

Geetika Kapil et al www.ijetst.in Page 3709

IJETST- Vol.||03||Issue||03||Pages 3709-3714||March||ISSN 2348-9480 2016

International Journal of Emerging Trends in Science and Technology

 Impact Factor: 2.838 DOI: http://dx.doi.org/10.18535/ijetst/v3i03.13

Native Client: A Sandbox Technology

Authors

Geetika Kapil, Lata Bagle, Gohila Khatun, Mrs Ruchi Tawani

Abstract

Native Client is a sandbox technology, which run C and C++ compiled code in the browser in an efficient and

secure manner. To make this technology go independent of any architecture, portable native client let

developers to compile their code with Ahead Of time (AOT) translation. It brings the native code to the web

without the loss of the security and portability of the web.

INTRODUCTION

Native Client is an open source technology that

expands web programming beyond Java Script,

enabling us to enhance application without the loss

of security .The developers can work in their

preferred language. This paper digs in the

advantages of this technology, common use cases,

how to use it for porting Perl modules etc. The

Google has implemented the open source Native

Client project in the chrome Browser for Mac,

Windows and Linux.

The structure of the web application

An web application consists of the languages like

HTML,CSS ,JavaScript and a NaCl module written

in a language supported by the SDK. The SDK is

there for C and C++ , we have mainly worked on the

Perl language SDK.

A web application with and without Native Client

Why use Native Client?

It helps to run the compiled code in the browser at

near native speeds. It helps to harness the client’s

computational resources for 3D, CAD modeling,

client-side data analytics.

It gives the compiled code the same level of

portability and safety as the JavaScript.

Benefits of Native Client

Below are the advantages of the native client

1. Graphics, audio:-We can easily play 2D and 3D

games. Audio, respond to the mouse. Even the

application can run on multiple threads and access

memory directly without installing any plugins.

2. Portability:- It is possible now to write your

application once and run them on multiple operating

systems architecture.

3. Easy migration path to the web:- Its support to

the C and C++ modules make it easy for native

client to transit the desktop applications to the web.

4. Security: Double sandbox technology prevents

the system from malicious or buggy applications.

The model offers the safety to the traditional web

applications without the sacrifice of the performance

.The user need not even install the plugins required.

4. Easy migration path to the web:-It support of C

and C++ make it easy for native client to transit the

desktop applications to the web.

5. Security: Double sandbox technology prevents

the system from malicious or buggy applications.

Geetika Kapil et al www.ijetst.in Page 3710

IJETST- Vol.||03||Issue||03||Pages 3709-3714||March||ISSN 2348-9480 2016

Without allowing the user to install the plugin and

without the sacrifice of the performance the model

offers the safety of traditional web application.

6. Performance: It allows to harness the all

available CPU cores via a threading API and that

makes it to run at 5% to 15% of a native client. This

allows to run the games in the browser.

Common use cases

Following are the use cases defined:-

Existing software components: We need not write

the code that already works which helps us to

repurpose existing C and C++ software in web

application. Moreover, HTML 5 can also be

explored.

Legacy desktop applications: We can easily port

and recompile the exciting code on the computation

engine of our application.

Heavy computation in enterprise applications: To

avoid the unencrypted data to escape out of the

network. Native client helps us to run complex

algorithmic algorithms directly in the browser.

Multimedia applications: In the Native Client the

codes which process the sounds, images and movies

can easily be added in the form of the module.

Games: Web applications can run at close to native

speeds, they can reuse existing

multithreaded/multicore C/C++ code bases. They

easily take in control of the low –latency audio,

OpenGL ES and networking APIS with

programmable shaders.

The AI modules make it possible for sophisticated

web games to run. It is easy now to run the

unchanged application on various systems.

How Native Client works:

Native Client is consists of:

Tool chains: These are a set of a compiler, linkers

that transform C/C++ code into portable Native

Client modules .

Runtime components: These are the components

embedded in the browser that allow the execution of

Native Client modules more securely and efficiently.

The diagram given below shows how the

components react

The Native Client tool chains and their outputs

Tool chains

It is consist of a compiler, a linker, an assembler and

other tools which is used to convert C/C++ source

code into a module which is easily loadable by a

browser

Following are the two tool chains which NaCl

provides:-

 In the left of the diagram above is Portable

Native Client (PNaCl, pronounced

“pinnacle”). A single portable (.pexe)

module is produced by LLVM based tool

chain.

