omaxams sums International Journal of Emerging Trends in Science and Technology

IC Value: 76.89 (Index Copernicus) Impact Factor: 4.219 DOI: https://dx.doi.org/10.18535/ijetst/v4i11.03

Cubic Harmonious Labeling Of Certain Star and Bistar Graphs

Author
Mathew Varkey T.K ${ }^{1}$, Mini.S.Thomas ${ }^{2}$
Asst.Prof, Department of Mathematics, T.K.M College of Engineering, Kollam, Kerala, India ${ }^{1}$
Asst. Prof, Department of Mathematics, ILM Engineering College, Eranakulam, Kerala, India ${ }^{2}$

Abstract

A (n, m) graph $G=(V, E)$ is said to be Cubic Harmonious Graph(CHG) if there exists an injective function $f: V(G) \rightarrow\left\{1,2,3, \ldots \ldots \ldots m^{3}+1\right\}$ such that the induced mapping $f^{*}{ }_{c h g}: E(G) \rightarrow\left\{1^{3}, 2^{3}, 3^{3}, \ldots \ldots \ldots . m^{3}\right\}$ defined by $\quad f^{*}{ }_{c h g}(u v)=(f(u)+f(v)) \bmod \left(m^{3}+1\right)$ is a bijection. we have proved that star and bistar related graphs are cubic harmonious.

Keywords Bistar graph, Cubic harmonius labeling, Cubic harmonious graph, Star graph,.

I. Introduction

The study of graceful graphs and graceful labeling methods was introduced by Rosa[11]. Rosa defined a β valuation of graph G with m edges as an injection from the vertices of G to the set $\{0,1,2,3, \ldots \ldots \ldots, m\}$ such that when each edge $x y$ is assigned the label $|f(x)-f(y)|$, the resulting edge labels are distinct. β - Valuations are the functions that produce graceful labeling. However, the term graceful labeling was not used until Golomb studied such labeling several years later[5]. Graham and Sloane[4] defined a (n, m)- graph G of order n and size m to be harmonious, if there is an injective function $f: V(G) \rightarrow Z_{m}$, where Z_{m} is the group of integers modulo m, such that the induced function $f^{*}: E(G) \rightarrow Z_{q}$, defined by $f *(u v)=f(u)+f(v)$ for each edge $u v \in E(G)$ is a bijection. Square harmonious graphs were introduced in [12]. Cubic graceful graphs were introduced in [7]. Cubic harmonious graphs were defined in [8]. Throughout this paper we consider simple, finite, connected and undirected graph.

Definition 1.1

The path on n vertices is denoted by P_{n}.

Definition 1.2

A complete bipartite graph $K_{1, n}$ is called a star and it has ($n+1$) vertices and n edges

Definition 1.3

The bistar graph $B_{m, n}$ is the graph obtained from a copy of a star $K_{1, \mathrm{~m}}$ and a copy of star $\mathrm{K}_{1, \mathrm{n}}$ by joining the vertices of maximum degree by an edge

II. Main Results

Theorem 2.1

The graph obtained by the subdivision of the edges of stars of the bistar $\mathrm{B}_{m, n}$ is a cubic harmonious for all $\mathrm{m}, \mathrm{n} \geq 2$.

Proof :

The vertex set and the edge set of the bistar $\mathrm{B}_{m, n}$ is defined as follows:

$$
V\left(B_{m, n}\right)=v_{r} u_{s} ; \quad 1 \leq r \leq m+1,1 \leq s \leq n+1
$$

and

$$
\begin{array}{rlrl}
E\left(B_{m, n}\right) & =v_{r} v_{m+1}, v_{m+1} u_{n+1}, u_{s} u_{n+1} ; & 1 \leq r \leq m, 1 \leq s \leq n \\
\left|V\left(B_{m, n}\right)\right| & =m+n+2 \quad \text { and } \quad\left|E\left(B_{m, n}\right)\right|=m+n+1
\end{array}
$$

