http://jmscr.igmpublication.org/home/ ISSN (e)-2347-176x ISSN (p) 2455-0450

crossref DOI: https://dx.doi.org/10.18535/jmscr/v7i10.10

Original Research Paper

A Study of Thyroid Profile in Acute Ischemic Stroke Patients

Authors

Dr Babuanand M.D, Dr A. Thenmozhi M.D

Corresponding Author **Dr A. Thenmozhi M.D**

Abstract

Acute stroke is one of the common causes of morbidity and mortality in India. In the Study, we are trying to estimate the prevalence of undiagnosed thyroid disorder/dysfunction in acute ischemic stroke patients and to correlate the relationship between thyroid dysfunction and acute ischemic stroke.

Aims and Objectives

- To study the prevalence of undiagnosed thyroid disorders in acute ischemic stroke patients
- To correlate relationship between thyroid dysfunction and ischemic stroke

Study Design

Single centre, cross sectional and analytical study

Period of study

The work was carried from December 2016 to December 2017

Ethical Committee Approval

Ethical committee approval obtained from the institutional ethical committee

Inclusion Criteria

- ➤ Willingness of the patient
- ightharpoonup Age > 13 years
- ➤ All acute ischemic stroke patients supported by an imaging (MRI/CT)

Exclusion Criteria

- ➤ Non-willingness of the patient
- ➤ Age \leq 13 of age
- ➤ Patients with known thyroid disorder/ disease

Method of Collection of Data History and clinical examination

Detailed history obtained from all participants using proforma which includes age, sex, presenting complaints, duration of illness, history of alcoholism and smoking, past history of diabetes and hypertension, detailed clinical examination.

Imaging

All acute ischemic stroke patients included in this study are subjected to an imaging either MRI/CT brain to support the diagnosis.

Blood Sample Collection

- ➤ Nearly 8ml of blood are collected in the fasting state.
- ➤ Fasting lipid profile (Serum Cholesterol, TGL, HDL, LDL & VLDL) and fasting thyroid profile (F T3, F T4, TSH) are been analysed
- ➤ Blood lipid parameters were estimated with help of autoanalyser based on enzymatic calorimetric process

Thyroid profile was estimated using CLIA method (Chemiluminescence's immunoassay).

Analysis of data

Age wise distribution of the patients

Particulars	No.of patients	Percentage			
<55yrs	28	31.1			
>55yrs	62	68.9			
Total	90	100.0			

Distribution of the patients based on FT3

Particulars	No.of patients	Percentage			
<1.4	11	12.2			
1.4 to 4.4	79	87.8			
Total	90	100.0			

Distribution of the patients based on FT4

Particulars	No.of patients	Percentage			
<0.8	9	10.0			
0.8 to 1.8	81	90.0			
Total	90	100.0			

Distribution of the patients based on TSH

Particulars	No.of patients	Percentage
<0.45	5	5.6
0.45 to 4.5	58	64.4
>4.5	27	30.0
Total	90	100.0

Distribution of the patients based on thyroid profile

Particulars	No.of patients	Percentage
Normal Thyroid Profile	46	51.1
Subclinical Hypothyroidism	19	21.1
Hypothyroidism	8	8.9
Subclinical Hyperthyroidism	5	5.6
SES	12	13.3
Total	90	100.0

Descriptive Statistics

Variables	N	Min.	Max.	Mean	S.D
Age	90	35	84	62.71	12.777
Serum Cholesterol	90	108	276	198.61	33.097
TGL	90	80	356	188.03	45.169
HDL	90	16	69	48.27	9.353
VLDL	90	18	71	37.64	8.956
LDL	90	39	191	112.70	33.259
FT3	90	.50	4.10	2.0509	.68488
FT4	90	.02	1.80	1.0489	.33468
TSH	90	.30	11.46	3.3934	2.40667
Seru / HDL	90	2.31	11.38	4.2928	1.28836

Chi-square test shows comparison of age between various types of thyroid pattern

AGE	n	Normal Thyroid Profile	Subclinical	% Hypothyroidism	n	Hypothyroidism %	Subclinical	% Hyperthyroidism		N % N %			Statistical inference
<55yrs	13	28.3%	5	26.3%	3	37.5%	2	40.0%	5	41.7%	28	31.1%	X ² =1.339
>55yrs	33	71.7%	14	73.7%	5	62.5%	3	60.0%	7	58.3%	62	68.9%	Df=4 .855>0.05 Not Significant
Total	46	100.0%	19	100.0%	8	100.0%	5	100.0%	12	100.0%	90	100.0%	

JMSCR Vol||07||Issue||10||Page 55-58||October

Chi-square test shows comparison of age between various types of ${\bf thyroid~pattern}$

