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Abstract 

Systems based on quantum-dot nanostructures could be used as components for quantum information 

processing devices. One of the possible advantages of the use of quantum dots is that the parameters of the 

system may be changed, allowing the properties of semiconductor nanostructures to be tailored. The 

seemingly inexorable progress of technology appears to promise advanced engineering of quantum dot 

based structures, thus leading to the fabrication of coupled and scalable quantum dot systems. To use 

quantum dot devices for quantum computing necessitates the ability to generate and manipulate 

entanglement within these structures. Using Supersymmetric Quantum mechanics, isospectral Hamiltonian 

approach is utilized to calculate the information entropy of the isospectral potential which contains a free 

parameter. This free parameter can be adjusted to model the complex nanostructure materials and 

therefore to calculate their entanglement degree.  

Keywords: Information Entropy, nanostructure, Isospectral Hamiltonians. 

 

1. Introduction 

The quantum information theoretic concepts have 

found a continuously increasing importance in 

condensed matter physics, where they offer a new 

perspective to the structure of complex quantum 

many-body systems. In quantum dot systems this 

entanglement could be controlled through 

externally applied electro-magnetic fields or by 

varying the parameters of the nanostructure. Since 

the entanglement is considered a key ingredient 

for quantum information processes, so the 

availability of entanglement would be useful in 

designing these nanostructures. However it is 

practically almost impossible to exactly model 

complex nanostructures and precisely calculate 

their entanglement degree. Changing the 

confinement potential of quantum dot structures 

influences the spatial entanglement within the 

nanostructures [1-2]. Such a property could be 

exploited to design the nanostructures according 

to the level of entanglement needed for a specific 

application.  

Boltzmann-Shannon information entropy 

is a fundamental quantity, closely related to 

thermodynamical entropy, which measures the 

spread or extent of the single particle density. 
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According to Density Function theory, a many 

fermion system can be completely characterized 

by the single particle distribution density, which is 

denoted by ρ(r) in position space and ρ(p) in 

momentum space. The position and momentum 

space information entropies are given by the 

expression 

        ∫ ρ     ρ      

        ∫ ρ     ρ      

 

Information entropy plays a crucial role in a 

stronger formulation of the uncertainty relations. 

The information theoretic uncertainty relations 

were first conjectured by Everett and Hirschman 

in 1957 and proved by Bialynicki-Birula and 

Mycielski and independently by Beckner. From 

the general properties of Fourier transform, it was 

proved that for wave functions normalized to 

unity, S(pos) +S(mom) ≥ d(1+ln π), where d is the 

dimension. Though the S(pos) and S(mom) are 

individually unbounded, their sum is bounded 

from below. The total sum of information entropy 

in position space and momentum space is 

minimum for the ground state of harmonic 

oscillator. The physical meaning of the inequality 

is that an increase of S(mom) corresponds to a 

decrease of S(pos) and vice-versa, which indicates 

that a diffuse density distribution ρ(p) in 

momentum space is associated with a localized 

density distribution ρ(r) in configuration space[3-

12]. In this paper, we investigate the use of the 

position space information entropy as an indicator 

of the entanglement for nanostructure system.   

 

2. Isospectral Hamiltonian Approach  

The supersymmetric quantum mechanical 

techniques have been extensively used to study 

the various concepts in symmetry breaking. Using 

these concepts, the isospectral Hamiltonian 

method has been utilized in the generalization of 

the solutions for different systems [13-17]. The 

energy spectrum of potential is derived upon 

utilizing the relationship in eigenfunctions and the 

potential. The ground state eigenfunction is 

obtained and choosing its energy equal to zero, the 

Hamiltonian of the system can be factorized in 

terms of supersymmetric operators )(xWA
dx
d   

and 
)(† xWA

dx
d 

 
as AAH †

1  , where the 

superpotential W(x) is given as  

       )]([ln)( 0 xxW
dx

d  .                                                                                                    

(3) 

Consider the equation 

 
,†

1 nnnn AAH                                                                                                         

(4) 

      ),()(†

nnn AAAA    

               ).()(2 nnn AAH                                                                                                           

(5) 

Where 2H  is supersymmetric partner 

Hamiltonian of 1H
 corresponding to the 

eigenfunction nn A  . The different 

Hamiltonians are related as,   

,][ )1(

1

)1(

1

)2( 2

1





 nnn AE     

,][ )2(†)2()1(

1
2

1

nnn AE 


 
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The potentials corresponding to partner 

Hamiltonians are called supersymmetric partner 

potentials. These are related through the 

superpotential as  

.)()( 2

2,1
dx

dW
xWxV                                                                                                             

(6) 

Here, it is stated that corresponding to the partner 

potential )(2 xV , the original potential )(1 xV  does 

not have unique value. If, we consider the 

factorization for 2H  as †BB , where )(ˆ xWB
dx
d  , 

then, the Hamiltonian ††

2 BBAAH   but 

BBH †

1   is not equal to AA†  and it defines some 

another Hamiltonian. We have the relation,  

).(ˆ)(ˆ)( 2

2 xWxWxV                                                                                                      

(7) 

 For a general solution, we obtain  

.0)()()(2)(2  xxxWx                                                                                          

(8) 

 which has solution as    )(ln)( xIx
dx
d , 

where xdxxI
x  

)()( 2

0  and   is a constant. 

