

Sushama et al www.ijetst.in Page 4068

IJETST- Vol.||03||Issue||06||Pages 4068-4073||June||ISSN 2348-9480 2016

International Journal of Emerging Trends in Science and Technology

 Impact Factor: 2.838 DOI: http://dx.doi.org/10.18535/ijetst/v3i06.04

Extensible Compiler

Authors

Sushama
1
, Mrs Reema

2

1
M-Tech student of Department of Computer, Science and Engg, Sat Kabir Institute of Technology and

Management Bahadurgarh,Haryana-124507

Email: Sushama.angel@gmail.com
2
A.P in CSE Dept, Sat Kabir Institute of Technology and Management Ladrawan, Bahadurgarh-

Haryana-124507

Email: arorareema@live.com

ABSTRACT

A compiler is a computer program or a set of program which converts the data from source code to object

code, source code mean human understandable form whereas object means machine understandable form

i.e.binary language. The compilers made till know are used to transform the a specific language and

provides only the features which are added in it while designing the compilers, no other features are

supported by the compiler other than those mentioned while designing it. This problem can be solved using

extensible compilers. The basic idea used here is to extend a programming language by by adding new

syntax, features etc. through adding extension modules which act as plug-ins for the compiler. Certain

challenges are faced while building such compiler like creation of extensible that are simultaneously

powerful, to allow effective extensions, convenient to make these extensions easy to write; and composable

,to make it possible to use independently-written extensions together.

In this paper, I have tried to make such a compiler which can act as a plug-in and extend a compiler by

adding features and syntax to it .

Keywords: Source code, Object code, syntax

INTRODUCTION

Extensible programming is a term used in

computer science to describe a style of computer

programming that focuses on mechanisms to to

extend the programming language, compiler and

runtime environment. This paper is also about

compilers and programming languages. A good

compiler is necessary to do productive

programming,a good programming language and

compiler improves the productivity of the

programmer.

Different languages are made in this regard,some

of them excel at symbolic manipulation, some at

numeric computation ,while some others in more

specific domains. Programmers often find it useful

to build custom language extensions that add

abstractions or checking to the task of hand.

For example, James Gosling’s made ace

preprocessor which makes building specialized

graphics operators an easy task. Kohler’s Click

router uses a special language to describe outer

configurations and module properties. Krohn’s

tame preprocessor provides convenient syntax for

Mazières’s libasync. Engler’s Magik allows

userspecified checks and code transformations.

Holzmann’s Uno enables user specified flow-

sensitive checks. Torvalds’s Sparse adds function

and pointer annotations

so it can check function pairings and address

space constraints. These tools duplicate the

parsing and semantic analysis required of any C

Sushama et al www.ijetst.in Page 4069

IJETST- Vol.||03||Issue||06||Pages 4068-4073||June||ISSN 2348-9480 2016

compiler. Engler built Magik by editing the GNU

C compiler; most of the other tools duplicate the

work of a compiler without being derived from

one. Both approaches—editing an existing

compiler or starting from scratch—require

significant effort, so only the highly motivated

tend to write these tools. These tools would be

easier to build if the compiler had been more

readily extensible and reusable.

The basic idea used here is that the compilers can

and should allow programmers to extend

programming languages with new syntax,

features, and restrictions by writing extension

modules that act as plugins for the compiler. We

call such compilers extension-oriented. Here I

have proposed extension-oriented syntax trees

(XSTs) as a mechanism for building extension-

oriented compilers and then evaluated them in the

context of an extension-oriented compiler for the

C programming language.

A compiler structured around XSTs makes it

possible to implement derived languages as a

collection of small, mostly independent extension

modules. Thus, the target user of an extension-

oriented compiler is a would-be language

implementor who lacks the time or expertise to

write a compiler from scratch. Extensibility via

plug-in modules is the dominant extensibility

mechanism in today’s software—operating

systems, web browsers, editors, multimedia

players, and even games use plug-ins—and I

believe that compilers will eventually adopt this

model.

RELATED WORK

A number of techniques are there for making

extensible compilers. Hence, to carry out the

work, large number of papers had to be surveyed.

Lots of information was collected. All these

technique are used for giving high ranking to their

web pages. Programmers have been exploring

ways to extend programming languages for as

long as they have been programming. We six

main threads of language extension research:

1. macros

2. extensible languages

3. attribute grammars

4. term rewriting systems

5. modular compilers

6. extensible compilers.

