http://jmscr.igmpublication.org/home/ ISSN (e)-2347-176x ISSN (p) 2455-0450 crossref DOI: https://dx.doi.org/10.18535/jmscr/v8i1.61

Journal Of Medical Science And Clinical Research

Evaluation of Fetal Doppler Indices in Patients with Pregancy Induced Hypertension and Healthy Pregnant Patients with Impact on Fetal Growth

Authors

Navneet Kaur Risam¹, Sheema Posh^{2*}, Sheetal Sharma¹, Sajjad Ahmad Dar³

¹PG Scholar, Department of Radiodiagnosis and Imaging Government Medical College, Srinagar ²Senior Resident, Department of Obstetrics and Gynecology, Skims, Srinagar

³Professor and Head, Department of Radiodiagnosis and Imaging Government Medical College, Srinagar

*Corresponding Author

Sheema Posh

Introduction

Doppler study of the uteroplacental circulation was first suggested as a method of pregnancy assessment by Campbell and colleagues,1 who observed that Doppler flow velocity waveforms (FVW) were abnormal in pregnancies complicated by pregnancy-induced hypertension (PIH) and intrauterine growth retardation. In recent years a number of Doppler ultrasound studies of the uteroplacental circulation have confirmed the original observation that increased impedance to flowin these vessels is associated with an increased risk for subsequent development of preeclampsia and/or FGR.². IUGR is thought to be consequence of impaired trophoblastic the invasion of the maternal spiral arteries and the physiological reduction in vascular resistance in the uteroplacental circulation $^{1,3-7}$.

It is essential to accurately predict intrauterine growth restriction to facilitate monitoring and preventive treatment so that better maternal and perinatal outcome is achieved⁸. Women with normal uterine artery Doppler results are unlikely to develop preeclampsia, FGR or placental abruption and therefore do not necessarily need antenatal follow-up that is as close as that required in women with abnormal uterine artery Doppler findings⁹.

Aim

Evaluation of fetal Doppler indices and fetal groeth in patients within and without pregnancy induced hypertension.

Materials and Methods

Ethical clearance was obtained from the institutional ethical committee. 20 untreated patients with PIH and 40 healthy women with singleton pregnancies (matched for maternal age and gestational age) after 28 weeks of gestation underwent fetal Doppler studies with fetal biometry in a single sitting. Patients were evaluated for uteroplacental and fetoplacental insufficiency as well as fetal growth restriction and correlation between them was assessed in PIH and healthy pregnant patients.

Ultrasound and doppler studies were performed by a 3.5 -5 MHz probe on GE Logic S8 after 3-5 minutes of rest. Bilateral fetal middle cerebral artery (MCA), umbilical artery (UA) and bilateral uterine arteries (UT A) were evaluated and their pulsatility indices (PI), resistivity indices (RI) and peak systolic velocities (PSV) were noted. 5

JMSCR Vol||08||Issue||01||Page 397-400||January

2020

consecutive waveforms representing the lowest vascular resistance were taken and PI was calculated using these waveforms. Fetal biometry { with documentation of fetal head circumference (HC), abdominal circumference (AC), biparietal diameter (BPD), fetal femur length (FL), fetal humeral length (HL) and estimated fetal weight (EFW)} was performed and comparison was made between these parameters in patients with and without PIH.

Blood pressure measurements were obtained by review of antenatal records. A systolic blood pressure of \geq 140 mmHg and diastolic blood pressure of \geq 90 mmHg after 20 weeks of gestation was taken as inclusion criteria. Complicated pregnancies and patients with pre-existing hypertension were excluded from the study population.

Data was analyzed using IBM SPSS statistics version 23.0 software (SPSS Inc., Chicago, IL, USA). Measurement data was presented as mean \pm standard deviation (SD) and count data expressed as n (%). The independent samples ttest was used to compare the means of continuous variables. A two-tailed p values <0.05 was taken as statistically significant.

Results

The patients were matched for gestational age and maternal age, so no significant differences in demographic characteristics were observed between the study and control group. Umblical artery waveforms showed significant differences in RI, PI and S/D ratio.

Patients with PIH demonstrated significantly raised pulsatility index and resistance index of the uterine arteries as compared to healthy pregnant females. There was also presence of early diastolic notching in uterine arteries in these cases and these abnormal Doppler studies were more frequently associated with fetal growth restriction (Odds Ratio >1). Fetal growth restriction was noted in the study group as evidenced by significant differences in limb length as well as lower readings for estimated fetal weight. **Table 1:** Patient characteristics in study and control group

Characteristics	Pregnant women with PIH(<i>n=20</i>)	Pregnant women without PIH(<i>n=40</i>)	P value
Maternal age (Years)	27.5±3.8	28.8±3.4	0.1
Gestational age (Weeks)	32.85±3.6	34.65±3.2	0.06
Blood pressure(mmHg)			
Systole	148±12	115±8	0.001
Diastole	96±7	77±6	0.001

Table 2: Fetal Doppler indices in study and contol

group			
Fetaldoppler indices	Pregnant women with PIH(<i>n=20</i>)	Pregnant women without PIH(n=40)	P value
Fetal MCA PI	1.7	1.8	0.489
Fetal MCA RI	0.8	0.9	0.418
Umbilical artery S/D ratio	4.2	1.8	0.004
Umbilical artery RI	0.74	0.45	0.001
Umbilical artery PI	1.2	0.8	0.001