 At runtime an ahead-of-time (AOT)

translator, built into the browser, translates

the .pexe into native code for the client

machine.

The right side of the same diagram shows (non-

portable) Native Client. Multiple architecture-

dependent (.nexe) modules that are packaged into an

application are produced by a GCC based tool chain.

Based on the architecture of client machine at

runtime the browser decides which .nexe modules to

be loaded.Most of the applications can run with a

PNacl tool chain.

Security

To provide the security for the client implementing

native client code we ensure the following things:-

-The NaCl sandbox sees to it that code access

system resources only through safe, whitelisted

APIs, and operates them without attempting to

interfere with other code running either within the

browser or outside it

Geetika Kapil et al www.ijetst.in Page 3711

IJETST- Vol.||03||Issue||03||Pages 3709-3714||March||ISSN 2348-9480 2016

-The validator checks the code and data patterns

before running to make sure they are safe.

-With restricted permission the native client module

always executes in a process with restricted

permission. The process can interact with the

outside world through defined browser interfaces.

Because the native client is a combination of Nacl

Sandbox and the Chrome sandbox it is sometimes

said as double sandbox technology.

Portability

To compile C/C++ source code to portable bit code

executable (.pexe) PNacl employs compiler

technology.

PNaCl bit code is an OS- and architecture –

independent format that can be embedded in web

application and distributed on the web. PNaCl

translator runs .pexe modules. The translator

compiles a .pexe to a .nexe and executes .nexe in

Native Client sandbox. The translator uses caching

to avoid the recompiling the .pexe if it was already

compiled on the client browser. The .nexe modules

are not allowed to be distributed on the open web

because it is architecture –specific but can easily be

compiled in the browser.

Structure of a web application

Following are the set of files in the Native Client:-

HTML and CSS: Through the embed tag the

HTML file tells the browser where it can find the

.nmf file as shown below:-

<embedname="mygame"src="mygame.nmf"type="

application/x-pnacl"/>

Manifest: The manifest finds the respective module

to load and also specifies options.

. For example, “mygame.nmf” might look like this:

{...

...

"url":"mygame.pexe",

}

.pexe (portable NaCl file):It is the compile native

Client module using the Pepper API,it is also the

medium between the JavaScript and other browser

resources.

Structure of a web application

Pepper plug-in API

Pepper is an open source, cross platform C/C++ API

for web browser plug-in to access system-level

functions in a safe and portable way .It allows a

C/C++ module to communicate with the hosting

browser.

It provides analogous API’s of OS-level calls that

module can use. It can be used to gain access to the

full browser capability, including

 We can talk to the JavaScript code in our

application from the C++ code in our Nacl

module.

 Doing file I/O.

 Playing audio.

 Rendering 3D graphics.

It includes both a C API and a C++ API. The C++

API is a set of bindings written on top of the C API.

 Native Client comes in two flavors.

Portable Native Client(PNaCl):-Commonly known

as pinnacle it runs single, portable (.pexe)

executables and is generally available in

implementation of the Chrome. For the purpose of

client hardware, a translator built into the chrome

translates the .pexe into native code .It can be hosted

from any web server easily.

Native Client (NaCl): It runs architecture-

dependent (.nexe) modules, which are packed into

an application. based on the architecture of the client

machine. The browser decides which .nexe to load.

Native Client (NaCl)

By the use of advanced Software Isolation technique

the Native Client enables the execution of native

code securely and efficiently inside the web

https://developer.chrome.com/native-client/devguide/coding/file-io.html
https://developer.chrome.com/native-client/devguide/coding/audio.html
https://developer.chrome.com/native-client/devguide/coding/3D-graphics.html
https://developer.chrome.com/native-client/c-api.html
https://developer.chrome.com/native-client/cpp-api.html

Geetika Kapil et al www.ijetst.in Page 3712

IJETST- Vol.||03||Issue||03||Pages 3709-3714||March||ISSN 2348-9480 2016

application .It also allows us to harness a client

machine computational power to the fullest extent

by running compiled C and C++ code at near –

native speed. It also exposes CPU full capability,

including SIMD vectors and multiple-core

processing with shared memory.

