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Abstract  

Drug design and drug innovation are critical importance in human fitness. To design a drug must 

successfully to the compound target from the substitute structures present in the organism. Many 

traditional methods are used to design a drug in the laboratory.   Now day computational methods have 

become a major role in the drug design. A structure-based drug design is so complemented because 

structure-based drug design uses the 3-dimensional structure of protein.  To design the candidate drug that 

is predicted to bind with high affinity and selectivity to the target. For prediction the new drug structure 

many methods are used like artificial neural networks (ANN), fuzzy neural networks and hidden Markov 

Model (HMM). All of these methods require the identification of peptide binding (chain of amino acid) 

cores for model building.  HMM modeling has become more popular in the all area of applications from 

last several years because the models are very rich in mathematical structure and also theoretical 

structure. HMM also play an important role in trans-membrane region prediction and trans-membrane 

topology prediction in drug design. A computational base Hidden Markov Model became recently 

important among bioinformatics research and many software tools are based on them. 

Keywords: Structure based drug design (SBDD); Hidden Markov Model (HMM), Protein structure 

prediction (PSP); Drug Design (DD); 3-dimensional structure (3DS) 

   

Introduction 

To design a new, effective and safe drug has 

become increasingly sophisticated. The design of 

new drug is also “competitiveness” and “high 

cost” in the present market. Drug design and drug 

discovery is common uses 3D structure of the 

target macromolecule (DNA, RNA and protein). 

For most modern drug discovery projects start 

with protein identification and verification to find 

and verified drug target. Two methods are used 

for three-dimensional structure-based drug design. 

One is determined experimentally by using either 

x-ray crystallography other method is nuclear 

magnetic resonance NMR spectroscopy.  Now 

days computational approaches have become a 

major part of structure based drug design. 

Structure-based drug design utilizes the 3-

dimensional structure of a protein target to design 

the drug candidate that is calculating to bind with 

high affinity and selectivity to the target 
[1]

. For 

most computer approaches are now being 

developed to reduce the cost and cycle time for 

discovering a new drug. In order to appreciate the 

drug target directed in silico approaches in drug 

discovery and development 
[2]

. 

The research and development cost to designing a 

new drug is also very high. 3D  

Structure based drug design incorporated a 

number of software tools into the ligand design 

process. These tools started to design a new 
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algorithm to discover and analyse paralogs and 

orthologs in genome databases. It also analysis 

multiple sequence alignments (in order to uncover 

family specific sequence motifs), to docking post-

processing tools (able to abstract family specific 

interaction patterns from docking calculations), 

and to algorithms for the generation of receptor-

specific scoring functions (to be used in virtual 

screening) or combinatorial library design 
[3]

.  

In modern drug design many drugs are design 

using with the effects of choosing of biological 

macromolecules for example these enzyme are 

deoxyribonucleic acid (DNA) ribonucleic acid 

(RNA), glycoproteins, hormones, receptors and 

transcription factors, which are regarded as drug 

targets. It is known that in most of the cases, drugs 

exert their functions by interacting with their 

targets mainly by non-covalent bonds such as van 

der Waals interactions, the same hydrogen bond 

interactions, and electrostatic interactions. Only in 

few instances are covalent interactions formed 
[4]

. 

Recent data shows that to discover a new drug 

would take more than 10 years and cost more than 

200 million U.S. dollars. In this stage research and 

development (R&D) took 10 years, for the 

marketing period would only left 10 years. If we 

reduce R & D time as less as possible and cost 

which would spend on it. Resulting that a longer 

precious time and cost for the exclusive marketing 

would left. After more than 150 years of drug 

design, development and discovery of a new drug 

is still a long and expensive process while it has 

become much more competitive. 

 

2. Structure Based Drug Design 

2.1 Surface Representation 

Protein structures are used without modification, 

downloaded from the Protein Databank (PDB) of 

internet. It has different heteroatoms, which 

includes all waters and cofactors, are ignored. 

Hydrogen molecules are normally not used in the 

purpose of surface areas. Using this precedence 

here and analytic representations of the 

macromolecular surface is generated. It involves 

first constructing the 3D weighted Delaunay 

tessellation of the bio molecule and then 

subtracting the alpha shape complex. 
[8]

 

 

2.2 Receptor Structure Based Drug Design 

We are focus on those chemicals that are more 

possible to be drug leads, which is fulfilled by 

rational drug design approaches for improving the 

efficiency to discover the drug design. If we have 

an exact drug target and its 3D structure are 

known, receptor structure based drug design can 

be conducted. With the rolling of molecular 

biology, X-ray crystallography and NMR 

techniques, the structures of many drug targets 

have been determined. More structures of drug 

targets can be modelled using homology-based 

methods. Molecular modelling techniques are first 

applied to infer the mechanism of interaction 

between the target and its ligands it is based on the 

3D structure of the macromolecule receptor 
[9-12]

. 

