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1. Introduction 

Let kM....,,M,M 21 be k-Hsu-structure manifolds each of class C and of dimension kn....,,n,n 21  

respectively. Suppose ,mM....,,mM,mM kk )()()( 2211 be their tangent spaces at 

,Mm....,,Mm,Mm kk 2211 then the product space ,mM....mMmM kk )()()( 2211  contains vector fields of 

the form ,X....,,X,X k )( 21 where .mMX,....,mMX,mMX kkk )()()( 222111   Vector addition and scalar 

multiplication on above product space are defined as follows:  

(1.1) )()()( 22112121 kkkk YX....,,YX,YXY....,,Y,YX....,,X,X   

(1.2) ),()( 2121 kk X....,,X,XX....,,X,X   

where ,mMY,X iiii )(  k....,,,i 21 and  is a scalar. 

Under these conditions the product space kk mM....mMmM )()()( 2211   forms a vector space. 

A linear transformation F on the product space is defined as 

(1.3) ),()( 221121 kkk X....,F,XF,XFX....,,X,XF   

where kF....,,F,F 21 are linear transformations on kk mM....,,mM,mM )()()( 2211 respectively. 

If kf....,,f,f 21 be C functions over the spaces kk mM....,,mM,mM )()()( 2211 respectively, we define the 

Abstract: Cartesian product of two manifolds has been defined and studied by Pandey[2]. In this paper we 

have taken Cartesian product of k-Hsu-Structure manifolds, where k is some finite integer, and studied 

some properties of curvature and Ricci tensor of such a product manifold. 
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C function kf....,,f,f 21 on the product space as 

(1.4) ).()()( 22112121 kkkk fX....,,fX,fXf....,,f,fX....,,X,X   

Let kD....,,D,D 21 be the connections on the manifolds k....,M,M,M 21 respectively. We define the operator D 

on the product space as 

(1.5) ).()()( 2221112121 kkXkXXkk YD....,,YD,YDY....,,Y,YX....,,X,XD   

Then D satisfies all four properties of a connection and thus it is a connection on the product manifold. 

 

2. Some Results 

Definition: Let there be defined on ,Vn  a vector valued linear function F of class C such that  

   nrIaF n
r  02  

where r is an integer and a is real or imaginary number. Then F is called Hsu-structure and nV is called the 

Hsu-structure manifold. 

Theorem 2.1: The product manifold kM....MM  21 admits a Hsu-structure if and only if the manifolds 

kM....,MM ,, 21 are Hsu-structure manifolds. 

Proof: Suppose kM....,MM ,, 21 are Hsu-structure manifolds. Thus there exist tensor fields kF....,FF ,, 21  

each of type (1, 1) on kM....,MM ,, 21 respectively satisfying 

(2.1) k....,,,i,XaXiF ni
r

i 21)(2   

where a is any complex number, not equal to zero. 

In view of equation (1.3) it follows that there exists a linear transformation F on kM....MM  21 ssatisfying 

(2.2) )....,,,()....,,,(
2

2

2

21

2

121
2

kkk XFXFXFXXXiF   

        )....,,,( 21 k
r XXXa  

Thus, the product manifold admits a Hsu-structure. 

Let us define a Riemannian metric g on the product manifold kM....MM  21 as 

(2.3) )(....)()())....,,,(),....,,,(( 2221112121 kkk
rrr

kk
r Y,XgaY,XgaY,XgaYYYXXXga   

where kg....,,g,g 21 are the Riemannian metrics over the manifolds kM....MM  21 respectively. 

If k....,,,  21 be vector fields and k....,,,  21 be 1-forms on the Hsu-structure manifolds 



 
 

Sahadat Ali, et al                         www.ijetst.in Page 5613 

IJETST- Vol.||04||Issue||08||Pages 5611-5615||August||ISSN 2348-9480 2017 

kM....,MM ,, 21 respectively, then a vector field  and a 1-form  on the product manifold  kM....,MM ,, 21  

is defined.  

We now prove the following results. 

Theorem 2.2: The product manifold kM....MM  21 admits generalized almost contact structure if and 

only if the manifolds kM....,MM ,, 21 possess the same structure. 

