

Open access Journal International Journal of Emerging Trends in Science and Technology

IC Value: 76.89 (Index Copernicus) Impact Factor: 4.219 DOI: https://dx.doi.org/10.18535/ijetst/v4i7.03

S – Valued Semi Homomorphism

Authors

M.Rajkumar¹, M.Chandramouleeswaran²

^{1,2}Department of Mathematics Saiva Bhanu Kshtriya College, Arupukottai – 626101, India Email: rksbk2010@gmail.com, moulee59@gmail.com

ABSTRACT

In our earlier papers [4] and [3], we have introduced the notion of Semiring –valued graphs and homomorphisms on S-valued graphs. In this paper, we discuss the notion of S-vertex homomorphism and S-edge homomorphisms on S-valued graphs and prove some simple results.

Keywords: S-vertex homomorphism, S-edge homomorphism, S-valued semihomomorphism.

AMS Classification: 05C25, I6Y60.

1.INTROUDUCTION

Combinatorial counting problems on graphs are important in their own right and for the application to the statistical physics. In particular, counting proper graph colourings is a classical problem and is closely associated with the problem of evaluating the particular function of the Pott's Model in statistical physics $^{[5]}$. Many such counting problem can be restated as counting the number of homomorphisms from the graph of interest G to a particular fixed graph H. In our earlier paper, we discussed the notion of S-valued homomorphism between two S-valued graphs where we persumed that there is an isomorphism between two crisp graphs and we considered the semiring homomorphism between the two semirings S_1 and S_2 . In this paper, we restrict the map between the vertex sets of the crisp graphs to be a homomorphism but not an isomorphism.

2. PRELIMINARIES

In this section, we recall some basic definitions that are needed for our work.

Definition 2.1.^[1] Let (s,+,.) be an algebraic system with a non-empty set S together with two binary operators '+' and '.' such that

- (1) (S,+,0) is a monoid
- (2) (S, .) is a semigroup
- (3) For all $a,b,c \in S$, $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$.
- (4). $0 \cdot x = x.0 = 0 \forall x \in S$.

Definition 2.2 let (S, +, .) be a semiring. \leq is said to be a canonical preorder if for a, b \in S, a \leq b if and only if there exists $c \in S$ such that a + c = b.

Definition 2.3.^[4] Let $G = (V, E \subset V \times V)$ be the underlying graph with $V, E \neq \emptyset$. For any semiring $(S, +, \cdot)$, a Semiring –valued graph (or a S-valued graph) G^S is defined to be the graph $G^S = (V, E, \sigma, \psi)$ where $\sigma : V \to S$ and $\psi : E \to S$ is defined to be

$$\psi(x,y) = \begin{cases} \min\{\sigma(x),\sigma(y)\} \ if \ \sigma(x) \leq \sigma(y) or \ \sigma(y) \leq \sigma(x) \\ 0 \ otherwise \end{cases}$$

for every unordered pair (x, y) of $E \subset V \times V$. We call σ , a S- vertex set and ψ , a S- edge set of S-valued graph G^S .

Definition 2.4.^[1] Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be given two graphs. A mapping

 $\alpha: V_1 \rightarrow V_2$ is said to be a graph homomorphism if $(u_1, v_1) \in E_1 \Rightarrow (\alpha(u_1), \alpha(v_1)) \in E_2$.

Remark 2.5. A graph homomorphism is an edge preserving map. It need not be 1-1, onto or both.

Example 2.6 Let $G_1 = (V_1, E_1)$ where $V_1 = (v_1, v_2, v_3, v_4, v_5, v_6)$ and $E_1 = \{ (v_1, v_5), (v_2, v_5), (v_3, v_6), (v_4, v_5), (v_4, v_5), (v_4, v_6) \}$.

Therefore $O(V_1) = 6$ and $O(E_1) = 5$.

Let $G_{2} = (V_2, E_2)$ where $V_2 = \{ u_1, u_2 \}$ and $E_2 = \{ (u_1, u_2) \}$

Therefore O $(V_2) = 2$ and O $(E_2) = 1$.

