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Abstract 

A function f : V(D) → {−1, 1} is a signed total dominating  function (STDF) of a directed graph D, if 

forevery vertex v ∈ V,  (  ( ))  ∑  ( )    ∈  ( ) . A STDF of a directed graph D is said to be 

SETDF iffor every vertex v ∈ V,  (  ( )) = 1 when |  ( )| is odd and  (  ( )) = 2 when |  ( )| is 

even. Westudy some properties of signed total domatic number    (D) in directed circulant graphs. We 

characterizesome classes of directed circulant graphs for which    ( ) =   ( ) . Further, we find a 

necessary andsufficient condition for the existence of SETDF in a family of directed circulant graphs in 

terms of coveringprojection 

Keywords: signed total domination, signed efficient total domination,    circulant graphs, covering 

projection. AMS subject classification: 05C 69 

       

Introduction 

Consult [2] and [3] for notation and terminology which are not defined here. Let D be a finite and simple 

digraph with vertex set V(D) = V and arc set E(D) = E. For every vertex v∈V(D), the in-set of v and the out 

set of v are defined by    ( ) =   
 ( ) = {u ∈ V : (u, v) ∈ E} and    ( ) =   

 ( ) = {u ∈ V : (v, u) ∈ E} 

respectively. For a vertex v ∈ V,   
 ( ) =   ( ) = |   ( )| and   

 ( ) =   ( ) = |   ( )| respectively 

denote the outdegree and indegree of the vertex v. The minimum and maximum indegree of D are denoted 

by   ( ) and   ( ) respectively. Similarly the minimum and maximum outdegree of D are denoted by 

  ( )  and   ( ) respectively. 

The concept of signed domination number in undirected graphs has been introduced by J.E. Dunbar et al [3]. 

The concept of signed total domination number in undiretedd graphs has been introduced by Bohdan 

Zeinka[2]. In 2005, Bohdan Zelinka [1] study the concept of signed domination for directed graphs. 

A function f : V → {−1, 1} is a signed dominating function (SDF) of a directed graph D, if for every vertex 

v ∈ V,  (     ) = ∑  ( )    ∈      [4]. The signed domination number, denoted by S(D), is the 

minimum weight of a signed dominating function of D [4]. A function f : V → {−1, 1} is a signed total 

dominating function (STDF) of a directed graph D, if for every vertex v ∈ V,  (  ( )) = ∑  ( )   ∈  ( )

 . The weight of the function f is defined as  ( )    ∈   ( ). The signed total domination number, 

denoted    (G), of D is the minimum weight of a signed total dominating function on D. 

In this paper, we introduce the concept of signed efficient total dominating function (SETDF) for 

directed graphs. A STDF of a directed graph D is said to be SETDF if for every vertex v ∈ V,  (  ( )) = 1 

when |   ( )| is odd and  (  ( )) = 2 when |   ( )| is even. A set {f1, f2, . . ., fd} of signed dominating 

functions on a graph (directed graph) G with the property that ∑   ( )   
      for each vertex x ∈ V(G), is 
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called a signed dominating family on G. The maximum number of functions in a signed dominating family 

on G is the signed domatic number of G, denoted by   ( ). 

A set {f1, f2, . . ., fd} of signed total dominating functions on a graph  

(directed graph) G with the property that  ∑   ( )   
      for each vertex 

x ∈ V(G), is called a signed total dominating family on G. The maximum number of functions in a signed 

total dominating family on G is the signed total domatic number of G, denoted by    ( ). 

The signed domatic number of undirected and simple graphs was introduced by Volkmann and Zelinka 

[7]. They determined the signed domatic number of complete graphs and complete bipartite graphs. Further, 

they obtained some bounds for domatic number. 

In this paper, we study the signed total domination number and signed total domatic number of directed 

circulant graphs Cir(n, A) for some generating set A. Further, we obtain a necessary and sufficient condition 

for the existence of SETDF in Cir(n, A) in terms of covering projection. 

The following results can be found in [6]. 

 

Theorem 1.1 [6] Let D be a directed graph of order n with signed total domination number γst(D) and 

signed total domatic number    ( ). 

Then    (D).    ( ) ≤ n. 

 

Theorem 1.2  [6] Let D be a directed graph with minimum in degree   ( ) ≥ 1, then 1 ≤    ( )≤   ( ).  
 

Theorem 1.3 Let D be a directed graph such that   ( ) =   ( ) = 2g + 1 for each x ∈ V and let u ∈ V(D). 

If d =    ( )= 2g + 1 and {f1, f2, . . ., fd}  

Is a signed total domatic family of D, then ∑   ( )   
      and  ∑    ( )    ∈  ( )   for each u ∈ V(D) and 

each 1 ≤ i ≤ 2g + 1. 

