openacoss sumal International Journal of Emerging Trends in Science and Technology
IC Value: 76.89 (Index Copernicus) Impact Factor: 2.838 DOI: https://dx.doi.org/10.18535/ijetst/v3i11.09

Relation Ship between Classes of Univalent Functions

Author
Dr M.Aparna

Sr. Asst. Prof of Mathematics

Abstract

In this paper we investigated the relationship between f and $g(z)=g_{\gamma}(z)=z(f(z) / z)^{\gamma}$, We find sufficient conditions on f for g to be in $S^{*}(\alpha(p, q)), S_{1}^{*}(\alpha(p, q))$ or K. The sufficient conditions found by Reade Silverman, and Todorov.

Keywords: Univalent Function, Starlike Function, convex Function, Analytic Function.

1. INTRODUCTION

A function

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

is said to be in the family S if it is analytic and univalent in the unit disk $\Delta=\{z \mid<1\}$. The subfamily of functions starlike of order $\alpha(p, q)$, denoted by $S^{*}(\alpha(p, q))$ consists of functions f for which $\operatorname{Re}\left(z f^{\prime} / f\right) \geq \alpha(p, q), \quad 0 \leq \alpha(p, q), \leq 1, \quad$ for $z \in \Delta$. We further denoted by $S_{1}{ }^{*}(\alpha(\mathrm{p}, \mathrm{q}))$, the subfamily of $S^{*}(\alpha(p, q))$ consisting of functions f for which $\left.\left|\left(z f^{\prime} / f\right)-1\right| \leq 1-\alpha(p, q)\right), 0 \leq \alpha(p, q) \leq 1, \quad$ for $z \in \Delta$. It is known as a sufficient condition, for f to be in $S_{1}{ }^{*}(\alpha(p, q))$ is

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-\alpha(p, q))\left|a_{n}\right| \leq 1-\alpha(p, q) \tag{1.2}
\end{equation*}
$$

and this condition is necessary if f is of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0 \tag{1.3}
\end{equation*}
$$

The subfamily of $S^{*}(\alpha(p, q))$ consisting of functions of the form (1.3) and is denoted by $T^{*}(\alpha(p, q))$ $\left(\subset S^{*}{ }_{1}(\alpha(p, q))\right)$. Finally, a function f of the form .1.1) is said to be in K , if the family of convex functions $\operatorname{Re}\left(1+z f^{\prime \prime} / f^{\prime}\right) \geq 0 \quad$ for $z \in \Delta$.

In this paper we investigated the relationship between f and

$$
\begin{equation*}
g(z)=g_{\gamma}(z)=z(f(z) / z)^{\gamma} \tag{1.4}
\end{equation*}
$$

where γ is real.
When f is in S or in one of the above subclasses. In Theorem 2, We find sufficient conditions on f for g to be in $S^{*}(\alpha(p, q)), \quad S_{1}^{*}(\alpha(p, q))$ or K. The sufficient conditions found by Reade Silverman, and Todorov for functions of the form $z /\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right)$ to be in $S^{*}(\alpha(p, q))$ or K follows from $\gamma=-1$ in (1.4). In

Theorem 11 we find necessary and sufficient conditions for g to be in $S^{*}(\alpha(p, q)), S_{1}^{*}(\alpha(p, q))$ or $T^{*}(\alpha(p, q))$ in terms of the corresponding f . This leads to the coefficient bounds on g . In Theorem 18, we show that $f \in S$ implies $g \in S$ only for $\gamma=0,1$.
In this chapter we have assumed unless otherwise stated, that f is of the form (1.1) with corresponding to g is of the form (1.4), γ is real. Note that the trivial case $\gamma=0$, where $\mathrm{g}(\mathrm{z})=\mathrm{z}$ for any f .
2. Theorem: The function g is in $S^{*}(\alpha(p, q))$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}|\gamma|(n-1)+|\gamma(n-1)+2(1-\alpha(p, q))|\left|a_{n}\right| \leq 2(1-\alpha(p, q)) . \tag{2.1}
\end{equation*}
$$