Define $\alpha: V_1 \rightarrow V_2$ by $v_1 \rightarrow u_1; v_2 \rightarrow u_1; v_3 \rightarrow u_1; v_4 \rightarrow u_1; v_5 \rightarrow u_2; u_6 \rightarrow u_2$ then all edges in G_1 mapped into $(u_1, u_2) \in E_2$.

Therefore for all $(v_i, v_i) \in E_1 \Rightarrow (\alpha(v_i), \alpha(v_i)) \in E_2$.

 $\Rightarrow \alpha$ is a graph homomorphism and is not 1-1.

Example 2.7. Consider the Petersen graph $G_1 = (V_1 \ E_1)$ where $V_1 = \{v_1, v_2, ..., v_{10}\}$ and $E_1 = \{(v_1, v_5), (v_1, v_6), (v_1, v_2), (v_2, v_7), (v_2, v_3), (v_3, v_8), (v_3, v_4), (v_4, v_9), (v_4, v_5), (v_5, v_{10}), (v_6, v_9), (v_6, v_8) (v_7, v_{10}), (v_7, v_9), (v_8, v_{10})\}.$

Therefore O $(V_1) = 10$: O $(E_1) = 15$.

Let $G_2 = K_3 = (V_2, E_2)$ where $V_2 = \{u_1, u_2, u_3\}$ and $E_2 = \{(u_1, u_3), (u_1, u_2), (u_2, u_3)\}$

Therefore O $(V_2) = 3$, O $(E_2) = 3$.

Define $\alpha: V_1 \rightarrow V_2$ by $v_1 \mapsto u_1; v_2 \mapsto u_2; v_3 \mapsto u_1; v_4 \mapsto u_2; v_5 \mapsto u_3; v_6 \mapsto u_2;$

 $v_7 \mapsto u_1; v_8 \mapsto u_3; v_9 \mapsto u_3; v_{10} \mapsto u_2.$

Clearly , for every $(v_i, v_j) \in E_1 \Rightarrow (\alpha(v_i), \alpha(v_j)) \in E_2$.

Therefore α is a homomorphism but not bijective.

Example 2.8. Let G_1 and G_2 be as follows.

Define $\alpha: V_1 \to V_2$ by

 $v_1 \mapsto u_1; v_2 \mapsto u_2; v_3 \mapsto u_3; v_4 \mapsto u_5; v_5 \mapsto u_6; v_6 \mapsto u_5; v_7 \mapsto u_2; v_8 \mapsto u_1; v_9 \mapsto u_3; v_{10} \mapsto u_6; v_{11} \mapsto u_5; v_{12} \mapsto u_3; v_{13} \mapsto u_6.$

Clearly, $(v_i v_i) \in E_1 \Rightarrow (\alpha(v_i), \alpha(v_i) \in E_2$

⇒ais a graph homomorphism but not bijective

This homomorphism $\alpha: G_1 \to G_2 \subset K_6$ is an inclusion in k_6

Definition 2.9. Let $(S_1, +, \cdot)$ and $(S_2, +, \cdot)$ be given two semirings. A mapping $\beta: S_1 \to S_2$ is a semiring homomorphism if $\beta(0_{S_1}) = 0_{S_2}$; $\beta(a+b) = \beta(a) + \beta(b)$; $\beta(a.b) = \beta(a) \cdot B(b) \forall a, b \in S_1$.

Remark 2.10. If the semirings contains multiplicative identity then $\beta(1_{S_1}) = 1_{S_1}$ must be satisfied.

3. S-VALUED SEMI HOMOMORPHISM

In this section, we introduce the notion of S – valued vertex homomorphisms and S-valued edge homomorphism and S – valued semi homomorphisms on S-valued graphs and prove some simple results.

Definition3.1. Let $G_1^{S_1} = (V_1, E_1, \sigma_1, \psi_2)$ and $G_2^{S_2} = (V_2, E_2, \sigma_2, \psi_2)$ be given two s – valued graphs. Amaping $\phi = (\alpha, \beta) : G_1^{S_1} \to G_2^{S_2}$ is a S – valued vertex homomorphism if

(i) $\alpha: V_1 \rightarrow V_2$ is a graph homomorphism.