We are divided such techniques basically two 

types, namely the “whole-molecule method” and 

the “connection method”. The first method mainly 

trusts on the molecular docking technique is called 

whole-molecule method. It searches an entire 3D 

structure database of small molecules to find 

supposed drug for a specific therapeutic target. In 

this course, docking single or multiple small 

molecules in single or multiple conformations to 

the receptor binding sites of the target is 

attempted, in edict to find the best supposed 

ligand-receptor complex conformation 
[13-20]

. In 

second method such as a “Connection methods” 

work increasingly like building a house by bricks. 

This is based on the greedy search method often 

used in mathematical optimization techniques. 

Many drug design tools have been used to 

developed, such optimization technique example 

as CLIX 
[21]

, LUDI 
[22]

, CAVEAT 
[23]

, LEGEND 
[24]

, and MCDNLG 
[25]

. 

 

2.3 Trans-Membrane Region Prediction 

(TMHMM) 

Different servers TMHMM, SOSUI, HMMTOP 

and TMpred servers were accessed to validate the 

TM region 
[26,27]

. TMHMM, a new membrane 
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protein topology prediction method, is based on a 

hidden Markov model 
[28]

. 

 

3. Hidden Markov Model 

A Hidden Markov Model (HMM) is a stochastic 

model that uses the statistical properties of 

observed real world data. A good HMM 

accurately models the real world source of the 

observed data and has the ability to simulate the 

source. Machine Learning techniques based on 

HMMs have been successfully useful to 

applications including speech recognition, optical 

character recognition, and as we will examine 

problems in computational biology 
[29]

. 

Hidden Markov model used for applications to 

more complex process, including speech 

recognition and computational gene finding. A 

generalized Hidden Markov Model (HMM) 

contains of a finite set of states, an alphabet of 

output symbols, a set of state transition 

probabilities and a set of emission probabilities. 

The emission probabilities require the distribution 

of output symbols that may be released from each 

state.  

It is important to note that in most cases of HMM 

use in bioinformatics a fictitious inversion occurs 

between causes and properties when dealing with 

emissions. For example, one can synthesise a 

(known) polymer sequence that can have different 

(unknown) features along the sequence. In an 

HMM one must select as emissions the monomers 

of the sequence, because they are the only known 

data, and as internal states the features to be 

estimated. An excellent case is provided by the 

polypeptides, for which it is just the amino acid 

sequence that causes the secondary structures, 

while in an HMM the amino acids are expected as 

emissions and the secondary structures are 

supposed as internal states 
[31-33]

. 

 

3.1 Three Main Problem of HMM 

The three main types of problems occurring in the 

use of Hidden Markov Models are: 

A) Evaluation problem: Given the observations 

sequence O = O1, O2……..OT, and a model lemda 

= (A,B, π), how do we efficiently compute  P(O| 

lemda). 

B) Decoding problem: Given the observations 

sequence O = O1, O2…….. OT, and a model lemda 

= (A, B, π), how do we choose a corresponding 

state sequence. 

C) Learning problem: How do we adjust the 

model parameters lemda = (A, B, π). To maximise 

P (O| lemda). 

For example  

The set of internal states is U = ('c','n') where 'c' 

and 'n' stand for the coding and non-coding 

internal states and the set of emissions is the set of 

the four DNA bases: X = (' A','T','C','G') 

 

 

 

 

 

 

 

Figure 1: An Example of HMM 

a) The square boxes represents the internal 

states ‘c’ (coding) and ‘n’ (noncoding), 

inside the boxes there are the probabilities 

of each emission (‘A’, ‘C’, ‘T’ and ‘G’) 

for each state; outside the boxes four 

arrows are labelled with the corresponding 

transition probabilities. 

ATTACGTTGACATTAGCAATATCATAGAA

CAAATCATCGGGGCAGGATACCGCCGACC

TGCAGGG 

ccccccccccccccccccccccccccccccccccccccccccccc

ccccccccccnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

nnnnnnnn 

b) The first row is a sample sequence of 65 

observed emissions and the second row is 

one of the likely of sequences of internal 

states. 

 

 

     

 

Figure 2. An example of HMM with three 

internal states. The square boxes represent the 
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internal states ‘c’ (coding),‘t’ (terminator) and ‘n’ 

(non coding). The arrows indicate the possible 

transitions. 