Proof: Let $p(z)=z g^{\prime}(z) / g(z)=1+\gamma\left(\left(z f^{\prime}(z) / f(z)\right)-1\right)$ and

$$
q(z)=[1-(p(z)-\alpha(p, q)) /(1-\alpha(p, q)] /[1+(p(z)-\alpha(p, q)) /(1-\alpha(p, q))] .
$$

Then $\operatorname{Re} p(z) \geq \alpha(p, q)$ for $z \in \Delta$ if and only if $|q(z)| \leq 1$. But

$$
\begin{gathered}
q(z)=\left|\frac{-\gamma\left(\left(z f^{\prime} / f\right)-1\right)}{2(1-\alpha(p, q))+\gamma\left(\left(z f^{\prime} / f\right)-1\right)}\right| \\
=\left|\frac{-\gamma \sum_{n=2}^{\infty}(n-1) a_{n} z^{n-1}}{2(1-\alpha(p, q))+\sum_{n=2}^{\infty}\left[\gamma(n-1)+2(1-\alpha(p, q)) a_{n}\right] z^{n-1}}\right| \\
\leq\left|\frac{\sum_{n=2}^{\infty}|\gamma|(n-1)\left|a_{n}\right|}{2(1-\alpha(p, q))-\sum_{n=2}^{\infty}|\gamma|(n-1)+2(1-\alpha(p, q))\left|a_{n}\right|}\right|
\end{gathered}
$$

Now from (2.1) is equivalent to this last expression being bounded above by (1.1).
The proof is completed.
The conclusion of Theorem 2 split into three cases, which are in the following corollary
3. Corollary: The function g is in $S^{*}(\alpha(p, q))$ if

$$
\begin{aligned}
& \text { (i) } \sum_{n=2}^{\infty}[\gamma(n-1)+(1-\alpha(p, q))]\left|a_{n}\right| \leq 1-\alpha(p, q), \quad \gamma>0, \\
& \text { (ii) } \sum_{n=2}^{\infty}[|\gamma|(n-1)-(1-\alpha(p, q))]\left|a_{n}\right| \leq 1-\alpha(p, q), \gamma \leq-2(1-\alpha(p, q)), \\
& \text { (iii) } \sum_{n=n_{0}+1}^{\infty}\left[|\gamma|(n-1)-(1-\alpha(p, q))\left|a_{n}\right| \leq 1-\alpha(p, q)\left(1-\sum_{n=2}^{n_{0}}\left|a_{n}\right|\right),\right. \\
& -2(1-\alpha(p, q))<\gamma<0,
\end{aligned}
$$

where n_{0} is smallest integer for which $n_{0} \geq 2(1-\alpha(p, q)) /|\gamma|$. Equality holds when $f(z)=z+(1-\alpha(p, q)) z^{n} /[\gamma \mid(n-1)+(1-\alpha(p q))]$ for $n \geq 2$ in the first two cases and for $n \geq n_{0}+1$ in the third case.
By the above theorem we have the following corollary
4. Corollary: The function $f(z)=z /\left(1+\sum_{n=2}^{\infty} b_{n} z^{n}\right)$ is in $S^{*}(\alpha(p, q)), 0 \leq \alpha(p, q) \leq 1$, if $\sum_{n=2}^{\infty}(n-1+\alpha(p, q))\left|b_{n}\right| \leq \begin{array}{ll}(1-\alpha(p, q))-(1-\alpha(p, q))\left|b_{1}\right|, & 0 \leq \alpha(p, q) \leq \frac{1}{2}, \\ (1-\alpha(p, q))-\alpha(p, q)\left|b_{1}\right|, & \frac{1}{2} \leq \alpha(p, q) \leq 1 .\end{array}$
Proof: By Putting $\gamma=-1$ and $a_{n}=b_{n}$ in Corollary 3 we get the proof of this corollary. By putting $\mathrm{p}=1, \mathrm{q}=0$ in the Theorem 2 we have the following corollary
5. Corollary: The function $f(z)=z /\left(1+\sum_{n=2}^{\infty} b_{n} z^{n}\right)$ is in $S^{*}(\alpha), 0 \leq \alpha \leq 1$, if

$$
\sum_{n=2}^{\infty}(n-1+\alpha)\left|b_{n}\right| \leq \begin{array}{ll}
(1-\alpha)-(1-\alpha)\left|b_{1}\right|, & 0 \leq \alpha \leq \frac{1}{2} \\
(1-\alpha)-\alpha\left|b_{1}\right|, & \frac{1}{2} \leq \alpha \leq 1
\end{array}
$$