(ii) $\beta: S_1 \rightarrow S_2$ is a semiring homomorphism with $\beta(\alpha_1(v)) = \sigma_2(\alpha(v)) = \forall v \in V_1$

Example 3.2 Let $S_1 = (\{0,a,b\}, +,\cdot)$ be a semiring with binary operators '+' and '.' given in the following Cayley's Tables:

+	0	a	b
0	0	a	b
a	a	a	b
b	b	b	b

•	0	a	b
0	0	0	0
a	0	a	b
b	b	b	b

Here $0 \le 0$, $0 \le a$, $0 \le b$, $a \le a$, $a \le b$, $b \le b$.

Clearly S_1 is both multiplicatively and additively commutative and hence it is a commutative semiring. Further here 0 is the additive identity element and a is the multiplicative identity element. And a and b are both additively and multiplicatively idempotent elements.

Let $S_2 = (\{0, f, g, h\}, +, \cdot)$ be a semiring whose binary operators '+' and '.' are defined as follows.

+	0	f	g	h
0	0	f	g	h
f	f	f	h	h
g	g	h	h	h
h	h	h	h	h

•	0	f	g	h
0	0	0	0	0
f	0	f	g	h
g	0	g	h	h
h	0	h	h	h

Here $0 \le f$, g, h; $f \le f$, h; $g \le g$, h; $h \le h$.

Clearly f is the unit element in S₂

Define $\beta: S_1 \mapsto S_2$ by $0_1 \mapsto 0_2$; $a \mapsto f: b \mapsto h$.

Then β is a semiring homomorphism which is one – one but not onto.

Define $\alpha: V_1 \rightarrow V_2$ by $v_1 \mapsto u_5$; $v_2 \mapsto u_2$; $v_3 \mapsto u_4$; $v_4 \mapsto u_6$; $v_5 \mapsto u_3$

Then $(v_i, v_j) \in E_1 \Rightarrow (\alpha(v_i), \alpha(v_j) \in E_2$

Therefore α is a graph homomorphism

Now,
$$\beta(\sigma_1(v_1) = \beta(a) = f = \sigma_2(\alpha(v_1))$$

$$\beta \ (\sigma_1(v_2)) = \beta(b) = h = \sigma_2(\alpha(v_2))$$

$$\beta (\sigma_1(v_3)) = \beta(a) = f = \sigma_2(\alpha(v_3))$$

$$\beta (\sigma_1(v_4)) = \beta(b) = h = \sigma_2(\alpha(v_4))$$

$$\beta (\sigma_1(v_5)) = \beta(a) = f = \sigma_2(\alpha(v_5))$$

 \Rightarrow β is a semiring homomorphism with $\beta(\sigma_1(v_i) = \sigma_2(\alpha(v_i)) \ \forall \ v_i \in E_1$

Therefore $\phi = (\alpha, \beta)$ is a S – valued vertex homomorphism.

Remark 3.3. In the above example, the vertex u_1 in V_2 is not an image of any vertex in G_1 and hence it may assume any value as weight from S_2 .

Therefore even if $G_1^{S_1}$ is a S-vertex regular S-vertex homomorphism need not be, in general, preserve S-vertex regularity and hence S-regularity.

Definition 3.4. Let $G_1^{S_1} = (V_1 E_1 \sigma_1, \psi_1)$ and $G_2^{S_2} = (V_2 E_2 \sigma_2, \psi_2)$ be given two S-valued graphs. A mapping $\phi = (\alpha, \beta) : G_1^{S_1} \to G_2^{S_2}$ is a **S-valued edge homomorphism** if

(i) $\alpha : V_1 \rightarrow V_2$ is a graph homomorphism

(ii) $\beta: S_1 \rightarrow S_2$ is a semiring homomorphism with

$$\beta(\psi_1(v_i, v_i) = \psi_2(\alpha(v_i), \alpha(v_i)) \ \forall (v_i, v_i) \in E_1$$

Example 3.5. Let S_1 , S_2 , $G_1^{S_1}$, $G_2^{S_2}$, α , β be as in example 3.2

Then α is a graph homomorphism and β is a semiring homomorphism.

