www.jmscr.igmpublication.org

Index Copernicus Value: 5.88 ISSN (e)-2347-176x ISSN (p) 2455-0450

Thyroid Functional Status in Relation to Hyperglycemia, Body Mass Index in Type-2 Diabetes Mellitus

Authors

Ajay Puri (MD)¹, Jyoti Kohli (MD)², L.Vasantha (MD)³

Department of Biochemistry, Acharya Shri Chander College of Medical Sciences Jammu.

Email: puria062@gmail.com

ABSTRACT:

Type-2 diabetics are more prone to develop thyroid disorders. Both are interlinked with each other. A study was conducted on type-2 diabetics without any complications. It was observed that hyperglycemia is closely related to BMI and free T_3 levels were significantly reduced in type-2 diabetics. Hence every type-2 diabetics have to be evaluated for thyroid function tests before any clinical manifestation.

Key words: Type-2 diabetes mellitus, Hyperglycemia, thyroid functional status, body mass index.

INTRODUCTION

Thyroid dysfunctions and Diabetes Mellitus are the two most common endocrine disorders encountered in clinical practice. Both influence each other. Thyroid hormones act as general pacemaker accelerating metabolic processes so diabetic patients are more prone to develop thyroid dysfunctions.

MATERIALS AND METHODS

30 known type-2 diabetics and 20 normal subjects attending SVSMCH Medicine OPD were selected

to estimate blood glucose by semiautoanalyzer and thyroid profile by chemiluminiscence immunoassay and BMI was calculated by using the Quetelet's index¹.5ml of blood sample was collected from the patients aseptically by venipuncture.

RESULTS

The result of present study was discussed in 3 groups:

> Group-A: Non diabetic with normal BMI.

2014

- ➤ **Group-B:** Type-2 diabetes mellitus with normal BMI.
- ➤ **Group-C:** Type-2 diabetes mellitus with high BMI.

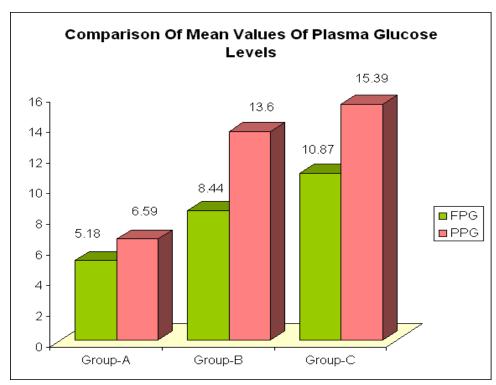


Figure 1

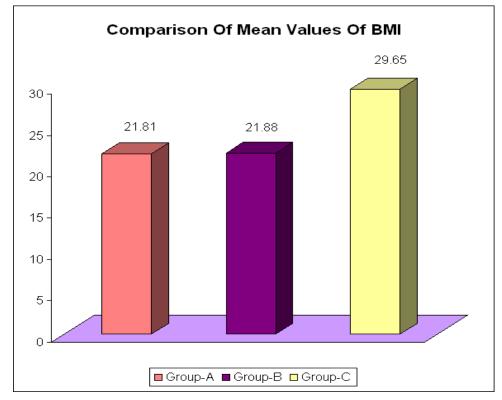


Figure - 2

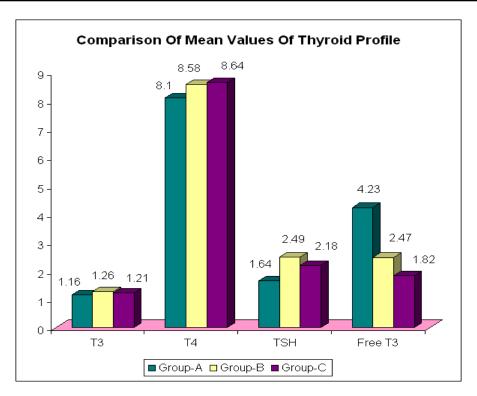


Figure 3

Statistical analysis was done by comparing group B, group C, with group A by using student t-test.

DISCUSSIONS

- 1. The result of the present study shows that the test groups inspite of being on oral hypoglycemics still have high fasting and post prandial hyperglycemia and is more significant in those with high BMI as shown in fig-1.
- 2. BMI is important underlying factor in pathogenesis of insulin resistance syndrome as shown in fig-2. Adipocytes releases adipokines in response metabolic changes. These adipokines play important role in pathogenesis of glucose intolerance abnormalities associated with insulin resistance syndrome. So visceral obesity plays an important role in the pathogenesis of type-2 diabetes mellitus
- and body mass index is a critical factor to be evaluated in diabetic patients. In diabetes mellitus patient increase in tumor necrosis factor $-\alpha$ and interleukin-6 levels and decrease in the levels of adiponectin is seen^{2,3,4}.
- 3. In fig-3 it was observed that free T_3 levels were significantly reduced in type-2 diabetes mellitus which is due to reduced peripheral conversion of T_4 to T_3 via 5' monodeiodination reaction and is in par with the study done by R Sathish, V Mohan in 2003⁵. Thyroid hormone activation to T_3 and inactivation to reverse T_3 is mediated by the specific selenodeiodinases 6,7 . It has been shown

- that selenodeiodinase2(D2) is the enzyme responsible for free T_3 in plasma⁸.
- 4. Iodothyronine deiodination may be altered in fasting state and during illness which markedly decrease free T₃ levels and also decrease T₄ clearance.
- 5. Hence thyroid hormone exhibits dimeric physiological effects in human system and changes in free T₃ levels also contribute to various biochemical changes and manifestations in type-2 diabetes mellitus.

CONCLUSION

It shows that severity of hyperglycemia is closely related to body mass index and significantly decrease in free T_3 levels in diabetics is due to decrease in selenodeiodinase D_2 activity. So every type-2 diabetics have to be evaluated for thyroid profile prior to any clinical manifestation.

ACKNOWLEDGEMENTS

I am highly indebted to **Dr. L.VASANTHA**, **M.D.**, **Ph.D.**, Professor,

Dr. U.JAYA RAMI REDDY, M.D., Professor.

REFERENCES

 Leon Speroff, Marc A, Fritz. Obesity.
 Clinical Gynecologic Endocrinology and Infertility textbook, 7th edition: 779-804.

- 2. Reaven GM. Banting Lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37:1595-1607.
- 3. Gerich JE. Contributions of insulin resistance and insulin secretory defects to the pathogenesis of type-2 diabetes mellitus. Mayo Clin Proc 2003;8 (4):447-56.
- Sandeep Sreedharan, Viswanathan Mohan.
 Assessing insulin resistance: an overview.
 Ind J Endocr Metab 2004; VI: 24-31.
- 5. R Sathish, V Mohan. Diabetes and thyroid diseases. IJDDC 2003(23); 4: 120-123.
- St.Germain DL, Galton VA .The deiodinase family of selenoproteins. Thyroid 1997; 7: 655-668.
- 7. Bianco AC, Slavahre D, Gereben B, et al .Biochemistry, cellular and molecular biology and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 2002; 23: 38-89.
- 8. P. Reed Larsen, Terry F. Davies, Martin-Jean Schlumberger and Ian D. Hay. Thyroid physiology and diagnostic evaluation of patients with thyroid disorders. Williams Textbook of Endocrinology,10th Edition;2003:331-373.