Then
Let G be the graph obtained by the subdivision of the edges of stars of $\mathrm{B}_{m, n}$. Let a_{r} divide $v_{r} v_{m+1}$ for $l \leq r$ $\leq m$ and b_{s} divide $u_{s} u_{n+1}$ for $1 \leq \mathrm{s} \leq \mathrm{n}$. Then the vertex and edge set of G are given by

$$
V(G)=\left\{v_{r}, u_{s} ; 1 \leq r \leq m+1,1 \leq s \leq n+1 \quad\right\} \quad U \quad\left\{a_{r}, b_{s} ; 1 \leq r \leq m, 1 \leq s \leq n\right\}
$$

and

$$
\begin{aligned}
& E(G)=\left\{a_{r} v_{m+1,}, v_{r} a_{r} ; 1 \leq r \leq m\right\} U\left\{v_{m+1} u_{n+1}\right\} U\left\{b_{s} u_{n+1}, u_{s} b_{s}\right\} ; \quad 1 \leq s \leq n \\
& |V(G)|=2 m+2 n+2 \\
& |E(G)|=2 m+2 n+1
\end{aligned}
$$

For all cases $m<n, m=n, m>n$, we define an injection $f: V(G) \rightarrow\left\{1,2, \ldots \ldots \ldots(2 m+2 n+1)^{3}+1\right\}$ by

$$
\begin{array}{lc}
f\left(v_{m+1}\right)=(2 m+2 n+1)^{3}+1 ; & \\
f\left(u_{n+1}\right)=(2 m+2 n+1)^{3} & \\
f\left(a_{r}\right)=(2 m+2 n+1-r)^{3}+(2 m+2 n+1)^{3}+1-f\left(v_{m+1} ;\right. & \\
f\left(v_{r}\right)=(m+n-r+1)^{3}+(2 m+2 n+1)^{3}+1-f\left(a_{r}\right) ; & 1 \leq r \leq m \\
f\left(b_{s}\right)=(m+2 n-s+1)^{3}+(2 m+2 n+1)^{3}+1-f\left(u_{n+1)} ;\right. & 1 \leq s \leq n \\
f\left(u_{s}\right)=(n-s+1)^{3}+(2 m+2 n+1)^{3}+1-f\left(b_{s}\right) ; ; & l \leq s \leq n
\end{array}
$$

The induced edge mapping are

$$
\begin{array}{ll}
f^{*}\left(v_{m+1} u_{n+1}\right)=(2 m+2 n+1)^{3} ; & \\
f^{*}\left(a_{r} v_{m+1}\right)=(2 m+n+1-r)^{3} ; & 1 \leq r \leq m \\
f^{*}\left(v_{r} a_{r}\right)=(m+n-r+1)^{3} ; & 1 \leq r \leq m \\
f^{*}\left(b_{s} u_{n+1}\right)=(2 m+2 n-s+1)^{3} ; & 1 \leq s \leq n \\
f^{*}\left(u_{s} b_{s}\right)=(n-s+1)^{3} ; & 1 \leq s \leq n
\end{array}
$$

The vertex labels are in the set $\left\{1,2,3, \ldots \ldots \ldots(2 m+2 n+1)^{3}+1\right\}$. Then the edge labels are arranged in the set $\left\{1^{3}, 2^{3}, 3^{3}, \ldots \ldots \ldots \ldots(2 m+2 n+1)^{3}\right\}$. So the vertex labels are and edge labels are also distinct and cubic. So the graph G is cubic harmonious for all $\mathrm{m}, \mathrm{n} \geq 2$.

Theorem 2.2

The graph obtained by the subdivision of all edges of the bistar $B_{m, n}$ is a cubic harmonious for all m, n ≥ 2.