Now
$$\beta(\psi_1(v_1, v_3)) = \beta(a) = f = \psi_2(\alpha(v_1), \alpha(v_3)) = \psi_2(u_5, u_4)$$

$$\beta(\psi_1(v_1, v_4)) = \beta(a) = f = \psi_2(\alpha(v_1), \alpha(v_4)) = \psi_2(u_5, u_6)$$

$$\beta(\psi_1(v_2,\,v_5))=\beta(a)=f=\psi_2(\alpha(v_2),\,\alpha(v_5))=\psi_2(u_2,\,u_3)$$

$$\beta(\psi_1(v_2, v_4)) = \beta(b) = h = \psi_2(\alpha(v_2), \alpha(v_4)) = \psi_2(u_2, u_6)$$

$$\beta(\psi_1(v_3, v_5)) = \beta(a) = f = \psi_2(\alpha(v_3), \alpha(v_5)) = \psi_2(u_4, u_3)$$

Therefore
$$\beta(\psi_1(v_i, v_i)) = \psi_2(\alpha(v_i), \alpha(v_i)) \ \forall \ (v_i, v_i) \in E_1$$

 $\Rightarrow \phi = (\alpha, \beta)$ is a S-valued edge homomorphism.

Remark 3.6. From the above example we observe that S-valued edge homomorphism need not be, in general, preserve S-edge regularity and hence S-regularity.

Definition 3.7. $\phi = (\alpha, \beta) : G_1^{S_1} \to G_2^{S_2}$ is an onto homomorphism if both α and β are onto homomorphism.

Remark 3.8 ϕ =(α , β): $G_1^{S_1} \rightarrow G_2^{S_2}$ is an onto S-valued vertex (edge) homomorphism if $G_2^{S_2}$ is a S-valued

veretex (edge) homomorphic image of $G_1^{S_1}$. That is $G_2^{S_2} = \phi(G_1^{S_1})$.

Theorem 3.9.If $\beta: S_1 \to S_2$ be a semiring homomorphism where S_1 and S_2 are semirings and if $a \le b$ in S_1 then $\beta(a) \le \beta(b)$. That is β preserves canonical preorder.

Proof: Let $\beta: S_1 \rightarrow S_2$ be a semiring homomorphism and $a \leq b$ in S_1

Then there exist $c \in S_1$ such that $a + c = b \in S_1$

Therefore $\beta(a + c) = \beta(b) \in S_2$

$$\Rightarrow \beta(a) + \beta(c) = \beta(b) \in S_2$$

$$\Rightarrow \beta(a) \leq \beta(b)$$

That is β preserves canonical pre order.

Theorem 3.10. If a map $\phi = (\alpha, \beta) : G_1^{S_1} \to G_2^{S_2}$ is a S-valued vertex homomorphism then it is also a S-

valued edge homomorphism.

Proof: Let $G_1^{S_1} = (V_1, E_1, \sigma_1, \psi_1)$ and $G_2^{S_2} = (V_2, E_2, \sigma_2, \psi_2)$ be two given S-valuedgraphs. Let $\phi = (\alpha, \beta)$:

 $G_1^{S_1} \rightarrow G_2^{S_2}$ be a S – valued vertex homomorphism.

Therefore $\alpha: V_1 \to V_2$ is a graph homomorphism and $\beta: S_1 \to S_2$ is a semiring homomorphism with β (σ_1 (v_1) = σ_2 (α (v_i)) $\forall v_i \in V$ (1).

Claim: $\beta(\psi_1(v_i, v_j)) = \psi_2(\alpha(v_i), \alpha(v_j)) \ \forall \ (v_i, v_j) \in E_1.$

For, Let $(v_i, v_i) \in E_1$. Since α in a graph homomorphism, $(\alpha(v_i), \alpha(v_j)) \in E_2$.

In particular, $\beta(\sigma_1(v_i)) = \sigma_2(\alpha(v_i))$ and $\beta((\sigma_1(v_j)) = \sigma_2(\alpha(v_j))$. Without loss of generality, let us assume $\sigma_1(v_i) \leq \sigma_1(v_i)$. By above theorem $\beta(\sigma_1(v_i)) \leq \beta(\sigma_1(v_i))$ (2).

