www.jmscr.igmpublication.org Index Copernicus Value: 79.54

ISSN (e)-2347-176x ISSN (p) 2455-0450

crossref DOI: https://dx.doi.org/10.18535/jmscr/v7i4.13

Surgical factors affecting superficial surgical site infections in laparotomy incisions

Authors

Dr Abdul Basith P.T¹, Dr Sanaa Mohammed Konnakkodan²

¹Assistant Professor, General Surgery, Govt Medical College Kozhikode, India Ph: +919037952205, Email: drabpt@gmail.com ²Assistant Professor, Government Medical College, Kozhikode, India Ph: +917293851717, Email: sanaabasith@gmail.com

Abstract

Aim: to compare incidence of superficial surgical site infections in elective and emergency laparotomies and to study the significance of factors like duration of surgery and level of contamination in incidence of superficial SSI

Materials and Methods: 200 patients who underwent midline laparotomy (100 patients each in elective and emergency laparotomy groups) were followed up for a period of one month for the incidence of surgical site infections and effect of surgical risk factors were analysed

Results: the incidence of superficial surgical site infections was 20.7% with a higher incidence in those who underwent emergency laparotomy. surgical site infections were higher among patients who underwent prolonged surgeries, higher level of contamination was associated with higher incidence of superficial SSI

Keywords: superficial surgical site infections, elective and emergency laparotomy, duration of surgery, level of contamination.

Introduction

Post operative infections increases both surgical morbidity and mortality and increases the duration of hospital stay and overall medical expense. We studied the role of factors like duration of surgery and level of microbial contamination in predicting the incidence of superficial surgical site infection

Objective

To study the surgical factors predicting the incidence of surgical site infections after elective and emergency laparotomy

Specific Objectives

- To compare the incidence of superficial surgical site infections following elective and emergency laparotomy
- To study the statistical significance of factors like duration of surgery and level of microbial contamination in predicting incidence of superficial surgical site infections

Materials and Methods

This was a prospective observational study conducted at a tertiary care hospital after

JMSCR Vol||07||Issue||04||Page 62-65||April

obtaining permission from institutional ethics committee. 200 patients who underwent laparotomy through a midline incision in the age group 18-70 years during the study period of four months were incorporated into the study. Patients not willing to participate and those who developed deep incisional and organ space infections and those who expired before completion of study period were excluded from the study. Of the 200 subjects, 100 underwent laparotomy as an emergency procedure and the other underwent laparotomy on an elective basis. The patients were examined postoperatively on day 1, day8, day 15 and day30 for the presence of superficial surgical site infections.

Surgical site infection was diagnosed based on criteria laid down by Centre for disease control (CDC). Data was recorded in a questionnaire and was analysed using SPSS software, the data was analysed for effect of factors like duration of surgery and level of microbial contamination. Variables were compared using statistical tests including chi-square analysis and relative risk calculation.

Results

The subjects were divided into two groups based on whether laparotomy was done as an emergency or elective procedure. The two groups were age and sex matched. The mean age was 49.44±16 in those who underwent emergency procedure and 51.88±10 in those who underwent elective procedures.

The incidence of superficial surgical infections in the study group was 20.5 %. Among the patients who underwent laparotomy as an emergency procedure patients 27 (27%)developed surgical site infections where as 14 patients (14%) among those who underwent laparotomy on an elective basis developed surgical site infection (P value 0.023)We found a significant increase in incidence of surgical site infections in the group with emergency laparotomy with a relative risk of 1.929(1.077-3.455)

Prolonged surgeries with a duration more than 2 hours showed an increased incidence of SSI but was statistically significant only in elective laparotomy group