Macros

Macros were perhaps the earliest programmer-

controlled way to raise the level of abstraction of a

language. In 1959, McIlroy was one of the first to

use macros to raise the level of abstraction of a

compiled source language
[40]

. Although his paper

gives an example implementation for Algol, the

bulk of the text is concerned with applying a

macro system to an assembly language. This

system, like most since, expanded macros by text

substitution into templates.

Extensible languages

Macros demonstrated the utility of programmer-

defined portions of a language, and by the 1970s,

extensible languages were a popular idea. The

term ‘‘extensible’’ is problematic: it usually

means ‘‘more flexible than normal,’’ so it only

has a concrete meaning in context. For example,

Algol 68 may have been responsible in part for

kick-starting interest in tensibility, but the term

meant something different than what today’s

programmers would mean

Attribute grammars and term rewriting

systems

Knuth introduced attribute grammars as a

formalism for defining the semantics of context-

free languages; they describe computations on the

parse tree. More recent systems, such as Silver

have built extensible language translators around

attribute grammars. Term rewriting systems are a

very different formalism based on syntactic

substitution, like macros. They differ from macros

in that rewrite rules apply not just to the original

text but also to rewritten output. The ASF+SDF

and Stratego systems are recent language

translation systems based on term rewriting.

Attribute grammar systems and term rewriting

systems suffer from the same limitation: because

both formalisms are Turing-complete, systems

Sushama et al www.ijetst.in Page 4070

IJETST- Vol.||03||Issue||06||Pages 4068-4073||June||ISSN 2348-9480 2016

based on them typically do not provide any other

computation mechanism, making the systems

elegantly simple for some computations and

frustratingly awkward for others. Attribute

grammars easily express type checking and other

local analyses. Term rewriting works best for

problems already framed as repeated rewriting,

like peephole optimization or lambda calculus

evaluation . Neither approach is particularly

convenient for nonlocal program manipulations or

algorithms like data flow analysis.

The work described in this dissertation adopts the

idea of attributes as a mechanism for allowing

extensions to interact and for structuring

computations like type checking.

It also adopts and refines the convenient pattern-

based syntax manipulations of term rewriting

systems. Importantly, this work does not require

either as the only computation mechanism.

Instead, it relies on a general-purpose

programming or ML for the implementation of

functionality that is most naturally expressed in

such a language.

Modular compilers

Many people have built clean, modular compilers

for research and teaching. One example, targeted

at research, is the SUIF compiler infrastructure.

SUIF was focused primarily on modularity in the

back end, to facilitate research on issues related to

code generation and performance, not on front end

issues like syntax extensions or type checking.

Another example, targeted at teaching, is Sarkar et

al.’s nanopass compiler framework . The nanopass

framework defines each translation pass using a

notation similar to Scheme’s macro patterns,

along with grammars describing the input and

output grammars for the translation pass.The

nanopass infrastructure uses the grammars to

create a parse tree that is accessed only via pattern

matching. Unlike this work, the nanopass

infrastructure makes no attempt at extensions or

composition of extensions. The compiler writer

threads the individual nanopasses together

explicitly to create the overall compiler. The

success of the nanopass approach for teaching a

compiler course suggests that the XST interfaces

should also be easy to use for programmers who

are not compiler experts.

Extensible compilers and compiler toolkits

Necula’s C Intermediate Language (CIL) was a

step closer to a compiler with an extensible front

end. CIL provides a simple IR-like representation

for C programs and makes it easy to write new

programs that use the CIL interface to transform

existing C programs. CIL’s extensions can do type

analyses and make semantic language changes,

but they cannot add new syntax to the language.

Nystrom’s Polyglot and Grimm’s xtc are

extensible compiler toolkits for Java and C,

respectively. Both provide the power targeted by

extension-oriented compilers, but they lack

composability of extensions. They are toolkits for

writing compilers rather than extensible compilers

themselves. Both also require intimate knowledge

of the compiler internals, which our work avoids.

For example, both systems require extension

writers to learn the Java data structure

rpresentation of the input programs, while

extension-oriented syntax trees allow extension

writers to manipulate input programs in terms of

the already-familiar concrete syntax.

PROPOSED WORK

In this paper three main artifacts are described.