Therefore $\psi_1(v_i, v_j) = \min \{\sigma_1(v_i), \sigma_2(v_j)\} = \sigma_1(v_i)$

 $\Rightarrow \beta(\psi_1(v_i, v_i)) = \beta(\sigma_1(v_i)) = \sigma_2(\alpha(v_i))...(3).$

Now, $\psi_2(\alpha(v_i))$, $\alpha(v_i)$) = min{ $\sigma_2(\alpha(v_i))$, $\sigma_2(\alpha(v_i))$ }

 $= \min\{\beta(\sigma_1(v_i)),\,\beta(\sigma_1(v_i))\} = \beta(\sigma_1(v_i)) = \sigma_2(\alpha(v_i)) \quad \quad (4)$

From (3) and (4), β ($\psi_1(v_i, u_i) = \psi_2(\alpha(v_i), \alpha(v_i))$.

Similarly if $\sigma_1(v_i) \leq \sigma_1(v_i)$, then also $\beta(\psi_1(v_i, u_i)) = \psi_2(\alpha(v_i), \alpha(v_i))$.

Since $(v_i, v_i) \in E_1$ is arbitrary, $\beta(\psi_1(v_i, v_i)) = \psi_2(\alpha(v_i), \alpha(v_i)) \ \forall (v_i, v_i) \in E_1$.

 $\Rightarrow \beta: S_1 \rightarrow S_2$ is a semiring homomorphism with

 $\beta\left(\psi_{1}\left(v_{i},v_{j}\right)\right)=\psi_{2}\left(\alpha(v_{i}),\,\alpha(v_{j})\right)\,\forall\,\left(v_{i},\,v_{j}\right)\in E_{1}.$

Therefore $\phi = (\alpha, \beta) : G_1^{S_1} \to G_2^{S_2}$ is a S – valued edge homomorphism.

Remark 3.11. Converse of the above theorem is not true.

Thatis, every S-valued edge homomorphism mapping is not a S-valued vertex homomorphism.

For, consider a semiringhomomorphism $\beta: S_1 \rightarrow S_2$ as in example 3.2. Let $G_1^{S_1}$ and $G_2^{S_2}$ be as follows:

Define $\alpha: V_1 \rightarrow V_2$ by $v_1 \mapsto u_3$; $v_2 \mapsto u_5$; $v_3 \mapsto u_2$; $v_4 \mapsto u_6$; $v_5 \mapsto u_7$; $v_6 \rightarrow u_4$. Clearly, $(v_1, v_4) \mapsto (u_3, u_6)$; $(v_1, v_2) \mapsto (u_3, u_5)$; $(v_1, v_6) \mapsto (u_3, u_4)$; $(v_2, v_3) \mapsto (u_5, u_2)$; $(v_2, v_6) \mapsto (u_5, u_4)$; $(v_3, v_4) \mapsto (u_2, u_6)$; $(v_3, v_5) \mapsto (u_2, u_7)$; $(u_4, u_5) \mapsto (u_6, u_7)$; $(v_5, v_6) \mapsto (u_7, u_4)$.

$$\Rightarrow (v_i, v_j) \in E_1 \Rightarrow (\alpha(v_i), \alpha(v_j)) \in E_2 \forall (v_i, v_j) \in E_1.$$

Therefore α is a graph homomorphism.

Now
$$\beta(\psi_1(v_1, v_4)) = \beta(a) = f = \psi_2(\alpha(v_1), \alpha(v_4)), = \psi_2(u_3, u_6)$$

$$\beta(\psi_1(v_1, v_2)) = \beta(a) = f = \psi_2(\alpha(v_1), \alpha(v_2)) = \psi_2(u_2, u_3)$$

$$\beta(\psi_1(v_1, v_6)) = \beta(a) = f = \psi_2(\alpha(v_1), \alpha(v_6)) = \psi_2(u_2, u_4)$$

$$\beta(\psi_1(v_2,v_3)) = \beta(b) = h = \psi_2(\alpha(v_2),\alpha(v_3)) = \psi_2(u_5,u_2)$$

$$\beta(\psi_1(v_2, v_6)) = \beta(a) = f = \psi_2(\alpha(v_2), \alpha(v_6)), = \psi_2(u_5, u_4)$$

$$\beta(\psi_1(v_2,v_4)) = \beta(a) = f = \psi_2(\alpha(v_2),\alpha(v_4)) = \psi_2(u_2,u_6)$$