Table 1 Incidence of superficial SSI according to duration of surgery

	31 30p 0111101011 2	751 444 51 4111 5	to duration or	5612617		
	Emergency laparotomy		Elective laparotomy		all cases	
Operating	Upto 2 hours	More than 2	Upto 2 hours	More than 2	Upto two	More than
time		hours		hours	hours	two hours
SSI+	20	7	2	12	22	19
	27.0%	26.9%	4%	24%	17.7%	25.0%
SSI-	54	19	48	38	102	57
	73%	73.1%	96%	76%	82.3%	75%
P value	0.992		0.003		0.217	
Relative risk	0.996(2.07-0.477)		5.98(25.64-1.414)		1.408(2.427-0.818)	

Incidence of superficial surgical site infections also increased with increasing levels of

contamination. Contaminated wounds showed maximum incidence of surgical site infections

Table 2 Incidence of surgical site infections according to level of contamination

Level of microbial contamination	Incidence of superficial surgical site infection			
clean	1(7.1%)			
Clean contaminated	7(8%)			
contaminated	12(35.3%)			
dirty	21(32.3%)			
total	41(20.5%)			

P Value - 0.000

For the calculation of relative risk and for comparing the predictive value of level of microbial contamination across elective and emergency laparotomy, clean and clean

contaminated surgeries were grouped together and contaminated and dirty surgeries were grouped together and analysed

Table 3

	Elective laparotomy		Emergency laparotomy		All cases	
	SSI +	SSI-	SSI+	SSI-	SSI+	SSI-
Clean and clean	5	67	3	26	8	93
contaminated	6.9%	93.1%	10.3%	89.7%	7.9%	92.1%
Contaminated and	9	19	24	47	33	66
dirty	32.1%	67.9%	33.8%	66.2%	33.3%	66.7%
P value	0.001		0.017		0.000	
Relative risk 4.629(1.699-12.611)		3.268(1.066-10.013)		4.208(2.046-8.654)		

Discussion

Surgical site infections (SSIs) are the most prevalent surgical wound complications, comprising approximately 15% of all health careassociated infections¹. Surgical site infections have been defined by Center for Disease Control² which divided them into superficial incisional, deep incisional and organ space infections. Our study covers only superficial incisional surgical site infections which are defined as Infection occurring within 30 days after the operation and infection involving only skin and subcutaneous tissue of the incision and at least one of the following:

- 1) Purulent drainage with or without laboratory confirmation, from the superficial incision
- 2) Organisms isolated from an aseptically obtained culture of fluid or tissue from the superficial incision
- 3) At least one of the following signs or symptoms of infection: pain or tenderness, localised swelling, redness, or heat and superficial incision is deliberately opened by surgeon, unless incision is culturenegative
- 4) Diagnosis of superficial incisional SSI made by a surgeon or attending physician

While the global estimates of surgical site infection (SSI) have varied from 0.5% to 15%, studies in India have consistently shown higher rates ranging from 23% to 38%³. Our study showed an incidence of SSI in 20.5% of total study group. SSI incidence was 27% in group which underwent emergency laparotomy and 14% in those who underwent elective laparotomy.

Study by Kumar A et al⁴ showed that SSI was associated with 17.7% of emergency surgeries as compared to 12.5% of elective surgeries.

In a study by Kamat US et al⁵ a higher SSI rate of 30.7% was found.

The overall incidence of surgical site infection (SSI) has been estimated to be 2.8% in the United States, according to the U.S. Centers for Disease Control and Prevention⁶.

Hang cheng et al⁷ in his study concluded that extended operative times across wide range of procedures almost doubled the risk of surgical site infections. In our study statistically significant effects of prolonged surgical time affecting incidence of superficial SSI was demonstrated only in patients who underwent elective laparotomy. prolonged laparotomy time was associated with 6 times increased risk of development of superficial SSI in elective laparotomies in our study.

Surgical wounds are classified into clean, clean contaminated, contaminated and dirty according to the level of microbial contamination ⁸, our study demonstrated statistically significant increase in surgical site infections as the level of contamination increased .when clean and clean contaminated cases were pooled together and contaminated and dirty cases pooled together and analysed we demonstrated strong association between level of microbial contamination and development of SSI. Our study demonstrated a four times increased incidence of superficial SSI in contaminated and dirty laparotomy wounds.