Proof: By Putting $\gamma=-1, a_{n}=b_{n}, \mathrm{p}=1, \mathrm{q}=0$ in Corollary 3 we get the proof.
6. Theorem: The function g is in $S_{1}{ }^{*}(\alpha(p, q))$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[|\gamma|(n-1)+(1-\alpha(p, q))]\left|a_{n}\right| \leq 1-\alpha(p, q) \tag{6.1}
\end{equation*}
$$

which is equal to
$f(z)=z+(1-\alpha(p, q)) z^{n} /[\gamma \mid(n-1)+(1-\alpha(p q))], \quad n \geq 2$.

Proof: We have

$$
\begin{aligned}
& \left|\frac{z g^{\prime}}{g}-1\right|=\left|\gamma\left(\frac{z f^{\prime}}{f}-1\right)\right|=\left|\frac{\sum_{n=2}^{\infty} \gamma(n-1) a_{n} z^{n-1}}{1+\sum_{n=2}^{\infty} a_{n} z^{n-1}}\right| \\
& \quad \leq\left|\frac{|\gamma| \sum_{n=2}^{\infty}(n-1)\left|a_{n}\right|}{1-\sum_{n=2}^{\infty}\left|a_{n}\right|}\right| \leq 1-\alpha(p, q)
\end{aligned}
$$

if and only if (6.1) holds.
Remark: Since $S_{1}{ }^{*}(\alpha(p, q)) \subset S^{*}(\alpha(p, q))$. The special case $\gamma>0$ in Theorem 2 is a consequence of Theorem 6.
7. Theorem: The function g is in K if for some $\mathrm{a}, 0 \leq a \leq 1$,

$$
\begin{equation*}
\sum_{n=2}^{\infty}[|\gamma-1|(n-1)+a]\left|a_{n}\right| \leq a \quad \text { and } \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-a)|\gamma(n-1)+1|\left|a_{n}\right| \leq 1-a . \tag{ii}
\end{equation*}
$$

Proof: Write

$$
\begin{aligned}
& r(z)=1=z g^{\prime \prime}(z) / g^{\prime}(z) \\
& =1+\frac{(\gamma-1) \sum_{n=2}^{\infty}(n-1) a_{n} z^{n-1}}{1+\sum_{n=2}^{\infty} a_{n} z^{n-1}}+\frac{\sum_{n=2}^{\infty}(n-1)(\gamma(n-1)+1) a_{n} z^{n-1}}{1+\sum_{n=2}^{\infty}[\gamma(n-1)+1] a_{n} z^{n-1}}
\end{aligned}
$$

A sufficient condition for $\operatorname{Re} r(z) \geq 0 \quad$ in Δ is

$$
\left|\frac{\sum_{n=2}^{\infty}(\gamma-1)(n-1) a_{n} z^{n-1}}{1+\sum_{n=2}^{\infty} a_{n} z^{n-1}}\right| \leq \frac{\sum_{n=2}^{\infty}|\gamma-1|(n-1)\left|a_{n}\right|}{1-\sum_{n=2}^{\infty}\left|a_{n}\right|} \leq a
$$

and the inequality

$$
\left|\frac{\sum_{n=2}^{\infty}(n-1)(\gamma(n-1)+1) a_{n} z^{n-1}}{1+\sum_{n=2}^{\infty}(\gamma(n-1)+1) a_{n} z^{n-1}}\right| \leq \frac{\sum_{n=2}^{\infty}(n-1)|\gamma(n-1)+1|\left|a_{n}\right|}{1-\sum_{n=2}^{\infty}|\gamma(n-1)+1|\left|a_{n}\right|} \leq 1-a
$$