$$\beta(\psi_1(v_3,v_5)) = \beta(b) = h = \psi_2(\alpha(v_3),\alpha(v_5)), = \psi_2(u_2,u_7)$$

$$\beta(\psi_1(v_4,v_5)) = \beta(a) = f = \psi_2(\alpha(v_4),\alpha(v_5)), = \psi_2(u_6,u_7)$$

$$\beta(\psi_1(v_5, v_6)) = \beta(a) = f = \psi_2(\alpha(v_5), \alpha(v_6)), = \psi_2(u_7, u_4)$$

$$\Rightarrow \beta (\psi_1(v_i,v_i)) = \psi_2(\alpha(v_i),\alpha(v_i)) \ \forall (v_i,v_i) \in E_1 \dots (*).$$

 \Rightarrow β is a semiring homomorphism satisfying equation (*).

Therefore $\phi = (\alpha, \beta)$: $G_1^{S_1} \to G_2^{S_2}$ is a S – valued edge homomorphism.

Now, In Particular, $\sigma_1(v_1) = a \Rightarrow \beta$ ($\sigma_1(v_1) = \beta$ (a) = f and σ_2 ($\alpha(v_1) = \sigma_2(u_3) = h$.

Therefore $\beta(\sigma_1(v_1)) \neq \sigma_2(\alpha(v_1)) \Longrightarrow \phi = (\alpha, \beta)$ is not a S-valued vertex homomorphism.

It is a S – valued edge homomorphism but not a S – valued vertex homomorphism.

Remark 3.12. In the above example, if we assign $\sigma_2(u_5) = h$,

Then $\beta(\sigma_1(v_1)) \neq \sigma_2(\alpha(v_1))$ (1).

And $\beta(\psi_1(u_1, u_2)) = \beta(a) = f$; $\psi_2(\alpha(v_1), \alpha(v_2)) = \psi_2(u_3, u_5) = h$.

Therefore $\beta (\psi_1(u_1, u_2) \neq \psi_2(\alpha(v_1), \alpha(v_2))$ (2)

From (1) and (2), $\phi = (\alpha, \beta)$ is neither a S – valued vertex nor edge homomorphism.

Remark 3.13. If α is not a graph homomorphism then we can't talk about S-valued vertex or edge homomorphism.

Definition 3.14. A mapping $\phi = (\alpha, \beta)$: $G_1^{S_1} \to G_2^{S_1}$ is said to be a S-valued semi homomorphism if it is both S –valued vertex and edge homomorphism.

Example 3.15. Consider $\phi = (\alpha, \beta)$: $G_1^{S_1} \rightarrow G_2^{S_1}$ in example 3.2.

From examples 3.2 and 3.5, ϕ is both S-valued vertex and edge homomorphism.

Therefore it is a S-valued semi homomorphism.

Theorem 3.16. A mapping $\phi = (\alpha, \beta) : G_1^{S_1} \to G_2^{S_1}$ is a S-valued semi homomorphism if and only if it is a S – valued vertex homomorphism.

Proof: Let ϕ be a S – valued vertex homomorphism.

By theorem 18, it is a S-valued edge homomorphism.

Therefore ϕ is a S –valued semi homomorphism.

By the definition of S – Valued semi homomorphism, converse follows.

Example 3.17. Consider the semiring ($S = \{0, a, b, c\}, +, .$) in which '+' and '.' are defined as follows:

+	0	a	b	c
0	0	a	b	c
a	a	b	c	c
b	b	b	c	c
c	c	c	c	c

	0	a	b	c
0	0	0	0	0
a	0	a	b	c
b	0	b	c	c
С	0	c	С	c

Here 0 is an additive identity element. a is a multiplicative identity element.

That is ais a unit element.

Consider the identity map $\beta: S \to S$ which maps $0 \mapsto 0$; $a \mapsto a$; $b \mapsto b$; $c \mapsto c$.

Then zero element and unit element are mapped into zero and unit element. And $\beta(a+b) = \beta(a) + \beta(b)$; $\beta(a.b) = \beta(a)$. $\beta(b) \ \forall \ a, \ b \in S$.

 $\Rightarrow \beta$ is a semiring homomorphism which is both one-one and onto.