Usually HTML, CSS, JavaScript bundles were

hosted on a server and run in a web browser which

is generally working on all platforms for years.

Executables which are architecture- specific are not

a good fit for distribution on the web.

Portable Native Client (PNaCl):-It solves the

problem of portability by splitting the process of

compilation into two parts:-Compilation of the

source code to the bit code executable (.pexe)

-translation of the bit code to a host-specific

executable as the module loads in the browser but

prior to any code execution

This helps Native Client to align with the existing

open web technologies such as JavaScript. The user

machine is able to run a .pexe module as a part of an

application (along with HTML, CSS, and

JavaScript)

With the help of PNacl we can generate single .pexe

rather than multiple .nexe. The .pexe uses an

abstract, architecture and OS-independent format.

This is the sole reason why it does not suffer from

the problem of portability.

Nacl and PNacl have the same level of security,but

pinnacle can be more efficient on some operating

systems than the others. If an existing architecture is

enhanced, the .pexe doesn’t need to be recompiled

and future versions of hosting environments will not

have any problem executing the .pexe, even on new

architectures.

When to use P NaCl: The only way to deploy

Native Client modules without the Google Web

Store is the pinnacle. Without installing browser

plug-in, Chrome can easily translates. pexe modules

and support their use in web applications. By using a

P Nacl tool chain, we can take the advantage of the

conveniences of PNacl, such as not having to

explicitly the application for all supported

architectures.

When to use NaCl

We can use NaCl if any of the following applies to

our application:

 Our application requires architecture-specific

instructions such as, for example, inline

assembly.

 Portable SIMD Vectors tries to offer –high

performance equivalents which are portable.

Our application uses dynamic linking. It supports

static linking with the P Nacl port of the newly C

standard library.

Something are not supported in P Nacl like dynamic

linking and glibc. The work of supporting dynamic

linking is already in place.

Taking the address of a label for computed go to or

nested functions are not supported by GNU

extensions.

Porting Perl

PNaCl already has support for C and C++, and

virtual machine such as JavaScript, Lau, Python and

Ruby.

We are working on LLVM bit code so that this

language can target on .This will also help to make

sure that the language virtual machine APIs work

well on the Net platform.

For porting Perl we require following prerequisites.

Prerequisites

The minimum requirements for using web ports are:

 python 2.7

 python-dev

 gclient (from depot tools)

 Native Client SDK

The following tools are required to build the

packages from the source .These tools are required

by the build scripts .

 make

 curl

 sed

 git

To work on ports we would require this all

 pkg-config

 autoconf, automake, libtool

 cmake

 texinfo

 gettext

Geetika Kapil et al www.ijetst.in Page 3713

IJETST- Vol.||03||Issue||03||Pages 3709-3714||March||ISSN 2348-9480 2016

 libglib2.0-dev >= 2.26.0 (if you want to

build glib)

 xsltproc

We can use homebrew to install these by executing

the following commands:-

$ brew install autoconf automake cmake get text

libtool pkg-config

On 64-bit Ubuntu/Trusty systems we need to install

 libssl-dev:i386

 zlib1g-dev:i386

These required for the builds system for native

Python modules which relies on 32 bit host

platformbuilds of Python. This in ahead linked to the

development versions of zlib and libssl

On older Debian/Ubuntu systems these packages

were known as:

 libssl1.0.0:i386

 lib32z1-dev

The tools listed below are also needed in order to

run some of the binaries in 32-bit system. In the

Nacl SDK.

 libglib2.0-0:i386

 libstdc++6:i386

How to Checkout

Follow the following steps to correctly check the

web ports

1)Create a directory:

$ mkdirwebports

$ cdwebports

2)Create a .gclient Configuration:

$ gclientconfig --unmanaged --name=src \

https://chromium.googlesource.com/webports.git

 https://chromium.googlesource.com/webports/

 https://github.com/adlr/naclports

3)Sync the code and dependencies:

$ gclient sync --with_branch_heads

The pepper canary is used by the master branch .We

need to switch the corresponding pepper X branch

for older SDK.

e.g:

$ cdsrc

$ git checkout -b pepper_49 origin/pepper_49

$ gclient sync

Building

The path to set the NACL_SDK_ROOT

environment variable on the top directory of the

Native Client SDK is absolute.