holds for some $\mathrm{a}, 0 \leq a \leq 1$. But these inequalities are equivalent to (i) and (ii) being satisfied.
The proof is completed.
When $\gamma>0$ we may choose the real number a in Theorem 7, so that
(7.1). $\quad[(n-1)|\gamma-1|+a] / a \leq(n-a)(\gamma(n-1)+1) /(1-a)$
holds for $n \geq 2$,
which means that condition (ii) implies condition (i). Choosing the smallest value of a, it leads to the following corollary which states
8. Corollary: The function g is in K if

$$
\sum_{n=2}^{\infty}\left[\gamma n^{2}+(1-\gamma-\gamma a) n-a(1-\gamma)\right]\left|a_{n}\right| \leq 1-a,
$$

where $a=\left(2+\gamma-\sqrt{\left(5 \gamma^{2}+4\right)}\right) / 2 \gamma$ when $0<\gamma \leq 1$ and $a=3 / 2-\sqrt{5 / 4+1 / \gamma}$ when $\gamma>1$. Equality holds for $f(z)=z+(1-a) z^{2} /(\gamma+1)(2-a)$.
Remark: The special case $\gamma=1$ in Theorem 2 and
Theorem 6 reduces to the sufficient condition (1.2) for f to be in $S^{*}(\alpha(p, q))$ and $S_{1}{ }^{*}(\alpha(p, q))$ respectively, and to the well known sufficient condition for convexity, $\sum_{n=2}^{\infty} n^{2}\left|a_{n}\right| \leq 1$, in Corollary 3 of the

Theorem 7.

When $\gamma<0$, in (7.1) need not hold for all n . In fact the right side of (1.3) vanishes when $\gamma=-1 /(n-1)$. For $\gamma<-\frac{1}{2}$ we can still find a expression in which, for some a, inequality (7.1) holds for $n \geq 3$ but not for $\mathrm{n}=2$. This leads to the following Corollary which states
9. Corollary: The function g is in K for $\gamma<-\frac{1}{2}$ if

$$
\begin{aligned}
& \qquad((1+|\gamma|+a) / a)\left|a_{2}\right|+\sum_{n=3}^{\infty}(n-a)[|\gamma|(n-1)-1] /(1-a) \leq 1, \\
& \text { where } \left.\quad \begin{array}{rl}
a=\left(\sqrt{12 \gamma^{2}+8 \gamma+5}+1+4 \gamma\right) / 2(1+\gamma), & \gamma \neq-1, \\
2 / 3 & \gamma
\end{array}\right)
\end{aligned}
$$

By above theorem we have the following corollary
10. Corollary: The function $f(z)=z /\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right)$ is in K if

$$
4\left|b_{1}\right|+\sum_{n=2}^{\infty}(n-1)(3 n+1)\left|b_{n}\right| \leq 1
$$

Proof: By Putting $\gamma=-1, a=\frac{2}{3}$ and $a_{n}=b_{n-1}, \mathrm{p}=1, \mathrm{q}=0$ in Corollary 9 we get the proof.