Another use of HMMs can also be considered as 

special instances of Machine Learning Techniques 

that are often alternatively used for similar 

applications. A list of such numerous techniques 

could include, besides HMMs, also: Decision 

Tree, Support Vector Machines (SVM), 

, Clustering, 

Genetic Algorithms,  and 

Fuzzy Sets etc. Obviously each one of these 

techniques has advantage and disadvantage, often 

depending on the problem at hand. In somewhat 

rough terms we can say that the merits of HMMs 

in bioinformatics are demonstrated by their wide 

use. Other popular technique in bioinformatics are 

ANNs and SVMs. Certainly a detailed comparison 

of the main techniques, either at conceptual or at 

benchmark level. In the other hand most available 

comparisons are too sharply focused on very 

narrow subjects. In general terms we can say that 

the main advantages of HMMs are often the ease 

of use, the fact that they typically require much 

smaller training sets, and that the observation of 

the inner structure of the model provides often a 

deeper understanding of the phenomenon. Among 

the main drawbacks of HMMs is often their 

greater computational cost. We note that 

frequently hybrid models are designed combining 

some of the above techniques, typically with 

results better than with stand-alone techniques. 

For example, HMMs are also used for 

bioinformatics predictions together with the so-

called Support Vector Machine (SVM), a 

technique based on the Vapnik-Chervonenkis 

theory that produces decision surfaces in 

multidimensional spaces.  

 

3.2 Major Bioinformatics Application 

In bioinformatics, many algorithms based on 

HMMs have been useful to biological sequence 

analysis, as gene finding and protein family 

classification. A technical description of HMMs 

and their applications to bioinformatics are the 

followings 
[35,36]

. 

 

3.2.1 Genetic Mapping 

One of the earliest applications of HMMs in 

bioinformatics (or even the first, as far as we 

know) has been the use of a nonstationary HMM 

for genetic mapping i.e. the estimation of some 

kind of distance between loci of known (or at least 

presumed) demand along the chromosome 
[37]

. 

 

3.2.2 Gene Finding 

The term “gene finding” indicates the act of 

finding genes within a DNA sequence, but is often 

used with a more common meaning of labeling 

DNA tracts, for example labelling them as coding, 

intergenic, introns, etc. In this last sense gene 

finding can be considered a special case (the most 

important in bioinformatics) of the more general 

action known as sequence labeling (also for non- 

DNA sequences) 
[38]

. 

 

3.2.3 Secondary Structure of Protein Prediction 

HMMs are also employed to predict the secondary 

structure of a protein (i.e. the type of the local 

three-dimensional structure, usually alpha-helix, 

beta-sheet, or coil), an important step for 

predicting the inclusive three-dimensional 

structure. Asai et al. 
[39]

 first used a simple HMM 

for the secondary structure prediction, while 

Goldman et al. 
[40]

 in the HMM approach 

exploited broken some evolutionary information 

contained in protein sequence alignments. 

 

3.2.4 Signal Peptide Prediction 

Signal peptide prediction, i.e., the determination 

of the protein purpose address contained in the 

peptide first tract is often of dominant importance 

both for diseases enquiry and for drug design 
[41]

. 

 

3.2.5 Transmembrane Protein Prediction 

It is well known that a direct amount of the 

complete 3D structure of a trans-membrane 

protein is now possible only in very few cases. On 

the other hand, for many useful purposes (such as 
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drug design), it is already very useful to simply 

know at least the trans-membrane protein 

topology (i.e., whether a tract is cytoplasmatic, 

extracellular, or trans-membrane); and to this end 

a number of models are presented to predict such 

topology. The secondary structure of the trans-

membrane areas of most proteins (the helical 

trans-membrane proteins) is of alpha helix type; 

important exceptions are the so-called beta-barrels 

(bundles of trans-membrane beta-sheet structures), 

restricted to the outer membrane of Gram-negative 

bacteria and of mitochondria 
[42,43]

. 

 

3.2.6 RNA Secondary Structure Prediction 

The non-coding RNA builds stable and 

physiologically important secondary structures 

(typically absent in coding RNA). Such structures 

are usually stabilised by palindromic tracts, so that 

predicting the secondary RNA structures 

essentially amounts to identifying palindromic 

sequences 
[44]

. 

 

4. Methods for Protein Structure Prediction 

and its Application in Drug Design 

In the biological process protein is an essential 

component. Proteins are responsible for different 

biochemical reaction like catalyzing and 

regulations etc. In structure-based drug design 

three dimensional structure of the protein needs to 

be determined experimentally. Two main 

approaches in determination of protein 3D 

structure are: Ab initio prediction and comparative 

modeling.   

 

4.1 Comparative Modelling 

The amino acid sequence of a protein is known as 

its primary structure, while local confirmation in 

this sequence namely alpha helices, beta sheets, 

and random coils are known as secondary 

structures. 3D structure of proteins is known as 

tertiary structure 
[26]

. Comparative protein 

structure modelling constructs a three-dimensional 

model of a given protein sequence based structure. 