AGE	Normal Thyroid	Profile	Subclinical	Hypothyroidism		Hypothyroidism	Subclinical	Hy		SES		Total	Statistical inference
	n	%	n	%	n	%	n	%	n	%	n	%	
35 to 45yrs	5	10.9%	1	5.3%	1	12.5%	1	20.0%	3	25.0%	11	12.2%	
46 to 55yrs	8	17.4%	4	21.1%	2	25.0%	1	20.0%	2	16.7%	17	18.9%	X ² =7.442 Df=16
56 to 65yrs	12	26.1%	5	26.3%	2	25.0%	1	20.0%	4	33.3%	24	26.7%	.964>0.05 Not
66 to 75yrs	11	23.9%	5	26.3%	0	.0%	1	20.0%	2	16.7%	19	21.1%	Significant
76 to 85yrs	10	21.7%	4	21.1%	3	37.5%	1	20.0%	1	8.3%	19	21.1%	
Total	46	100.0%	19	100.0%	8	100.0%	5	100.0%	12	100.0%	90	100.0%	

Conclusion

From this study, we came to the following conclusions:

- Thyroid dysfunction is not uncommon in acute ischemic stroke patients
- Thyroid dysfunctions can affects various risk factors of ischemic stroke, so identification and management of these disorders can reduce recurrence of ischemic stroke
- Based on findings, I suggested that thyroid function test may be needed in acute ischemic stroke patients. And also the repeat thyroid function test for the patient with suspected euthyroid state after 6 months.

References

- Akram Mohammed Al-Mahdawi; Thyroid function test in patient with ischemic stroke; karbala J. Med. Vol.6, No.2, Dec, 2013
- 2. Davidson s principles and practice of Medicine 23rd edition
- 3. Ganong s review of Medical Physiology 25th edition
- 4. Harrison s principles of Medicine 19th edition
- 5. Thyroid Dysfunction in Acute ischemic stroke in Medical Intensive care unit in

- Zagazig university hospitals; International Journal of Advanced Research(2014), Volume 2, Issue 7, 385-391
- 6. Williams textbook of Endocrinology 13th edition
- 7. Deb P, Sharma S and Hassan KM (2010). Pathophysiologic mechanisms of acute ischemic stroke. An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. 17 (3): 197–218.
- 8. Fisher M, and Mcleod M (2008): Stroke. Lancet; 371: 1612-1623.
- 9. Feigin VL, Weibers DO, Nikitin YP, et al (1998): Risk factors of ischemic stroke in a Russian Community, a populationbased casecontrol study. Stroke. 29: 34-39
- 10. Surks MI, Onrz E, DeNms GH et al.,(2004): Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. J AMA, 291:228-38.
- 11. Fazio S, Palmieri EA, Lombardi G et al (2004): Effects of Thyroid Hormone on the Cardiovascular System. Recent Progr Horm Res, 59:31-50.
- 12. Osman F, Daykin J, Sheppard M, et al (2000):, Cardiac rhythm abnormalities in thyrotoxicosis the explanation for excess vascular mortality. J Endocrinol;164:321-329.
- 13. Bengtsson D, Brudin L, Wanby P and Carlsson M (2012): Previously unknown thyroid dysfunction in patients with acute iscehmic stroke. Acta Neurol Scand: 136: 98-102.
- 14. Hage M, Zantout SM, and Azar ST (2011):, Thyroid Disorders and Diabetes Mellitus, Journal of Thyroid Research.,77:312-320.
- 15. Warlow C, Sudlow C, Dennis M, Wardlaw J, Sandercock P.Stroke. Lancet 2003; 362:1211–1224.
- 16. Allan H. Ropper, Martin A.Samuels. Cerebrovascular Diseases, Adams and

- Victor's Priciples of Neurology, Ninth Edition; 2009:
- 17. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet 2008;371: 1612–1623.
- 18. Coceani M, Iervasi G, Pingitore A, et al. Thyroid hormone and coronary artery disease: from clinical correlations to prognostic implications. Clin Cardiol. Jul 2009;32(7):380-5
- 19. Paul S. Jellinger, Donald A. Smith, Adi E. Mehta. AACE lipid and Atherosclerosis Guidelines. Endocr Pract 2012; 18(Suppl 1)
- 20. Wade SS, Claiborne J, Donald E. Cerebrovascular Diseases. In: Stephen LH (edr). Harrison's Neurology in Clinical Medicine. 1st edn. New York: McGraw Hill; 2006: 233-260.
- 21. Weetman, AP, McGregor, AM. Autoimmune thyroid disease further developments in our understanding. Endocr Rev 1994; 15:788.
- 22. Towfighi, A, Saver, JL, Engelhardt, R, Ovbiagele, B. A midlife stroke surge among women in the United States. Neurology 2007; 69:1898.
- 23. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a metaanalysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360:1903–1913.