Proof :

The bistar $\mathrm{B}_{m, n}$ contains $(m+n+2)$ vertices and $(m+n+1)$ edges.
So,

$$
V\left(B_{m, n}\right)=v_{r}, u_{s}
$$

$$
\begin{aligned}
1 \leq & r \leq m+1 \\
& 1 \leq s \leq n+1
\end{aligned}
$$

and

$$
E\left(B_{m, n}\right)=v_{r} v_{m+1}, v_{m+1} u_{n+1}, u_{s} u_{n+1} ; \quad 1 \leq r \leq m, 1 \leq s \leq n
$$

Let G be the graph obtained by the subdivision of all edges of the bistar $\mathrm{B}_{m, n}$. Let a_{r} divide $v_{r} v_{m+1}$ for $1 \leq r$ $\leq m$ and b_{s} divide $u_{s} u_{n+1}$ for $1 \leq \mathrm{s} \leq \mathrm{n}$. Let ' w ' divide $v_{m+1} u_{n+1}$ Then the vertex and edge set of G are given by

$$
V(G)=\left\{v_{r}, u_{s} ; 1 \leq r \leq m+1, l \leq s \leq n+1\right\} \quad U\left\{a_{r}, b_{s} ; 1 \leq r \leq m, l \leq s \leq n\right\} \quad U \quad\{\quad w\}
$$

and

$$
E(G)=\quad\left\{a_{r} v_{m+1}, v_{r} a_{r} ; 1 \leq r \leq m\right\} \quad U \quad\left\{w v_{m+1,} w u_{n+1}\right\} \quad U \quad\left\{b_{s} u_{n+1}, u_{s} b_{s} ; 1 \leq s \leq n\right\}
$$

$$
\text { So, } \begin{aligned}
&|V(G)|=2 m+2 n+3 \\
&|E(G)|=2 m+2 n+2
\end{aligned}
$$

For all cases $m<n, m=n, m>n$, we define an injection $f: V(G) \rightarrow\left\{1,2, \ldots \ldots \ldots(2 m+2 n+2)^{3}+1\right\}$ by

$$
\begin{array}{lc}
f\left(v_{m+1}\right)=(2 m+2 n+2)^{3}+1=8(m+n+1)^{3}+1 ; & \\
f(w)=8(m+n+1)^{3} & \\
f\left(u_{n+1}\right)=(2 m+2 n+1)^{3}+1 & \\
f\left(a_{r}\right)=(2 m+2 n+1-r)^{3}+8(m+n+1)^{3}+1-f\left(v_{m+1)} ;\right. & 1 \leq r \leq m \\
f\left(v_{r}\right)=(m+n-r+1)^{3}+8(m+n+1)^{3}+1-f\left(a_{r}\right) ; & 1 \leq s \leq m \\
f\left(b_{s}\right)=(m+2 n-s+1)^{3}+8(m+n+1)^{3}+1-f\left(u_{n+1)} ; ;\right. & 1 \leq s \leq n \\
f\left(u_{s}\right)=(n-s+1)^{3}+8(m+n+1)^{3}+1-f\left(b_{s)} ; ;\right. &
\end{array}
$$

The induced edge mapping are

$$
\begin{array}{rlr}
f^{*}\left(v_{m+1} w\right) & =8(m+n+1)^{3} ; & \\
f^{*}\left(w u_{n+1}\right)=(2 m+2 n+1)^{3} ; & & \\
f^{*}\left(a_{r} v_{m+1}\right) & =(2 m+2 n-r+1)^{3} ; & 1 \leq r \leq m \\
f^{*}\left(v_{r} a_{r}\right)=(m+n-r+1)^{3} ; & & 1 \leq s \leq n \\
f^{*}\left(u_{n+1} b_{s}\right) & =(m+2 n+1-s)^{3} ; & 1 \leq s \leq n \\
f^{*}\left(b_{s} u_{s}\right) & =(n+l-s)^{3} ; &
\end{array}
$$

The vertex labels are in the set $\left\{1,2,3, \ldots \ldots \ldots(2 m+2 n+1)^{3}+1\right\}$. Then the edge labels are arranged in the set $\left\{1^{3}, 2^{3}, 3^{3}, \ldots \ldots \ldots \ldots(2 m+2 n+1)^{3}\right\}$. So the vertex labels are and edge labels are also distinct and cubic. So the graph G is cubic harmonious for all $m, n \geq 2$.