11. Theorem:

(i) The function f is in $S^{*}(\alpha(p, q))$ if and only if $g \in S^{*}(1-\gamma(1-\alpha(p, q))), \quad 0 \leq \gamma(1-\alpha(p, q)) \leq 1$, and $g \in \mathrm{~S}^{*}(\alpha(p, q))$ if and only if $f \in S^{*}(1-(1-\alpha(p, q)) / \gamma), \quad(1-\alpha(p, q)) / \gamma \leq 1$;
(ii) The function f is in $S_{1}{ }^{*}(\alpha(p, q))$ if and only if $g \in S_{1}{ }^{*}(1-|\gamma|(1-\alpha(p, q))), \quad|\gamma|(1-\alpha(p, q)) \leq 1$, and $g \in \mathrm{~S}_{1}{ }^{*}(\alpha(p, q))$
if and only if $f \in S_{1}{ }^{*}(1-(1-\alpha(p, q)) /|\gamma|), \quad(1-\alpha(p, q)) /|\gamma| \leq 1$.
Proof: The first result follows from the identity $z g^{\prime} / g=1+\gamma\left(\left(z f^{\prime} / f\right)-1\right)$ and the second follows from the identity $\left|\left(z g^{\prime} / g\right)-1\right|=|\gamma|\left(z f^{\prime} / f\right)-1 \mid$.
By the above theorem we have the following corollary
12. Corollary: For $0 \leq \gamma \leq 1, g \in \mathrm{~S}^{*}(\alpha(p, q))$ whenever $f \in \mathrm{~S}^{*}(\alpha(p, q))$ and for $|\gamma| \leq 1$,
$g \in \mathrm{~S}_{1}{ }^{*}(\alpha(p, q))$ whenever $f \in \mathrm{~S}_{1}{ }^{*}(\alpha(p, q))$.
The coefficient bounds on f in $\mathrm{S}^{*}(\alpha(p, q))$ and $\mathrm{S}_{1}{ }^{*}(\alpha(p, q))$ lead to corresponding coefficient bounds on g . Also by the above theorem we have the following corollary
13. Corollary: If $f \in \mathrm{~S}^{*}(\alpha(p, q)), 0 \leq \gamma(1-\alpha(p, q)) \leq 1$, and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, then
$\left|b_{n}\right|=\prod_{k=2}^{n}[(k-2)+2 \gamma(1-\alpha(p, q))] /(n-1)!$. Equality holds for $g_{0}(z)=z\left(f_{0}(z) / z\right)^{\gamma}$, where $f_{0}(z)=z /(1-z)^{2(1-\alpha(p, q))}$.
Proof: The function $f_{0}(z)$ is to maximize the coefficients of functions in $\mathrm{S}^{*}(\alpha(p, q)), 0 \leq \alpha(p, q) \leq 1$. By Putting $\mathrm{p}=1, \mathrm{q}=0$ in Theorem 11 we have the following Corollary
14. Corollary: If $f \in \mathrm{~S}^{*}(\alpha), 0 \leq \gamma(1-\alpha) \leq 1$, and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, then
$\left|b_{n}\right|=\prod_{k=2}^{n}[(k-2)+2 \gamma(1-\alpha)] /(n-1)!$. Equality holds for $g_{0}(z)=z\left(f_{0}(z) / z\right)^{\gamma}$, where $f_{0}(z)=z /(1-z)^{2(1-\alpha)}$.
Proof: The function $f_{0}(z)$ is to maximize the coefficients of functions in $\mathrm{S}^{*}(\alpha), 0 \leq \alpha \leq 1$.
By the above theorem we have the following corollary
15. Corollary: If $f \in \mathrm{~S}_{1}^{*}(\alpha(p, q)),|\gamma|(1-\alpha(p, q)) \leq 1$, and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, then
$\left|b_{n}\right| \leq \mid \gamma(1-\alpha(p, q)) /(n-1) .$. Equality holds for $g_{n}(z)=z\left(f_{n}(z) / z\right)^{\gamma}$, where
$f_{n}(z)=z \exp \left((1-\alpha(p, q)) z^{n-1} /(n-1)\right)$.
Proof: In the function $f_{n}(z)$ was shown to maximize the nth coefficient for functions in $\mathrm{S}_{1}{ }^{*}(\alpha(p, q))$, $0 \leq \alpha(p, q) \leq 1$.
In the previous corollaries the extremal f in $\mathrm{S}^{*}(\alpha(p, q))$ and $\mathrm{S}_{1}{ }^{*}(\alpha(p, q))$ was transformed into g that was extremal in $\mathrm{S}^{*}(1-\gamma(1-\alpha(p, q)))$ and $\mathrm{S}_{1}{ }^{*}(1-|\gamma|(1-\alpha(p, q)))$, respectively. This made the determination of
coefficient bounds on g straight forward. We now consider a special subclass of $\mathrm{S}_{1}{ }^{*}(\alpha(p, q))$ for which this is not the case. Since $\mathrm{T}^{*}(\alpha(p, q)) \subset S^{*}{ }_{1}(\alpha(p, q))$, it follows from Theorem 8 if $f \in T^{*}(\alpha(p, q))$ then $g \in S_{1}^{*}(1-|\gamma|(1-\alpha(p, q))), \quad \mid \gamma(1-\alpha(p, q)) \leq 1$. The extremal functions g_{n} for the coefficients, however, were not associated with corresponding functions $f \in T^{*}(\alpha(p, q))$. To determine such coefficient bounds. we need the Lemma 16 .
16. Lemma: If $\left(1+\sum_{n=2}^{\infty} a_{n} z^{n}\right)^{\gamma}=1+\sum_{n=2}^{\infty} b_{n} z^{n}$ is analytic in a neighborhood of the origin γ real, then $b_{k+1}=\sum_{i=0}^{k}[\gamma-(\gamma+1) j /(k+1)] a_{k+1-j} b_{j} \quad\left(k=0,1, \ldots \ldots \ldots . ., ; b_{0}=1\right)$.
17. Theorem: If $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} \in T^{*}(\alpha(p, q)), \quad|\gamma|(1-\alpha(p, q)) \leq 1$, and $g(z)=z(f(z) / z)^{\gamma}=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, then $\left|b_{n}\right| \leq|\gamma|(1-\alpha(p, q)) /(n-\alpha(p, q))$.
Equality holds for $g_{n}(z)=z\left(f_{n}(z) / z\right)^{\gamma}$, where $f_{n}(z)=z-(1-\alpha(p, q)) z^{n} /(n-\alpha(p, q))$.