Proof: Let kM....,MM ,, 21 are generalized almost contact manifolds. Thus there exists tensor fields iF of 

type (1, 1) vector fields i and 1-form. k....,,,i,i 21 satisfying 

(2.4) iiii

r

ii XXaXF  )()(
2

  

For product manifold .M....MM k 21  

 )....,()....,,,(
2

2

2

21

2

121
2

kkk XF,XF,XFXXXF   

By the help of equation (2.4), takes the form 

),)()()(()....,()....,,,( k2221112121
2  kkk

r
k Xη....,,X,XX,X,XaXXXF  

 or  

(2.5) .XXaXF r  )()(2  

Hence the product manifold admits a generalized almost contact structure.  

Theorem 2.3: The product manifold kM....MM  21 admits a KH-structure if and only if the manifolds 

kM....,MM ,, 21 are KH-structure manifolds. 

Proof: Suppose kM....,MM ,, 21 are KH-structure manifolds. Thus 

  )()()()( 22221111 YFDYFD
XX

  

(2.6)    .......................  

     = ……………. 

     )()( kkkXk YFD  

     0  

As D is a connection on the product manifold, we have 

(2.7) )}....,,,({)....,,,()( 21)21(21)21( kkX....,,X,XkkX....,,X,X YYYFDYYYFD   

       )}....,,,({ 21)21( kkX....,,X,X YYYDF  

In view of equation (1.3) and equation (1.5), this takes the form  
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 )....,,,()....,,,()( 2211)21(21)21( kkkX....,,X,XkkX....,,X,X YFYFYFDYYYFD   

           )( 222111 kkXkXX
YD....,,YD,YDF  

        )( 22221111 kkkXkXX
YFD....,,YFD,YFD  

          )( 22221111 kkXkkXX
YDF....,,YDF,YDF  

        )()()()()()(( 22221111 kkkXkXX
YFD....,,YFD,YFD  

        0.    

Thus, the product manifold is KH-structure manifold. 

Theorem 2.4: The product manifold kM....MM  21 of Hsu-structure manifolds kM....,MM ,, 21 is almost 

Tachibana if and only if the manifolds kM....,MM ,, 21 are separately Tachibana manifolds. 

Proof: Let a Hsu-structure manifolds kM....,MM ,, 21 are almost Tachibana manifolds. Then 

(2.8) .k....,,,i,YFDYFD iiiYiiiiXi 210)()()()(   

 

3. Curvature and Ricci Tensor 

Let ),,( 21 kX....,XXX  and ),,( 21 kY....,YYY  be C vector fields on the product 

manifold kM....MM  21  and ),,( 21 kf....,ffF  be a C function. Then 

(3.1) ),,()],,(),,,[( 212121 kkk f....,ffY....,YYX....,XX  

   ),,()},,(),,){(,,( 21212121 kkkk Y....,YYf....,ffY....,YYX....,XX   

   ). ],(, ],(, ],[( 222111 kkk fYX....,fYXfYX  

Suppose kiZYXK iiii  ...., 2, 1,),,,(  be the curvature tensors of the Hsu-structure manifolds 

kM....,MM ,, 21 respectively. If ),,( ZYXK be the curvature tensor of the product manifold 

.M....MM k 21 Then we have 

(3.2) )].,,(,....),,,(),,,([),,( 22221111 kkkk ZYXKZYXKZYXKZYXK   

If ),....,,( 21 kWWWW  be a vector field on the product manifold, then 

(3.3) )),(()( W,Z,Y,XKgW,Z,Y,XK   
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(3.4) ....)()()( 2222211111  W,Z,Y,XKW,Z,Y,XKW,Z,Y,XK )( kkkkk W,Z,Y,XK  

Thus, we have 

Theorem 3.1: The product of manifold .M....MM k 21 is of constant curvature if and only if 

Hsu-structure manifolds kM....,MM ,, 21 are separately of constant curvature.  

Theorem 3.2: The Ricci tensor of the product manifold .M....MM k 21 is the sum of the Ricci tensor of 

the Hsu-structure manifolds kM....,MM ,, 21  

Theorem 3.3: The product of manifold .M....MM k 21 is an Einstein space if and only if the 

Hsu-structure manifolds kM....,MM ,, 21 are separately Einstein space. 

Proof: Let the product manifold .M....MM k 21 be an Einstein space. thus 

(3.5) ),()( Y,XCgY,XRic   

where ,
n

K
C  K being the scalar curvature and n being the dimension of the product manifold. Then

 .k....,,,iY,XCgY,XRic iiiii 21       ),()(   

Therefore the manifolds kM....,MM ,, 21 are also Einstein spaces. 
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