Theorem 2.3

The graph obtained by the subdivision of the edges of the path P_{n} in comb $P_{n} \Theta K_{1}$ is cubic harmonious for all $n \geq 2$

Proof:

Let G be the graph obtained by the subdivision of the edges of the path P_{n} in comb $P_{n} \Theta K_{1}$.

Let $\quad V(G)= \begin{cases}v_{r}, u_{r} & 1 \leq r \leq n, \\ z_{s} ; & 1 \leq s \leq n-1\end{cases}$
and

$$
E(G)= \begin{cases}v_{r} z_{r}, z_{r} v_{r+1} ; & 1 \leq r \leq n-1 \\ v_{s} u_{s,} ; & 1 \leq s \leq n\end{cases}
$$

So $\quad|V(G)|=3 n-1 \quad$ and $\quad|E(G)|=3 n-2$
Define an injection $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{1,2,3, \ldots \ldots \ldots,(3 \mathrm{n}-2)^{3}+1\right\}$ by

$$
\begin{array}{ll}
f\left(v_{l}\right)=(3 n-2)^{3}+1 \\
f\left(z_{1}\right)=(3 n-2)^{3} ; & \\
f\left(v_{r+1}\right)=(3 n-2 r-1)^{3}+(3 n-2)^{3}+1-z_{r} ; & 1 \leq r \leq n-1 \\
f\left(z_{s}\right)=(3 n-2 s)^{3}+(3 n-2)^{3}+1-f\left(v_{s}\right) ; & 1 \leq s \leq n-1 \\
f\left(u_{r}\right)=r^{3}+(3 n-2)^{3}+1-f\left(v_{s}\right) ; & 1 \leq r \leq n
\end{array}
$$

Then f induces a bijection $f^{*}: E(G) \rightarrow\left\{1^{3}, 2^{3}, 3^{3} \ldots \ldots \ldots(3 n-2)^{3}\right\}$.
The edge labels are as follows.

$$
\begin{array}{lr}
f^{*}\left(v_{r} z_{r}\right)=(3 n-2 r)^{3} ; & 1 \leq \leq n-1 \\
f^{*}\left(z_{r} v_{r+1}\right)=(3 n-2 r-1)^{3} ; & 1 \leq r \leq n-1 \\
f^{*}\left(v_{r} u_{r}\right)=(r)^{3} ; & 1 \leq r \leq n
\end{array}
$$

The edge labels are distinct and cubic, they are $\left\{1^{3}, 2^{3}, 3^{3}\right.$.$\left.(3 n-2)^{3}\right\}$.
Hence the theorem.

Theorem 2.4

The graph $\left\langle S_{m}: n\right\rangle$ is a cubic harmonious for all $m, n \geq 1$.

Proof:

Let $\left\{u, u_{01}\right.$, \qquad $u_{0 r, .}, u_{11}, u_{12}$ $u_{1 s,} u_{21}, u_{22}$, \qquad $u_{2 s,}$ $\left.u_{r s}\right\}$ be the vertices of the $r^{\text {th }}$ copy of the star S_{m} in $\left\langle S_{m}: n\right.$ > where $u_{o r}$ is the centre of vertex of the star for $1 \leq r \leq n, 1 \leq s \leq m$

Let $V(G)=u, u_{o r}, u_{r s}$;

$$
1 \leq r \leq n ; 1 \leq s \leq m
$$

and $E(\mathrm{G})=\left\{\begin{array}{l}u u_{o r} ; \\ u_{o r} u_{r s} ;\end{array}\right.$

$$
\begin{aligned}
& 1 \leq r \leq n \\
& 1 \leq r \leq n ; 1 \leq s \leq m
\end{aligned}
$$