1) The first is a set of language interfaces that

enable the creation of extension-oriented

compilers. Collectively, these interfaces

provide access to a data structure called an

extension-oriented syntax tree(XST).

2) The second artifact is an extension-

oriented compiler for C, written using

XSTs; this compiler is called xoc.

3) The third is a collection of extensions to

xoc. The central challenge in creating an

extension-oriented compiler is to design

and expose an extension interface that:

1. is powerful enough to implement actual

extensions.

2. does not require extension writers to be

compiler experts.

Sushama et al www.ijetst.in Page 4071

IJETST- Vol.||03||Issue||06||Pages 4068-4073||June||ISSN 2348-9480 2016

3. allows independently-written extensions to

be used together.

A single solution to all three challenges is to

structure the entire compilation process around

syntax trees that are first-class language objects

with well-integrated interfaces.

These syntax trees are called extension-oriented

syntax trees or XSTs. The four key interfaces to

XSTs are extensible grammars, which define the

conversions from text to

XSTs; syntax patterns, which allow allow

manipulation of XSTs using concrete syntax;

canonicalizers, which transform XSTs into a

canonical representation; and attributes, which

provide a mechanism for structuring and

sequencing computations and analyses on XSTs.

We have implemented these interfaces by

modifying a small language we designed called

zeta. Zeta has a small, simple implementation,

making it an ideal test bed for experimenting with

XSTs. Even so, the ideas behind XSTs are in no

way tied to zeta: XSTs could be added, with

perhaps more effort, to any standard programming

language.

Our Approach

The challenge in building an extension-oriented

compiler is to create an extension mechanism that

is powerful enough to implement the extensions

people want to write, but at the same time to keep

the extension mechanism limited enough that

extensions can be written without detailed

knowledge of the compiler and that multiple,

independently-written extensions can be used

simultaneously. In short, the challenge is

to build an extension mechanism in which

extensions are powerful, simple to write, and

composable. To meet this challenge, this

dissertation proposes the use of extension-oriented

syntax trees (XSTs). An XST is a conventional

data structure—a parse tree—used via four

unconventional interfaces: extensible grammars,

which define the conversions from text to XSTs;

syntax patterns, which allow manipulation of

XSTs using concrete syntax; canonicalizers,

which transform XSTs into a canonical

representation; and attributes, which provide a

mechanism for structuring and sequencing

computations and analyses on XSTs. Extensible

grammars, syntax patterns, and canonicalizers

make extensions powerful yet simple to write.

Attributes provide the connective glue that allows

extensions to reuse the compiler core and to

cooperate with each other to carry out

computations like type checking an expression

that combines features from multiple extensions.

The XST runtime support can be implemented by

a library, but the four interfaces require syntactic

and semantic changes to the language the

compiler is written in.

Implementation

This paper describes three main artifacts: first, a

set of language interfaces that provide support for

XSTs; second, an extension-oriented compiler for

C called xoc, implemented using XSTs; and third,

a variety of extensions written using xoc,

including recreations of the functionality of Alef

and Sparse. Collectively, these artifacts that

demonstrate that XSTs can be used to create an

extension-oriented compiler that meets the three

goals above: extensions are powerful, simple to

write, and composable.

XSTs provide the interface that connects the

extensions to xoc itself.

Adding XSTs to a programming language requires

more than just writing a library: XST support is

tightly integrated into the language itself, with its

own syntax and semantics. For our

implementation, we added the XST interfaces to a

simple new language we designed called zeta.

Using our own small language made it easy to

experiment with and refine the ideas behind

XSTs, but XSTs are not tied to zeta: one could

add support for them to any standard

programming language.

CONCLUSION

Compilers can and should allow programmers to

extend programming languages with new syntax,

features, and restrictions by writing extension

modules that act as plugins for the compiler. In

Sushama et al www.ijetst.in Page 4072

IJETST- Vol.||03||Issue||06||Pages 4068-4073||June||ISSN 2348-9480 2016

such a system, which we have named an extension

oriented compiler, the extension mechanism must

be powerful enough to implement the extensions

programmers want. At the same time, it must be

simple enough that extensions are short and do not

require detailed knowledge of the base compiler.

Finally, extensions need to be composable, so that

a programmer can use multiple, independently-

written extensions together in a single program.