For the superpotential  

 .)(ln)()(ˆ  xI
dx

d
xWxW                                                                                          

(9) 

 The presence of a constant in these equations 

define a one-parameter set of isospectral 

potentials as  

)).)((ln(2)(),(ˆ
2

2

11   xI
dx

d
xVxV                                                                                 

(10) 

 The corresponding ground state eigenfunction is 

calculated as   

,
)(

)()1(
),(ˆ 0

0










xI

x
x                                                                                               

(11) 

 where )1,0(  . The isospectral eigenfunctions 

corresponding to excited state of the potential 

have been obtained after some calculations as,  

).()(

)(

)(1
)(),(ˆ

1

1

11

xxW
dx

d

xI

xI

E
xx

n

n

nn




































                                                                            

(12) 

  The one-parameter isospectral potentials and 

corresponding eigenfunctions derived in above 

equations have been used to calculate the 

information density of the nanostructure materials.  

3. Information Entropy of Isospectral 

Potential 

Using Supersymmetric Quantum mechanics, 

isospectral Hamiltonian approach can be utilized 

to calculate the information entropy of the 

isospectral potential which contains a free 

parameter. This free parameter can be adjusted to 

model the complex nanostructure materials and 

therefore precisely calculate their entanglement 

degree.  

The isospectral Hamiltonian approach is used to 

construct the isospectral Poschl-Teller potential 



 
 

Anil Kumar et al                                                    www.ijetst.in Page 5391 

IJETST- Vol.||04||Issue||08||Pages 5388-5394||August||ISSN 2348-9480 2017 

and the corresponding wave functions. The 

deformed wave functions are used to calculate the 

information entropy for the isospectral potential. 

For n-level potential, the one parameter 

isospectral ground state wave function is obtained 

as 

xSech

n

xwhere
dxx

x
x n

x


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),(ˆ
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(13) 

where  

  
    





 
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First excited state wave function in 

position space is given by 

xxSech
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 (14) 

And corresponding deformed excited 

state wave function is obtained using  

)()(
'1

)()(ˆ
1

1

11 xxW
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d

I

I
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we obtain 
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






























 xSech

n

n

n

xSech

n
xSechxSinhAxI

n
n

!)!32(

)!1(2

1232

1
)(

12
322

 

The information entropy in n-level 

Poschl-Teller potential for ground state 

as a function of   is solved as  
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(16) 

Similarly the information entropy for 

excited states can be obtained. The position 

space information entropy for 3n  is calculated 

using the isospectral wave functions. In the case 

of undeformed potential, it has values 0.606, 

1.106 and 1.640 for ground state, first excited 
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state and second excited state respectively but 

when it is evaluated using ),(ˆ
0  x , 

),(ˆ
1  x  and ),(ˆ

2  x , it is found that the 

information entropy content is reduced 

substantially with the deformation parameter. For 

1.0 , we have 52.0)3(

0 posS  and this 

value increases to 0.606 for large values of  . 

Similar results are also obtained for 
)3(

1 posS , but 

for 
)3(

2 posS , the information entropy content first 

increases from a smaller value and then decreases 

to the undeformed value for large deformation 

parameter value. The total information entropy for 

ground state and first excited state is plotted as a 

function of deformation parameter, which shows 

that the total entropy is reduced by choosing 

smaller values of  . 

We also computed the two parameter wave 

functions and calculated the information entropy 

content for different positive and negative values 

of deformation parameter 0  and 1 . The results 

are shown in Figure for ground state and first 

excited state respectively. For large values of 0  

and 
1 , the value of deformed information entropy 

approaches the undeformed value. The variation 

of double deformed information entropy in ground 

state with 0  is shown for large, intermediate and 

small values of 1 . In this case, the value of 

information entropy is reduced from 0.606 to 0.1 

or even less for smaller values of 0 . In first 

excited state, for small 1 , the value of 

information entropy increases with increase in 

0 , but it become constant below the 

undeformed value. For large 1 , the value of 

information entropy first decreases and then 

increases and becomes constant at the value of 

undeformed information entropy. 
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Figure 1: One parameter deformed ground 

state information entropy as a function of 

deformation parameter .  
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Figure 2: One parameter deformed first 

excited state information entropy as a 

function of deformation parameter.  
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Figure 3: Two parameter deformed 

ground state information entropy as a 

function of 0 for different (large, 

intermediate, and small), values of 1 .  

For solid line 1 =10.0 for broken line 1

=1.0 and for dotted l ine 1 =0.65 

Conclusion 

Using Supersymmetric Quantum mechanics, 

isospectral Hamiltonian approach is utilized to 

calculate the information entropy of the 

isospectral potential which contains a free 

parameter. This free parameter can be adjusted to 

model the complex nanostructure materials and 

therefore precisely calculate their entanglement 

degree.  
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