Let $G_1^{S_1}$ and $G_2^{S_2}$ be as follows:

Define $\alpha: G_1^{S_1} \to G_2^{S_1}$ as

$$v_1 \mapsto u_1 : v_2 \mapsto u_4; v_3 \mapsto u_2 ; v_4 \mapsto u_5; v_5 \mapsto u_3$$
. then

 $(v_i,\,v_j)\in E_1{\Longrightarrow}\,(\alpha(v_i),\,\alpha(v_j))\in E_2.$

 \Rightarrow a is a graph homomorphism.

Clearly α is one-one and onto.

Therefore a is a graph isomorhism and β satisfies, $\beta(\sigma_1(v_i)) = \sigma_2(\alpha(v_i)) \ \forall \ v_i \in V_1$.

 $\beta(\psi_1(v_i,v_i)) = \psi_2(\alpha(v_i),\,\alpha(v_i)) \,\,\forall\,\, (v_i,\,v_i) \in G.$

Therefore $\phi = (\alpha, \beta)$ is as S-valued semi homomorphism.

Remark 3.18. A S-valued semi homomorphism $\phi = (\alpha, \beta)$ is a S-valued homomorphism if α is a graph isomorphism.

Example 3.19. Consider the above example in which α is an isomorphism, Therefore $\phi = (\alpha, \beta)$ which is defined in the above example is a S-valued homomorphism.

Theorem 3.20. If $\phi = (\alpha, \beta)$ is a S – valued vertex homomorphism from a vertex regular graph $G_1^{S_1}$ with S_1 – vertex set $\{a\}$ into a S – valued graph $G_2^{S_2}$ then $\phi(G_1^{S_1})$ is a S-vertex regular graph with S-vertex set $\{\beta(a)\}$.

Proof: Let $\phi = (\alpha, \beta)$: $G_1^{S_1} \rightarrow G_2^{S_2}$ be a S-valued vertex homomorphism

Where $G_1^{S_1} = (V_1, E_1, \sigma_1, \psi_1), G_2^{S_2} = (V_2, E_2, \sigma_2, \psi_2).$

Then α is a graph homomorphism preserving edges and β is a semiring homomorphism with β ($\sigma_1(v_i)$) = $\sigma_2(\alpha(v_i)) \ \forall \ v_i \in V_1$.

Since $G_1^{S_1}$ is a S – valued vertex regular graph, $\sigma_1(v_i) = a$, for some $a \in S$ and for all $v_i \in V_1$.

Therefore β (σ_1 (v_i)) = β (a) \forall $i \Rightarrow \sigma_2(\alpha(v_i)) = \beta(a) \forall i$.

Let $u_i \in \phi(G_1^{S_1})$ be arbitrary. Then there exist $v_i \in V_1$ such that $u_i = \alpha(v_i)$. (since α is graph homomorphism)

Since β is a semiringhomomorphism β ($\sigma_1(v_i)$) = σ_2 (α (v_i)).

 $\Rightarrow \beta$ (a) = σ_2 (u_i). Since u_i is arbitrary, σ_2 (u_i) = β (a) \forall u_i $\in \phi$ ($G_1^{S_1}$)

Therefore $\phi(G_1^{S_1})$ is a S-valued vertex regular graph with S-vertex set $\{\beta(a)\}$.

4. CONCLUSION

All the result proved for S-valued homomorphisms coincide with S- valued vertex and edged homomorphisms. Further study is required to count the number of S –valued morphisms.

REFERENCES

- 1. Chris Godsil and Gordon Royle: Algebraic Graph Theory, Springer, 2001.
- 2. Jonathan Golan: Semirings and Their Applications, Kluwer Academic Publishers, London.
- 3. Rajkumar. M and Chandramouleeswaran. M: Homomorphisms on S –Valued Graphs IJETST Vol.03, Issue (10), October (2016), 4965-4703.
- 4. Rajkumar. M, Jeyalakshmi. S. and Chandramouleeswaran. M: Semiring Valued Graphs IJMSEA Vol. 9(3), (2015), 141-152.
- 5. Welsh, D.J.A: Complexity: knots, colourings and counting, vol. 186 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, (1993).