ACKNOWLEDGMENT

I would like to thank my guide Mrs. Reema

Sachdeva for her indispensible ideas and

continuous support ,encouragement ,advice and

understanding me through my difficult times and

keeping up my enthusiasm, encouraging me and

building up my confidence during the completion

of this work. A special thanku note to my parents

for their infinite supply of love which kept me

going. They always inspired me to follow my

instincts.

REFERENCES

1. Andrew W. Appel. Modern Compiler

Implementation in C. Cambridge

University Press.

2. Apple Computer, Inc.. Dylan Reference

Manual..

3. Ken Arnold, James Gosling, and David

Holmes. The Java Programming

Language. Prentice Hall,

4. Jonathan Bachrach and Keith Playford.

The Java Syntactic Extender (JSE).

Proceedings of the 16
th

 ACM SIGPLAN

Conference on Object-Oriented

Programming, Systems, Languages, and

Applications, pages 31-42, Tampa Bay,

Florida, United States.

5. Jason Baker and Wilson C. Hsieh. Maya:

Multiple Dispatch Syntax Extension in

Java. Proceedings of the ACM SIGPLAN

2002 Conference on Programming

Language Design and Implementation,

pages 270-281, Berlin, Germany.

6. Alan Bawden. Quasiquotation in Lisp.

Proceedings of the 1999 ACM SIGPLAN

Workshop on Partial Evaluation and

Semantics-based Program Manipulation

(PEPM ’99), pages 4-12, San Antonio,

Texas, United States.

7. Thomas Anthony Bergan. Typmix: A

Framework For Implementing Modular,

Extensible Type Systems. Master’s thesis,

University of California Los Angeles

8. Computer History Museum. Fellow

Awards | 1997 Recipient Dennis Ritchie.

Available online at

http://www.computerhistory.org/fellowaw

ards/index.php?id=71.

9. William Clinger and Jonathan Rees.

Macros that Work. Proceedings of the

1991 ACM SIGPLAN- SIGACT

Symposium on Principles of Programming

Languages, pages 155-162.

10. Coverity. Linuxbugs.

http://linuxbugs.coverity.com Offline.

Available via archive.org at

http://web.archive.org/web/*/http://linuxbu

gs.coverity.com

11. Brad J. Cox and Andrew J. Novobilski.

Object-Oriented Programming: An

Evolutionary Approach. Addison-Wesley.

12. Glen Ditchfield. An Overview of Cforall.

Available online at

http://plg.uwaterloo.ca/~cforall.

13. Eelco Dolstra and Eelco Visser. Building

Interpreters with Rewriting Strategies.

Proceedings of the 2002 Workshop on

Language Descriptions, Tools, and

Applications, Grenoble.

14. Gabriel Dos Reis and Bjarne Stroustroup.

Specifying C++ concepts. Proceedings of

the ACM SIGPLAN-SIGACT

Symposium on Principles of Programming

Languages, pages 295-308.

15. R. Kent Dybvig, Robert Hieb, and Carl

Bruggeman. Syntactic Abstraction in

Scheme. Lisp and Symbolic Computation

5(4), pages 295-326.

16. Dawson R. Engler, David Yu Chen, and

Andy Chou. Bugs as Inconsistent

Behavior: A General Approach to

http://web.archive.org/web/*/http:/linuxbugs.coverity.com
http://web.archive.org/web/*/http:/linuxbugs.coverity.com
http://plg.uwaterloo.ca/~cforall

Sushama et al www.ijetst.in Page 4073

IJETST- Vol.||03||Issue||06||Pages 4068-4073||June||ISSN 2348-9480 2016

Inferring Errors in Systems Code.

Proceedings of the 2001 Symposium on

Operating Systems Principles, pages 57-

72, Banff.

17. Dawson R. Engler. Incorporating

Application Semantics and Control into

Compilation. Proceedings of the USENIX

Conference on Domain-Specific

Languages (DSL ’97), October 1997.

18. Bob Flandrena. Alef User’s Guide. Plan 9

Programmer’s Manual: Volume Two.

19. Bryan Ford. Parsing Expression

Grammars: a Recognition-Based Syntactic

Foundation. Proceedings of the 2004 ACM

SIGPLAN-SIGACT Symposium on

Principles of Programming Languages,

Venice, Italy.

20. James Gosling. Ace: a syntax-driven C

preprocessor, 1989. Available online at

http://swtch.com/gosling89ace.pdf

http://swtch.com/gosling89ace.pdf