To build one or more packages the top level make

file is used as a quick way to build on one or more

packages..Taking an example, make libvorbis will

help in building libvorbis and libogg .make all will

help in building all the packages. There are 4

possible architectures that NaCl modules can be

compiled for: i686, x86_64, arm, pinnacle. The web

ports build system can be built just a single time. By

setting the NACL_ARCH environment variable we

can have our choice as seen below:-

$ cdsrc

$ NACL_ARCH=arm make openssl

There is more than one tool chain is available for

some of the q=architectures. We can have a choice

between new lib and g-libc for x 86 platforms. By

specifying the Tool chain environment variable we

can default tool chain to pinnacle.

$ NACL_ARCH=i686 TOOLCHAIN=glibc make

openssl

By executing the command makeall.shscript we can

build a certain package for all architectures and all

tool chains.

e.g.:

$./make_all.sh openssl

In order to make use of the libraries, headers and

libraries are installed into the tool chains directly so

there is no need to add extra –l or –L.

We can follow the following path to see the source

code and build output for each package.

out/build/<PACKAGE_NAME>

To make the debug packages set NACL_DEBUG=1

or PASS—debug to the web ports script. They are

by default available in release configuration.

Note: Each package has its own license. Please read

and understand these licenses before using these

packages in the projects.

For Windows :The all scripts are to be launched

from a Cygwin shell as they are written in

bash.Webports are only rested in Linux and

windows framework so as YMMV

Geetika Kapil et al www.ijetst.in Page 3714

IJETST- Vol.||03||Issue||03||Pages 3709-3714||March||ISSN 2348-9480 2016

Binary Packages

By default web ports will attempt to install binary

packages rather than building them from source. The

build bots produce the binary packages and store

them in Google cloud storage. The index of current

binary packages is stored inlib/prebuilt.txt and this is

currently manually updated by running build

tools/scan_packages.py. The package will always be

built from source if the package version does not

match the version. To build a package from source

we can pass-from –source or FROM_SOURCE=1

on the make command line.

Emscripten Support

The build system contains very early alpha support

for building packages with Emscripten. To do that

we require the Emscripten SDK to be installed and

configured (with the Emscripten tools in the PATH).

To build for Emscripten builds with TOOLCHAIN

= emscripten.

Running the Examples

Out. Publish contains all the Applications/Examples

that build runnable web packages .We will need a

web server to run them in chrome by executing the

following command :

$make run

After a local web server to start serving the content

we can view the result at https://localhost:5103 to

have a look at the output.

Conclusion

Native Client uses software which provides fault

isolation and a secure runtime to direct system

interaction and side effects through interfaces

handled by the Native Client. Native Client gives

operating system portability of binary code while

supporting performance-oriented features which are

generally absent from web application programming

environments, instruction set extensions such as

SSE,Thread support and use of compiler intrinsic

and hand-coded assembler. We combine these

properties in an open architecture that encourages

community review and 3rd-party tools.

As an application platform, the modern web browser

provides together a remarkable combination of

resources, high productivity, programming

languages such as JavaScript, including seamless

access to Internet resources and the richness of the

Document Object Model (DOM) for user interaction

and graphic presentation. While these strengths put

the browser in the forefront as a goal for new

application development, it remains handicapped in

a critical dimension: computational performance.

Thanks to Moore’s Law and the zeal with which it is

observed by the hardware community, despite this

handicap many interesting applications get adequate

performance result in a browser. But there remains a

set of computations that are generally not suitable

for browser-based applications due to performance

constraints, for example: simulation of

computational fluid-dynamics, Newtonian physics

and high-resolution scene rendering.

References

1. Google's Native Client engineering team has

published the following papers about Native

Client technology:

2. http://cacm.acm.org/magazines/2010/1/5576

8-native-client-a-sandbox-for-portable-

untrusted-x86-native-code/fulltext

3. http://yadda.icm.edu.pl/yadda/element/bwme

ta1.element.ieee-000005207638

4. http://ieeexplore.ieee.org/lpdocs/epic03/wrap

per.htm?arnumber=5207638

	Links
	Prerequistes
	How-to-Checkout
	Building
	Binary-Packages
	Emscripten-Support
	Running-the-examples