Study by Lilani SP et al⁹ demonstrated a statistically significant increase in surgical site infections between clean and clean contaminated surgeries in general surgical procedures

JMSCR Vol||07||Issue||04||Page 62-65||April

(3.03%vs 22.41% P value- 0.0021)

Ortega Et Al¹⁰ demonstrated decreased incidence of superficial surgical site infection across clean (1.8%) clean contaminated (3.9%) contaminated (4.8%) and dirty(5.2%) wound classifications where as our study showed increased incidence in clean (7.1%), clean contaminated(8%), contaminated (35.3%) and dirty(32.3%). This higher incidence might be due to better adherence to aseptic precautions and better antibiotic policies in developed nations

Conclusion

Prolonged duration of surgery was found to increase the risk of development of superficial surgical site infections. In elective laparotomy reducing the duration of surgery by using better techniques and skilled and experienced team can largely benefit the patients.

Level of microbial contamination was demonstrated to be the single most important factor predicting the development of superficial surgical site infections. The lack of proper antibiotic policy and stricter surveillance should be pointed out as the reason for increased surgical site infections in developing nations and their introduction can contribute to the reduction of surgical site infections

Bibliography

- Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG. CDC definitions of nosocomial surgical site infections, 1992; A modification of CDC definitions of surgical wound infections. Infection Control Hosp Epidemiol. 1992; 13 606-608.
- Centers for Disease Control and Prevention (CDC). Surgical site infection (SSI). 2016.www.cdc.gov/HAI/ssi/faq_ssi.html. Accessed September 12, 2018.
- Arora A, Bharadwaj P, Chaturvedi H, Chowbey P, Gupta S, Leaper D, Mani G K, S Marya S K, Premnath R, Quadros K, Srivastava A, Tendolkar A .A review of

- prevention of surgical site infections in Indian hospitals based on global guidelines for the prevention of surgical site infection, 2016 .JPSIC 2018 Volume: 6 Issue Number:1 Page: 1-12
- 4. Kumar A, Rai A. Prevalence of surgical site infection in general surgery in a tertiary care centre in India. Int Surg J 2017;4:3101-6.
- 5. Kamat US, Fereirra AM, Kulkarni MS, Motghare DD. A prospective study of surgical site infections in a teaching hospital in Goa. Indian J Surg 2008;70:120-4.
- 6. Barie PS .Surgical site infections: epidemiology and prevention. Surg Infect (Larchmt)2002;3 Suppl 1:S9-21
- 7. Cheng H, Chen BP, Soleas IM, Ferko NC, Cameron CG, Hinoul P. Prolonged Operative Duration Increases Risk of Surgical Site Infections: A Systematic Review. Surg Infect (Larchmt). 2017;18(6):722-735.
- 8. Kamel C, McGahan L, Mierzwinski-Urban M, et al. Preoperative Skin Antiseptic Preparations and Application Techniques for Preventing Surgical Site Infections: A Systematic Review of the Clinical Evidence and Guidelines [Internet]. Ottawa (ON): Agency Drugs Canadian for Technologies in Health; 2011 Jun. Appendix Classification of surgical wounds. Available from: https://www.ncbi.nlm.nih.gov/books/NBK17 4534/
- Lilani S P, Jangale N, Chowdhary A, Daver G B. Surgical site infection in clean and clean-contaminated cases. Indian J Med Microbiol 2005;23:249-52
- 10. Ortega, G., Rhee, D. S., Papandria, D. J., Yang, J., Ibrahim, A. M., Shore, A. D., ... Abdullah, F. (2012). An Evaluation of Surgical Site Infections by Wound Classification System Using the ACS-NSQIP. Journal of Surgical Research, 174(1), 33–38.doi:10.1016/j.jss.2011.05.056.