1()1(

1

n

n

n

n

n

n

n

n

n

n

n

n

zan

zann

za

zan




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A sufficient condition for 0)(Re zr  in   is  

a

a

an

za

zan

n

n

n

n

n

n

n

n

n

n








































2

2

2

1

2

1

1

)1(1

1

)1)(1( 

 

 

and the inequality  

a

an

ann

zan

zann

n

n

n

n

n

n

n

n

n

n








































1

1)1(1

1)1()1(

)1)1((1

)1)1()(1(

2

2

2

1

2

1









 

holds for some a, 10  a . But these inequalities are equivalent to (i) and (ii) being satisfied. 

The proof is completed. 

When 0  we may choose the real number a in Theorem 7, so that 

(7.1).      )1/()1)1()((/]1)1[( ananaan    

holds  for 2n ,  

which means that condition (ii) implies condition (i). Choosing the smallest  value of a, it leads to the 

following corollary which states 

8. Corollary: The function g is in K if           







2

2 ,1)]1()1([
n

n aaanan   

where    2/)45(2 2 a  when 10    and /14/52/3 a  when .1  Equality holds 

for ).2)(1/()1()( 2 azazzf    

Remark: The special case 1  in Theorem 2 and  

Theorem 6 reduces to the sufficient condition (1.2) for f to be in  )),((* qpS   and  )),((
*

1 qpS   

respectively, and to the well known sufficient condition for convexity, ,1
2

2 


n

nan  in Corollary 3 of the 

Theorem 7. 

When ,0  in (7.1) need not hold for all n. In fact the right side of (1.3) vanishes when ).1/(1  n  For 

2
1  we can still find a expression in which, for some a, inequality (7.1) holds for 3n  but not for n=2. 

This leads to the following Corollary which states 

9. Corollary:  The function g is in K for 
2
1  if   

,1)1/(]1)1()[()/)1((
3

2  




ananaaa
n

  

where      
 

.13/2

,1),1(2/415812 2









a  

By above theorem we have the following corollary 

10. Corollary:  The function )1/()(
1







n

n

n zbzzf  is in K if 
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





2

1 .1)13)(1(4
n

nbnnb  

Proof: By Putting 1 , 
3
2a  and 1 nn ba , p=1, q=0  in Corollary 9 we get the proof. 

11. Theorem: 

 (i) The function f is in  )),((* qpS   if and only if ,1)),(1(0))),,(1(1(*  qpqpSg   and 

)),((S  * qpg   if and only if ),/)),(1(1(*  qpSf  ;1/)),(1(   qp  

(ii) The function f is in  )),((
*

1 qpS   if and only if ,1)),(1())),,(1(1(
*

1  qpqpSg   and 

)),((S  
*

1 qpg   

if and only if ),/)),(1(1(
*

1  qpSf  .1/)),(1(   qp  

Proof: The first result follows from the identity )1)/((1/  ffzggz   and the second follows from the 

identity .1)/(1)/(  ffzggz   

By the above theorem we have the following corollary 

12. Corollary:  For  ,10    )),((S  * qpg   whenever )),((S  * qpf   and for ,1  

)),((S  
*

1 qpg   whenever )),((S  
*

1 qpf  . 

The coefficient bounds on f in )),((S* qp  and )),((S 
*

1 qp  lead to corresponding coefficient bounds on g. 

Also by the above theorem we have the following corollary 

13. Corollary: If )),((S  * qpf  ,   ,1),(10  qp  and 





2

,)(
n

n

n zbzzg  then  

)!1/())],(1(2)2[(
2

 
nqpkb

n

kn  . Equality holds for ,)/)(()( 00

zzfzzg   where  

.)1/()( )),(1(2

0

qpzzzf   

Proof: The function )(0 zf  is to maximize the coefficients of functions in )),((S* qp , 1),(0  qp . 

By Putting p=1, q=0 in Theorem 11 we have the following Corollary 

14. Corollary:  If )(S  * f ,   ,110    and 





2

,)(
n

n

n zbzzg  then  

)!1/()]1(2)2[(
2

 
nkb

n

kn  . Equality holds for ,)/)(()( 00

zzfzzg   where  

.)1/()( )1(2

0

 zzzf  

Proof: The function )(0 zf  is to maximize the  coefficients of functions in )(S*  , 10  . 