Proof: By the Lemma 7.16, $b_{2}=\gamma a_{2}$ and

$$
\begin{equation*}
b_{k+1}=\gamma a_{k+1}+\sum_{j=1}^{k-1}[\gamma-(\gamma-1) j / k] a_{k+1-j} b_{j+1} . \tag{17.1}
\end{equation*}
$$

From (1.2) we may get $a_{k}=\lambda_{k}(1-\alpha(p, q)) /(k-\alpha(p, q))$ with $\sum_{k=2}^{\infty} \lambda_{k} \leq 1$ and write (17.1) as $b_{k+1}=\gamma \lambda_{k}\left(\left(1-\alpha(p, q) /(k+1-\alpha(p, q))+\sum_{j=1}^{k-1}[\gamma-((\gamma+1) j / k)]\right.\right.$
$\lambda_{k+1-j}((1-\alpha(p, q)) /(k+1-j-\alpha(p, q))) b_{j+1}$. It suffices to show that $\left|b_{k+1}\right|$ is uniquely maximized when $\lambda_{k+1}=1$, which is true if

$$
\begin{gather*}
|\gamma|\left(\frac{1-\alpha(p, q)}{k+1-\alpha(p, q)}\right)>\left|\gamma-\frac{(\gamma+1) j}{k}\right|\left(\frac{1-\alpha(p, q)}{k+1-j-\alpha(p, q)}\right)\left|b_{j+1}\right|, \tag{17.2}\\
1 \leq j \leq k-1 .
\end{gather*}
$$

Since $\left|b_{2}\right|=\gamma \lambda_{2}(1-\alpha(p, q)) /(2-\alpha(p, q)) \leq|\lambda|(1-\alpha(p, q)) /(2-\alpha(p, q))$,
We may assume that
(17.3) $\quad\left|b_{j}\right| \leq|\lambda|(1-\alpha(p, q)) /(j-\alpha(p, q)) \quad$ for $\mathrm{j}=1,2, \ldots \ldots \ldots, \mathrm{k}$

Note that

$$
\begin{align*}
\left|\gamma-\frac{(\gamma+1) j \mid}{k}\right| \leq & \frac{|\gamma|(k-j)+j}{k} \leq \frac{(k-j)+j(1-\alpha(p, q))}{k(1-\alpha(p, q))} \tag{17.4}\\
& \leq \frac{k-\alpha(p, q)}{k(1-\alpha(p, q))}
\end{align*}
$$