It is supported out in four sequential steps: finding 

known structures (templates) related to the 

sequence to be modelled (target), aligning the 

target sequence with the templates, building the 

model, and assessing the model. Therefore, 

comparative modelling is only applicable when 

the target sequence is detectably related to a 

known protein structure 
[45, 46]

. 

 

4.2 3D Structure Generation by Using Modeller 

It is a computer program used for comparative 

modelling of protein 3D structures. The alignment 

of a sequence to be modelled is delivered with 

known related structures. Modeller automatically 

calculates a model containing all non-hydrogen 

atoms. Modeller implements comparative protein 

structure modelling by approval of spatial 

restraints. The sequences requires of known 3D 

structure and the target having more than 35% of 

similarity in homology modelling 
[47]

. 

 

4.3 Validation 

The best validation is the process of evaluating 

reliability for 3-dimensional atomic models of 

large biological molecules such as proteins and 

nucleic acids chains common sense, biological 

knowledge and results from analytical tools. 

These validations provide 3D coordinates for each 

atom in the molecule come from structural 

biology experiments such as x-ray crystallography 

or nuclear magnetic resonance (NMR). Most 

alteration involves changing the alignment. 

PROCHECK 
[48, 49]

 is used to calculate the main 

chain torsion angles, i.e. the Ramachandran plot 
[50]

 for our predicted structures. Three models 

were predicted using different templates among 

those the one that shows the good resolution factor 

and R-factor. It was used as a template and 

evaluated by Procheck performing full geometric 

analysis with a resolution of 1.5 Å. The validation 

for structure models found from the three software 

tools was performed by using PROCHECK 
[51]

. 

 

4.4 Drug Development Based on Protein 

Structure 

The main object of drug design is to find mostly 

small, drug molecule that tightly binds to the 
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target protein. It moderating its function or 

competing with natural substrates of the protein. 

Such a drug can be best found on the basis of 

knowledge of the protein structure. 

If the spatial shape of the site of the protein is 

known, to which the drug is supposed to bind, 

then docking methods can be applied to select 

suitable lead compounds that have the potential of 

being refined to drugs. 

 

4.5 Protein Structures Modelling 

The detection of selectivity sites within protein 

families and the computational search for putative 

selective ligands by virtual screening require, in 

most cases, of the ability to generate high quality 

homology models for some of the members in the 

protein family. Recent studies have shown that 

while homology models are useful in virtual 

screening, improvements in their quality are still 

required 
[52]

.  

The procedure starts with the known structure of 

one or more templates, from which several 

preliminary homology models of the target are 

generated. Ligands are then docked into an 

averaged binding-site representation of the 

binding site models, and new homology models 

are obtained considering explicitly the docked 

ligands by transforming the ligand information 

into user-defined restraints. Ligand supported 

homology models are selected as the ones that 

best explain the observed ligand-binding affinities 
[53,54]

. 

 

4.6 Protein Flexibility in Docking 

Developments in our capacity to model selectivity 

are necessarily is based on our skill to faithfully 

model the protein-ligand recognition process. 

Protein flexibility is essential in this process. First 

attempts to consider protein flexibility in docking 

used changed energy functions with soft van der 

Waals interactions (soft docking) 
[55]

. 

 

4.7 Docking 

Docking is a process which predicts the preferred 

location of one molecule to a record when certain 

to each other to form stable complex knowledge 

of the favourite locations in turn may be used to 

predict the binding power of association or 

binding affinity between two molecules 
[56]

. 

Docking is frequently used to predict the binding 

locations of small molecules drug applicants to 

protein targets in knowledge to in turn predict the 

affinity and activity of the small molecule 
[57]

. The 

improvement and application of a range of 

molecular docking algorithms based on different 

search methods were observed in the last few 

years. This method has had several recent 

successes in drug discovery. 

 

5. Conclusion 

Computational approaches for protein structure 

prediction are silent in the presently stage of 

progress. It has homology-based prediction 

technique that become exclusively helpful in an 

environment where the different others techniques 

can be used. Using computational techniques and 

algorithms found better performance with 

experimental and functional determination of 

protein. The HMM are also working to predict the 

secondary structure of a protein (i.e. the type of 

the local three-dimensional structure, usually 

alpha-helix, beta-sheet, or coil). It also predict 

overall three-dimensional structure of proteins. 

HMM is also used to predict the Trans-membrane 

region and Trans-membrane topology of protein 

structure. We determine the method on known 

drug targets and find that the method which is 

largely successful methods and techniques for new 

drug design using computers and computational 

techniques. Computational methods provide the 

advantage of new drug design candidate faster and 

at a lesser price. 
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