 

Proof: Since ∑   ( )   
     , this sum has at least g summands which have the value −1. Since 

∑    ( )    ∈  ( )    for each 1 ≤ i ≤ 2g + 1, this sum has atleast g + 1 summands which have the value 1. 

Also the sum    ∑ ∑   ( ) 
      ∈  ( )  ∑ ∑   ∈  ( )  

( ) 
    has at least d.g summands of value −1 and at 

least d.(g+1) summands of value 1.  Since the sum ∑ ∑   ( ) 
      ∈  ( ) ∑ ∑   ∈  ( )  

( ) 
     contains 

exactly d(2g+1) summands, it is easy to observe that ∑   ( ) 
     have exactly g summands of value -1 and 

∑    ( ) ∈  ( )   has exactly g+1 summands of value 1 for each 1 ≤ i ≤ d. Hence we must have  

 ∑   ( )   
      and ∑    ( ) ∈  ( )    for each u ∈ V (D) and for each 1 ≤ i ≤ 2g + 1. 

 

2    (D)  and SETDF in directed circulant graphs 

 

Let ᴦ be a finite group and e be the identity element of ᴦ. A generating set of ᴦ is a subset A such 

that every element of A can be written as a product of finitely many elements of A. Assume that e ∉ 

A and a ∈ A 

Implies a
−1

 ∈ A. Then the corresponding Cayley graph is a graph  

G = (V, E), where V(G) = ᴦ and E(G) = {(x, y)a|x,y ∈ V (G), y = xa for some a ∈ A}, denoted by Cay(ᴦ,A). It 

may be noted that G is connected regular graph degree of degree |A|. A Cayley graph constructed out of a 

finite cyclic group (Zn, ⊕n) is called a circulant graph and it is denoted by  

Cir(n, A), where A is a generating set of Zn. When we leave the condition that a ∈ A implies a
−1 ∈ A, then we 

get directed circulant graphs. In a directed circulant graph Cir(n, A), for every vertex v, |N
-
[v]| 

=|N
+
[v]|=|A|+1.    

Throughout this section, n(≥ 3) is a positive integer, ᴦ = (Zn, ⊕n), where Zn = {0, 1, 2, . . ., n–1} and 

D = Cir(n, A), where A = {1, 2, . . ., r} and 1 ≤ r ≤ n−1. From here, the operation ⊕n stands for modulo n 

addition in Zn.  In this section, we characterize the circulant graphs for which    ( ) =   ( ).  Also we 
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find a necessary and sufficient condition for the existence of SEDF in Cir(n, A) in terms of covering 

projection. 

 

Theorem 2.1 Let n ≥ 3 and 1 ≤ r ≤ n − 1 (r is odd) be integers and 

D = Cir(n, {1, 2, . . ., r}) be a directed circulant graph. Then    ( ) = r if, and only if, r divides n. 

 

Proof: Assume that    ( ) = r and {f1, f2, . . ., fr} is a signed total domatic 

family on D. Note that   ( )=   ( )= r, for all v ∈ V(D) and for each  

v∈V (G), N(v) is a set of r(odd) consecutive integers. Thus    (D)  
 

 
. Since    ( ) = r, by Theorem 1.1, 

we have    (D)  
 

 
 .Hence    (D)  

 

 
. Suppose n is not a multiple of r. Then n = kr + i for some 1 ≤ i ≤ 

r−1.Let  

t = gcd(i, r). Then there exist relatively prime integers p and q such that  

r = qt and i = pt. 

Let a and b be the smallest positive integers such that ar = bn. Then gcd(a, b) = 1(otherwise a and b will not 

be the smallest) and so the subgroup < r > of the finite cyclic group Zn, generated by r, must have a 

elements. Now aqt = ar = b(kr + i) = b(kqt + pt) = bt(kq + p). That is  

aq = b(kp + q). Since gcd(a, b) = gcd(p, q) = 1, a = kp + q and b = q. Thus the subgroup <r> must 

have kp + q elements. But t = 
 

 
 = 

 

    
. Thus the subgroup <t> of Zn, generated by the element t, 

also have kp + q elements and hence  <t> = <r>. Since   ( ) = r and {f1, f2, . . ., fr} is a signed total 

domatic family of D, by Theorem 1.3, we have  ∑   ( )   
      

and ∑   ( )     ∈  ( ) and each 1   i   r. From the above fact and since |  ( )| = r and ( (  ( ) ) = 1 

(since r is odd) for all v ∈ V (D), it is follows that if f(a) = +1, then f(a ⊕n r) = +1 and if f(a) = −1, then f(a 

⊕n r) = −1. Thus the labelings of all the elements of the subgroup <t> and the labelings of all the elements 

in each of the co-set of <t> are same. By Lagranges theorem on subgroups, Zn can be written as the union of 

co-sets of <t> = <r>. This means that    (D) must be a multiple of the number of elements of <t>, that is a 

multiple of (n/t) (since n is a multiple of t). Since t < r, it follows that 
 

 
 <  

 

 
 ≤    (D), a contradiction to 

   (D) = 
 

 
.  