Substituting the upper bounds of (17.3) and (17.4) into the right side of (17.2) we get

$$
\begin{equation*}
|\gamma|\left(\frac{1-\alpha(p, q)}{k+1-\alpha(p, q)}\right) \tag{17.5}
\end{equation*}
$$

$$
>\left(\frac{k-\alpha(p, q)}{k(1-\alpha(p, q))}\right)\left(\frac{1-\alpha(p, q)}{k+1-j-\alpha(p, q)}\right)\left(\frac{|\gamma|(1-\alpha(p, q))}{j+1-\alpha(p, q)}\right)
$$

Since the right side of (17.5) is maximized when $\mathrm{j}=1$, inequality (17.5) will be true if $1 /(k+1-\alpha(p, q))>1 / k(2-\alpha(p, q))$, which is valid for $\mathrm{k}>1$.
This completes the proof of the theorem.
Remark: If $0 \leq \gamma \leq 1$, then $g(z)=z\left(1-\sum_{n=2}^{\infty} a_{n} z^{n-1}\right)^{\gamma}=z\left[1-\gamma\left(\sum_{n=2}^{\infty} a_{n} z^{n-1}\right)-(\gamma(1-\gamma) / 2!)\left(\sum_{n=2}^{\infty} a_{n} z^{n-1}\right)^{2}---\right]$

$$
=z-\sum_{n=2}^{\infty} b_{n} z^{n}, \quad b_{n} \geq 0
$$

Thus, in addition to g being in $S_{1}^{*}(1-\gamma(1-\alpha(p, q)))$, we have $g \in T^{*}(1-\gamma(1-\alpha(p, q)))$.
While $g_{\gamma}(z)=z(f(z) / z)^{\gamma}$ usually it seems to share many of the nice properties of f , at least when f is in different subclasses of S, the same does not hold when the only restriction on f is that it is a member of S. In this case, g_{γ} need not be locally univalent.
18. Theorem: For every γ real, $\gamma \neq 0,1$. there exists an $f \in S$ for which $g_{\gamma}(z)=z(f(z) / z)^{\gamma} \notin S$.

Proof: We have

$$
g^{\prime}(z)=\left(\frac{f(z)}{z}\right)^{\gamma-1}\left[\frac{(1-\gamma) f(z)+\gamma z f^{\prime} z}{z}\right]=0
$$

if $z f^{\prime}(z) / f(z)=(\gamma-1) / \gamma$. Since $z f^{\prime} / f$ maps Δ onto the right half plane when $f(z)=z /(1-z)^{2}$, the corresponding g_{γ} will not be univalent when $\gamma<0$ or $\gamma>1$. Now we consider $\gamma \in(0,1)$. For every fixed $z \in \Delta$, the region of values of $\log \left(z f^{\prime}(z) / f(z)\right)$ for $f \in S$ is the disk $|w| \leq \log ((1+|z|) /(1-|z|))$. In particular, for any real number t we can find $z \in \Delta$ and $f \in S$ for which $\log \left(z f^{\prime}(z) / f(z)\right)=t+\pi i$. Thus, $\left.z f^{\prime}(z) / f(z)\right)=-e^{t}=(\gamma-1) / \gamma$ when $t=\log ((\gamma-1) / \gamma)$. This completes the proof of the theorem.

REFERENCES

1. Duren P.L.: Univalent Functions, Springer-Verlag Berlin Heidelberg and Tokyo,1983.
2. J.S.Jack: "Functions starlike and convex of order α ". J.London Math Soc. 3,(1971), 469-474.
3. Conway J.B, Functions of complex variables, Narosa Publishing House, 1985.
4. D.R.Wilken and J.Feng, "A remark on convex and starlike functions", Proc.Amer.Math. Soc, (1979), 287-290.
5. V.Ravichandran, C.Selvaraj and R.Rajalaksmi, "Sufficient conditions for starlike functions of order α ", and Appl.Math, 1443-5756.
6. Herb Silverman, "Convex and starlike criteria", Internat.J.Math. \& Math. Sci,Vol. 22, No.1(1999) ,75-79.
7. H.Silverman, "Univalent functions with negative coefficients", Proc. Amer. Math. Soc. 51(1975), 109-116.