Table 3: Uterine Artery Doppler Indices in study and control group

Doppler indices of b/l uterine arteries	Pregnant women with PIH(<i>n=20</i>)	Pregnant women without PIH(<i>n=40</i>)	P value
RT UT A PSV(cm/s)	95	93	0.894
RT UT A RI	0.62	0.46	0.002
RT UT A PI	1.18	0.78	0.002
LT UT A PSV(cm/s)	88.9	101.8	0.263
LT UT A RI	0.62	0.50	0.002
LT UT A PI	1.19	0.99	0.001
UT artery notching(n)	7(b/l) 3(u/L)	2(b/l) 4(u/L)	-

Table 4: Fetal Biometric parameters in study and control group

e ond of Browp					
Fetal biometric parameters	Pregnant patients with PIH (n=20)	Pregnant females without PIH(n=40)	P value		
BPD(cm)	8.0	8.3	0.156		
AC(cm)	28.2	30.3	0.032		
FL(cm)	6.0	6.4	0.041		
HL(cm)	5.3	5.7	0.029		
EFW(gm)	1983	2314	0.122		
AFI(cm)	12.4	13.1	0.521		

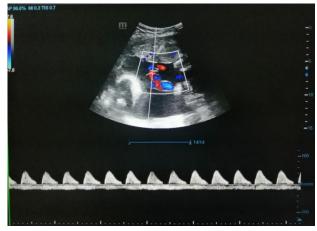


Fig 1: Absent diastolic flow in umbilical artery

JMSCR Vol||08||Issue||01||Page 397-400||January

2020

Fig 2: Reduced diastolic flow in umbilical artery

Fig 3: High resistance flow in fetal MCA

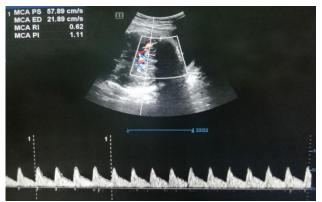
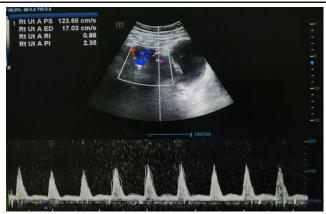



Fig 4: Increased diastolic flow in fetal MCA

Fig 5: Low resistance uterine artery waveform

Fig 6: High resistance uterine artery waveform with early diastolic notching

Discussion

Pregnancy induced hypertension is one of the commonest complications in pregancy; seen in upto 7 % of all pregancies.

Many studies have established a correlation between PIH and fetal growth restriction. Increased impedance to flow in uterine vessels is associated with subsequent $IUGR^2$.

We propose that in addition to uterine artery notching, quantitative assessment of the uterine artery Doppler waveforms should also be used routinely as part of fetal Doppler assessment as the Doppler Indices of uterine artery RI and PI show a statistically significant difference in PIH/ Non-PIH pregnancies and are positively correlated with fetal IUGR. As such an objective assessment of Doppler waveforms may be more useful than noting uterine artery notching patterns.

Our findings are similar to those obtained by Papageorghiou AT et al¹⁰, who found uterine artery PI to be an early indicator of fetal IUGR and pre-ecclampia. However we have taken Doppler readings late in gestation to eliminate confounding factor of physiological changes in Doppler waveforms with gestational age.

Conclusion

There is a positive correlation between fetal growth restriction and abnormal fetal Doppler studies. In particular presence of bilateral uterine artery notching should prompt careful fetal growth assessment.

JMSCR Vol||08||Issue||01||Page 397-400||January

References

- Campbell S, Diaz-Recasens J, Griffin D, et al. New doppler technique for assessing uteroplacental blood flow. *Lancet* 1983; 1: 675-79
- Campbell S, Pearce JM, Hackett G, Cohen-Overbeek T, Hernandez C. Qualitative assessment of uteroplacental blood flow: early screeningtest for highrisk pregnancies. *ObstetGynecol*1986; 68: 649–53
- Brosens I, Robertson WB, Dixon HG. The physiological response of the vessels of the placental bed to normal pregnancy. J PatholBacteriol1967; 93: 569–79
- 4. Pijnenborg R, Bland JM, Robertson WB, Brosens I. Uteroplacental arterial changes related to interstitial trophoblastic migration in early human pregnancy. *Placenta* 1983; 4: 397–14
- McParland P, Pearce JM. Doppler blood flow in pregnancy. *Placenta* 1988; 9: 427– 50
- Khong TY, De Wolf F, Robertson WB, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. *Br J ObstetGynaecol*1986; 93: 1049–59
- Aardema MW, Oosterhof H, Timmer A, Rooy I, Aarnoudse JG. Uterine artery Doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by pre-eclampsia and small for gestational age fetuses. *Placenta* 2001; 22: 405–11
- 8. Coomarasamy A, Papaioannou S, Gee H, et al. Aspirin for the prevention of preeclampsia in women with abnormal uterine artery Doppler: a meta-analysis. *Obstet Gynecol*2001;98:861-6.

- Albaiges G, Missfelder-Lobos H, Lees C et al. One-stage screening for pregnancy complications by colour Doppler assessment of uterine ateries at 23 weeks of gestational age. *Obstet Gynecol*. Oct 2000; 96 (4): 559-64
- Papageorghiou AT, Yu CKH, Bindra R et. Multicenter screening for pre-eclampsia and fetal growth restriction by transvaginal uterine artery Doppler at 23 weeks of gestation. *Ultrasound Obstetgynecol* 2001. 18: 441-449.