Conversely suppose r divides n. By theorem 1.2,    ( ) ≤ r. Let r = 2g + 1 for some integer g ≥ 1. Define a 

STDF f1 by f1(ir + 1) = f1(ir + 2) =. . . = f1(ir+(g+1)) = +1 and f1(ir+(g+2)) = f1(ir+(g+3)) = . . . = 

f1(ir+(2g+1)) = −1 for all 0 ≤ i ≤ 
 

 
 −1. Define f2(v) = f1(v ⊕n 1), f3(v) = f1(v ⊕n 2)= . . . = fr(v) = f1(v ⊕n (r 

− 1)). Then {f1, f2, . . . , fr} are STDFs on D with the property that  ∑   ( )   
      for each vertex x ∈ V 

(D). Hence   ( ) ≥ r. 

 

Example 2.2 Let n = 6 and r = 3. Then n is a multiple of r. Take the vertex set of D = Cir(6, {1, 2, 3}) as 

V(D) = {0, 1, 2, 3, 4, 5}. Also for r = 3, STDFs f1, f2 and f3 (as discussed in the above theorem) of D are 

given below. f1(1) = +1, f1(2) = +1, f1(3) = −1, f1(4) = +1, f1(5) = +1, f1(0) = −1; 

f2(1) = +1, f2(2) = −1, f2(3) = +1, f2(4) = +1, f2(5) = −1, f2(0) = +1;  

f3(1) = −1, f3(2) = +1, f3(3) = +1, f3(4) = −1, f3(5) = +1, f3(0) = +1. 

 

Theorem 2.3 Let n ≥ 3 be an integer and 1 ≤ r ≤ n − 1 be an odd integer. 

Let D = Cir(n, {1, 2, . . ., r}) be a directed circulant graph. If n is a multiple 

of r, then    ( )  
 

 
. 

 

Proof: Assume that n is a multiple of r. As discussed in Theorem 2.1, 

   ( )  
 

 
. It remains to show that there exists a STDF f with the property that f(D) = 

 

 
 . Define a function 

f : V(D) → {+1, −1} such that  

f(ir + 1) = f(ir + 2) = . . . = f(ir + (g + 1)) = +1 and f(ir + (g + 2)) =  
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f(ir + (g + 3)) = . . . = f(ir + (2g + 1)) = −1 for all 0 ≤ i ≤ 
 

 
  , where r=2g+1. It is clear that f is a STDF and 

f(D) = (g + 1) ( 
 

 
) - (g)( 

 

 
) =  

 

 
. 

A graph  ̃ is called a covering graph of   with covering projection  

f :  ̃  →   if there is a surjection f : V( ̃) → V ( ) such that f |N( ̃) : N( )̃ → N( ) is a bijection for any 

vertex v ∈ V(G) with  ̃ ∈ f
−1

(v) [5].  

In 2001, J.Lee has studied the domination parameters through covering projections [5]. In this 

paper, we introduce the concept of covering projection for directed graphs and we study the STDF 

through covering projections 

A directed graph D is called a covering graph of another directed graph H with covering projection f : D → 

H if there is a surjection f : V(D) → V(H) such that f|N
+

(u) :   ( )  →   ( )  and f |N
-
(u) :   ( ) →   ( ) 

are bijections for any vertex v ∈ V(H) with u ∈ f
−1

(v). 

 

Lemma 2.4 Let f : D → H be a covering projection from a directed graph D on to another directed graph 

H. If H has a SETDF, then so is D. 

 

Proof: Let f : D → H be a covering projection from a directed graph D on to another directed graph H. 

Assume that H has a SETDF h : V(H) → 

{1, −1}. Define a function g : V(D) → {1, −1} defined by g(u) = h(f(u)) for all u ∈ V (D). Since h is a 

function form V(H) to {1, −1} and f : V(D) → V(H), g is well defined. We prove that for the graph D, g is a 

SETDF. 

Let u ∈ V(D) and assume that |  ( )| is odd. Since f is a covering projection, |  ( )| and |  ( ( ))| are 

equal. Also f|N
-
(u) :   ( ) →   ( ( ))  is a bijection. Also for each vertex x ∈   ( ), we have g(x) = 

h(f(x)). Since h(  ( ( )))  = 1, we have g(  ( )) = 1. Similarly, we can prove that g(  ( )) = 2 when u 

∈ V(G) and |  ( )| is even. Hence g is a SETDF on D.  