By the above theorem we have the following corollary 

15. Corollary:  If )),((S  *

1 qpf  ,   ,1),(1  qp  and 





2

,)(
n

n

n zbzzg  then 

 ).1/()),(1(  nqpbn  . Equality holds for ,)/)(()( zzfzzg nn   where  

)).1/()),(1exp(()( 1   nzqpzzf n

n   

Proof:  In the function )(zf n  was shown to maximize the nth coefficient for functions in  )),((S
*

1 qp , 

1),(0  qp . 

In the previous corollaries the extremal f in  )),((S* qp  and  )),((S
*

1 qp  was transformed into g that was 

extremal in ))),(1(1(S* qp   and ))),(1(1(S
*

1 qp  , respectively. This made the determination of 
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coefficient bounds on g straight forward. We now consider a special subclass of  )),((S
*

1 qp  for which this 

is not the case. Since  )),(()),((T 1
** qpSqp   , it follows from Theorem 8 if )),((* qpTf   then 

  .1),(1))),,(1(1(*

1  qpqpSg   The extremal  functions ng  for the coefficients, however, 

were not associated with corresponding functions )),((* qpTf  . To determine such coefficient bounds.  

we need the Lemma 16 . 

16. Lemma: If 


















22

11
n

n

n

n

n

n zbza



 is analytic in a neighborhood of the origin   real, then 

).1;,,.........1,0()]1/()1([
0

011 


 
k

i

jjkk bkbakjb   

17. Theorem: If 





2

* ,1)),(1()),,(()(
n

n

n qpqpTzazzf  and  







2

,)/)(()(
n

n

n zbzzzfzzg   then )),(/()),(1( qpnqpbn   .  

Equality holds for ,)/)(()( zzfzzg nn   where )).,(/()),(1()( qpnzqpzzf n

n    

 

Proof: By the Lemma 7.16, 22 ab   and 

(17.1).           




 
1

1

.1111 ]/)1([
k

j

jjkkk bakjab   

From (1.2) we may get )),(/()),(1( qpkqpa kk    with 





2

1
k

k  and write (17.1) as 






 
1

1

1 )]/)1(([)),(1/(),(1((
k

j

kk kjqpkqpb   

.))),(1/()),(1(( 11   jjk bqpjkqp    It suffices to show that 1kb  is uniquely maximized when 

,11 k  which is true if  

(17.2)      ,
),(1

),(1)1(

),(1

),(1
1

























jb

qpjk

qp

k

j

qpk

qp









  

                                                                         .11  kj  

Since )),(2/()),(1()),(2/()),(1(22 qpqpqpqpb   , 

We may assume that  

(17.3)  )),(/()),(1( qpjqpbj      for j=1,2,………,k.  

Note that 

(17.4) 
)),(1(

)),(1()()()1(

qpk

qpjjk

k

jjk

k

j















  

)),(1(

),(

qpk

qpk








  

Substituting the upper bounds of (17.3) and (17.4) into the right side of (17.2) we get 

(17.5) 












),(1

),(1

qpk

qp




  
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










































),(1

)),(1(

),(1

),(1

)),(1(

),(

qpj

qp

qpjk

qp

qpk

qpk












 

Since the right side of (17.5) is maximized when j=1, inequality (17.5) will be true if 

)),,(2(/1)),(1/(1 qpkqpk    which is valid for k>1.  

This completes the proof of the theorem. 

Remark: If 10   , then 







































 















 ___)!2/)1((11)(

2

2

1

2

1

2

1

n

n

n

n

n

n

n

n

n zazazzazzg 



      





2

.0,
n

n

n

n bzbz   

Thus, in addition to g being in ))),,(1(1(*

1 qpS    we have ))).,(1(1(* qpTg    

While 
 )/)(()( zzfzzg   usually it seems to share many of the nice properties of f, at least when f is in 

different subclasses of S, the same does not hold when the only restriction on f is that it is a member of S. In 

this case, g  need not be locally univalent. 

18. Theorem:  For every   real, .1,0  there exists an Sf   for which .)/)(()( Szzfzzg  
  

Proof:  We have 

0
)()1()(

)(

1








 












z

zfzzf

z

zf
zg




 

if  /)1()(/)(  zfzfz . Since ffz /  maps   onto the right half plane when ,)1/()( 2zzzf   the 

corresponding g  will not be univalent when 0  or 1 . Now we consider ).1,0(  For every fixed 

,z  the region of values of ))(/)(log( zfzfz   for Sf  is the disk )).1/()1log(( zzw   In particular, 

for any real number t we can find z  and Sf   for which itzfzfz  ))(/)(log( . Thus, 

 /)1())(/)(  tezfzfz  when  

)./)1log((  t  This completes the proof of the theorem. 
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