Title: Antidiabetic effect of Vidangadi Kvatha in STZ-NAD induced diabetic rats

Authors: Minshu Prashant*, Sanjay Kumar, B. Ram

 DOI: https://dx.doi.org/10.18535/jmscr/v9i7.12

Abstract

The largest population in the world is suffered from diabetes mellitus type 2 which are characterized by hyperglycemia associated with minor and major complications and it is caused by acquired deficiency in production of insulin by the pancreas, or by the resistance of the insulin. The experimental study includes the acute oral toxicity study, OGTT and antidiabetic effect of Vidangadi Kvatha in STZ-Nicotinamide induced diabetes in rats. Oral Glucose Tolerance Test (OGTT) was performed in normal rats and results shows that 200 mg/kg reduces the blood glucose level 89.45±1.24 mg/dl in 2 hrs. The 100 mg/kg of Vidangadi Kvatha reduces the blood glucose level 93.34±2.25 mg/dl. Oral Glucose Tolerance Test (OGTT) in diabetic rat shows that 200 mg/kg dose of Vidangadi Kvatha lowers the blood glucose level 123.46±2.74 mg/dl in 2 hrs. Diabetic control rats shows blood glucose level 405.98±2.33 mg/dl and Glibenclamide 4 mg/kg lowers blood glucose level up to 98.42±3.14 mg/dl. In STZ-NAD induced diabetic rats Vidangadi Kvatha lowers the post prandial blood glucose level, SGOT, SGPT, Lipid profile and C-Peptide level. The study found that Vidangadi Kvatha have antidiabetic property.

Keywords: Diabetes Mellitus, Streptozotocin, Nicotinamide, OGTT, Vidangadi Kvatha, Glibenclamide, Gliclazide.

References

  1. Billings LK, Florez JC: The genetics of type 2 diabetes: what have we learned from GWAS? Annals of the New York Academy of Sciences 2010; 1212:59–77.
  2. Lane MA: The cytological characters of the areas of Langerhans. American Journal of Anatomy 1907; 7:409–422.
  3. Butler AE, Janson J, Bonner-Weir S, et al.: Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52:102–110.
  4. McCulloch DK, Raghu PK, Johnston C, et al.: Defects in β-cell function and insulin sensitivity in normoglycemic streptozocin treated baboons: a model of preclinical insulin-dependent diabetes. Journal of Clinical Endocrinology & Metabolism 1988; 67:785–792.
  5. Kendall DM, Sutherland DE, Najarian JS, et al.: Effects of hemipancreatectomy on insulin secretion and glucose tolerance in healthy humans. New England Journal of Medicine 1990; 322:898–903.
  6. Cerasi E, Luft R: The plasma insulin response to glucose infusion in healthy subjects and in diabetes mellitus. Acta Endocrinologica 1967; 55:278–304.
  7. Polonsky KS, Given BD, Hirsch LJ, et al. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. New England Journal of Medicine 1988; 318:1231–1239.
  8. Ozturk Y, Atlan VM, Yildizoglu-Ari N. Effects of experimental diabetes and insulin on smooth muscle functions. Pharmacol Rev 1996; 48 : 69-112.
  9. Ansari MN and Bhandari U. Antihyperhomocysteinemic activity of an ethanol extract from Embelia ribes in albino rats. Pharmaceutical Biology. 2008;46(4):283-287
  10. Yu ZF, Kong LD, Chen Y 2002. Antidepressant activity of aqueous extracts of Curcuma longa in mice. J Ethnopharmacol 83:161-165
  11. Abdullah N, Saat NZM, Hasan HA, Budin SB, Kamaralzaman S, Protective effect of the ethanol extract of Zingiber officinale Roscoe on paracetamol induced hepatotoxicity in rats, Jurnal Sains Kesihatan Malaysia, 2004, 2(2), 85-95.
  12. Isbrucker, R.A.; Burdock, G.A. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul. Toxicol. Pharmacol. 2006, 4, 167–192.
  13. Badr, S.E.A.; Sakr, D.M.; Mahfouz, S.A.; Abdelfaterrestris tribulusah, M.S. Licorice (Glycyrrhiza glabra L.): Chemical composition and biological impacts. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 606–621.
  14. Suresh Reddy Yanala, D. Sathyanarayana, K. Kannan, A Recent Phytochemical Review – Fruits of Tribulus terrestrisnLinn, J. Pharm. Sci. & Res. 132-140, 8(3) ,2016.
  15. Aji Abraham, Sarala Samuel, Lizzy Methew. Phytochemical analysis of Pathyashadangam kwatha and its standardization by HPLC and HPTLC. Journal of Ayurveda and Integrative Medicine 2020, 11(2):153-158.
  16. Tripathy M., Sikarwar R., Tiwari A., Dwivedi N. Pharmacognostical identification of ingredients in Laghulai curna: an Ayurvediccompound formulation. Indian J Tradit Knowl 14(4):531–536.
  17. Sheah Yee Ghan, Jin Han Chin, Yin Yin Thoo.Acuye oral Toxicity study of Aquilaria Crassna and alpha tocopherol in mice. International Journal of Pharmaceutical Sciences and Research 2016. 12:1456-61.
  18. Kausal K Das, Nima Razzaghi-Asl, Swati N Tikare. Hypoglycemic activity of curcumin synthetic analogues in alloxan-indiced diabetic rats.
  19. Abdullah N, Kasim KF. In-Vitro Antidiabetic Activity of Clinacanthus nutans Extracts. International Journal of Pharmacognosy and Phytochemical Research 2017,9(6):846-852.
  20. Wickramaratne M Nirmali, Punchihewa JC, Wickramaratne DBM. In-Vitro alpha amylase inhibitory activity of the leaf extract of Adenanthera pavonina. BMC Complementary and Alternative Medicine 2016,16:466-471.
  21. Bhuyan BK, Kuentzel SL, Gray LG, Wallach D, Neil GL. Tissue distribution of streptozotocin (NSC 85998) Cancer Chemotherapy Report. 1974;58:157–65. 

Corresponding Author

Minshu Prashant

Department of Dravyaguna, IMS, Banaras Hindu University Varanasi India