 

Theorem 2.5 Let D = Cir(n, {1, 2, . . . , r}), r = 2g + 1 for some integer g( 1)  and   (D)  
 

 
 Then D has a 

SETDF if and only if, there exists a covering projection from D onto the graph H = Cir(r + 1, {1, 2, . . . , 

r}). 

 

Proof:  Suppose D has a SETDF, say f. Then∑   ( )    ∈  ( )  for all u∈v(D). Thus we can have f(a ⊕n r) 

= ±1 when ever f(a) = ±1 respectively. Thus the elements of the subgroup <r>, generated by r have the same 

sign.  

Suppose n is not a multiple of r, then n = i.r + j for some 1 ≤ j ≤ r − 1. Let t = gcd(r, j). As in the proof of 

Theorem 2.1, we have    (D) > 
 

 
, a contradiction. Hence n must be a multiple of r. 

In this case, define F : D → H = Cir(r +1, {1, 2, . . . , r}), defined by F (x) = x (mod (r + 1)). Note that, 

|  ( )| = |  ( )| = |  ( )| = |  ( )| = r for all x ∈ V(D) and y ∈ V(H). We prove that F is a covering 

projection.  

Let x ∈ V(D). Then F(x) = x(mod (r + 1)) = i for some i ∈ V(H). Note that by the definition of D and H, 

  ( ) = {x ⊕n 1, x ⊕n 2, . . . , x ⊕n r} and 

  ( ) = {i ⊕r+1 1, i ⊕r+1 2, . . ., i ⊕r+1 r}. Also, for each 1 ≤ j ≤ r, we have F (x ⊕n j) = i ⊕r+1 j. 

Thus F|N
+

(x) :   ( ) →   ( ( )) is a bijection. Similarly, we can prove that F|N
-
(x):   ( ) → 

  ( ( )) is also a bijection and hence F is a covering projection from D onto H. 

Conversely, suppose there exists a covering projection F from D onto the graph H = Cir(r + 1, {1, 2, . . ., r}). 

Define h : V(H) → {+1, −1} defined by h(x) = −1 when 1 ≤ x ≤ g and h(x) = +1 when g + 1 ≤ x ≤ 2g + 1. 

Then h is a SETDF of H and hence by Lemma 2.4, G has a SETDF. 

 

Theorem 2.6 Let D = Cir(n, {1, 2, . . ., r}), r = 2g be an even integer which divides n. Then 

(a) If D admits SETDF, then γst(D) = 
  

  
. 



 
 

R. Padmavathi, et al                                              www.ijetst.in  Page 6365 

IJETST- Vol.||04||Issue||11||Pages 6361-6365||November||ISSN 2348-9480 2017 

(b) D has a SETDF if and only if, there exists a covering projection from 

D onto the graph H = Cir(r + 1, {1, 2, . . ., r}). 

 

Proof: (a). Let f be a SETDF and v ∈ V(D). Since f(  ( )) = 2 for all v∈V(D) and   ( )  = {s ⊕n 1, s ⊕n 

2, . . ., s ⊕n r} is a set of r consecutive 

vertices, we must have f({s ⊕n 1, s ⊕n 2, . . ., s ⊕n r}) = 2.  

Hence f(D) ≥   
 

 
 . It remains to show that there exists a SETDF f with the property that f(D) =   

 

 
 .  

Define f : V(D) → {+1, −1} such that f(ir + 1) = f(ir + 2) =. . .= f(ir + (g + 1)) = +1 and f(ir + (g + 2)) = f(ir 

+ (g + 3)) = . . .= f(ir +(2g)) = −1 for 0 ≤ I ≤  
 

 
  . It is clear that f is a SETDF and f(D) = (g + 1) 

 

 
  (g - 

1) 
 

 
   

 

 
  . 

(b) Suppose D has a SETDF f. Define h : H  {+1,−1}, defined by 

h(v) = f(v) for all v ∈ V(H). Since f(  ( )) = f(V(H)) = 2 for all v ∈ V(H), h is a SETDF on H. Note that, 

|  ( )| = |  ( )| = r = 2g, an even integer, for all x ∈ (D). Thus ∑   ( )    ∈      for all u∈ v(D) and 

hence f(a ⊕r+1 r) = ±1 when ever f(a) = ±1 respectively. Thus the function F : D → H, defined by F (x) = x 

(mod (r + 1)) is a covering projection from D onto H. 

Conversely suppose there exists a covering projection F from D onto the graph H. Define h : V (H) 

→ {+1, −1} defined by h(x) = −1 when 0 ≤ x ≤ g and h(x) = +1 when g + 1 ≤ x ≤ 2g − 1. Note that 

∑   ( )    ∈      all u∈V(D) and hence h is a SETDF on H. Therefore by Lemma 2.4, G has a 

SEDF 
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