So

$$
|V(G)|=n(m+1)+1 \quad \text { and } \quad|E(G)|=n((m+1)
$$

Define an injection $\quad f: V\left(\left\langle s_{m}: n\right\rangle\right) \rightarrow\left\{1,2, \ldots \ldots . ., n(m+1)^{3}+1\right\}$ by

$$
\begin{array}{ll}
f(u)=n(m+1)^{3}+1 & \\
f\left(u_{o r}\right)=[n(m+1)-r+1]^{3} ; & 1 \leq r \leq n \\
f\left(u_{r s}\right)=[m(n-r+1)-(s-1)]^{3}+n(m+1)^{3}+1-f\left(u_{o r}\right) ; & 1 \leq r \leq n, l \leq s \leq m ;
\end{array}
$$

Then f induces a bijection $f^{*}: E\left(<s_{m}: n\right) \rightarrow\left\{1^{3}, 2^{3} \ldots \ldots . .[n(m+1)]^{3}+1\right\}$
The induced edge labels of the given graph G are as follows:

$$
\begin{array}{lr}
f^{*}\left(u u_{o r}\right)=[n(m+1)-r+1]^{3} ; & l \leq r \leq n \\
\left.f^{*}\left(u_{o r} u_{r s}\right)=[m(n-r+1)-(s-1))\right]^{3} ; & 1 \leq r \leq n, l \leq s \leq m
\end{array}
$$

The edge labels are distinct and cubic. Hence the graph $\left\langle s_{m}: n\right\rangle$ is a cubic harmonious

References

1. N. Adalin Beatress, P.B.Sarasija, Square Harmonious Graphs, International Jounal of Advanced Research in Science, Engineering and Technology. Vol.3, Issue 2, February 2016.
2. L.W.Beineke and S.M.Hedge, Strongly multiplicative graphs, Discuss. Math. Graph theory, 63-75, (2001).
3. Frank Harary, Graph Theory, Narosa Publishing House, New Delhi, 2001
4. J.A . Gallian, A dynamic survey of graph labeling, The Electronic journal of Combinatrorics,(2016)
5. S.W.Golomb, "How to number a graph in Graph theory and Computing",R.C.Read,ed.,Academic Press, New York, pp.23-37(1972).
6. R.L.Graham, N.J.A.Sloane, On additive bases and harmonious graphs
,SIAM.Algebr.Disc.Meth.,Vol 1, No 4, pp 382-404 (1980).
7. Mini.S.Thomas and Mathew Varkey T.K, Cubic Graceful Labeling, Global Journal of Pure And Applied Mathematics, Volume 13,Number 9, pp 5225-5234, Research India Publications June (2017)
8. Mini.S.Thomas and Mathew Varkey T.K, Cubic Harmonious Labeling . International Journal of Engineering Development of Research Vol 5, Issue 4, pp 79-80 (2017)
9. P.B.Sarasija and N.Adalin Beatress, Even - Odd harmonious graphs, international journal of Mathematics and Soft Computing Vol.5, No1,23-29, (2015).
10. S.C.Shee, "On harmonious and related graphs" Ars Combinatoria, vol 23, pp 237-247,(1987).
11. A. Rosa "On certain valuations of the vertices of a graph" (1967), Theory of Graphs, International Symposium, Rome, July 1996, Gordon of Breach, New York and Dunod, Paris, pp 349-355, 1967.
12. T.Tharmaraj and P.B.Sarasija, Square graceful graphs, international journal of Mathematics and Soft Computing Vol.4, No 1,129-137, (2014),
13. T.Tharmaraj and P.B.Sarasija, Some Square graceful graphs, international journal of Mathematics and Soft Computing Vol. 5 No.1,119-127 . (2014).
