

Ghodai M. Abdelrahman, Mona M. Nasr

IJMEIT Volume 4 Issue 9 September 2016 Page 1773

IJMEIT// Vol.04 Issue 09//September//Page No: 1773-1781//ISSN-2348-196x 2016

Detection of Performance Anomalies in Cloud Services: A Correlation Analysis Approach

Authors

Ghodai M. Abdelrahman
1
, Mona M. Nasr

2

Department of Information Systems Faculty of Computers & Information, Helwan University Ain Helwan,

Helwan, Cairo, Egypt

Email- eng.ghady_mohammad@hotmail.com, drmona_nasr@fci.helwan.edu.eg

ABSTRACT

The prevalence of ubiquitous computing and communication has coined the term of cloud computing

through which, software, infrastructure and platform can be provided as a service. Software as a service

(SaaS) is getting an increasing potential as a cloud-based option for using software applications in a pay-

per-use manner. A critical challenge in SaaS model is continuous attestation of the compliance with quality

of service (QoS) metrics stated in SLAs. In this paper, we propose a method for detecting performance

anomalies in cloud software services. The proposed method uses correlation analysis between computing

resources utilization and workload characteristics. This is done by comparing the correlation values to a

reference load test values performed before the SaaS deployment to identify deviations and notify the system

administrator about it. The testing scenario operates in two steps. First, running a standard benchmark on a

virtual machine to simulate workload and record the correlation between workload and available

computing resources utilization (i.e., CPU, RAM, HDD, and Network). Second, the same benchmark is

executed again but with changing the workload characteristics through injecting additional queries or

changing the computing resources configuration values of the virtual machine. The changes are only

present on specific time points to testify the detection rate. Results on standard benchmarks TPC-C, TPC-D

and TPC-W showed a promising detection rate that can assure SLA targeted quality aspects such as

reliability, scalability and security.

Keywords- Software as a Service, Cloud Services, Performance Testing, Anomaly Detection, Cloud

Computing, Correlation Analysis

1. INTRODUCTION

Cloud computing is revolutionizing the software

development industry as a promising deployment

paradigm. It provides computing resources as

services in a pay-per-use usability pattern. This

facilitates saving a plenty of time and cost of

maintaining hardware and software components of

applications. Accordingly, the majority of software

development firms migrates its software products to

the cloud. This migration poses new challenges, as

the software testing procedures should deal with

dynamic characteristics of the cloud. One of these

challenges is the dynamic changes in the cloud

resources over time depending on supply and

demand. This necessitates a continuous monitoring

of the provided service’s performance anomalies to

ensure early detection and handling of bottlenecks

to avoid expensive loss.

Software performance anomaly is defined as a

deviation in one of the two most popular metrics:

response rime (or latency) and throughput due to

changes in workload or computing resources [1].

Performance anomalies are barriers to achieving

predictable performance guarantees in enterprise

applications and often come with significant cost

implications. As an example, Amazon.com website

turned down for roughly 45 min in August 2013 due

to an unexpected fault, which resulted in an

estimated loss of 5 million dollars. Identifying

performance anomalies can save up to 75% of

failure recovery time, and doing it in a timely

manner could inhibit 65% of failures, according to

mailto:eng.ghady_mohammad@hotmail.com
mailto:drmona_nasr@fci.helwan.edu.eg

Ghodai M. Abdelrahman, Mona M. Nasr

IJMEIT Volume 4 Issue 9 September 2016 Page 1774

IJMEIT// Vol.04 Issue 09//September//Page No: 1773-1781//ISSN-2348-196x 2016

Oppenheimer et al. [2]. These implications show not

only the importance but also the potential economic

value of robust and automated solutions for

detecting performance problems in real time.

Fluctuations in cloud’s supply and demand result in

dynamic changes of resource allocation and

workload which increases the possibility of software

performance anomalies. This is in addition to the

conventional causes found in web applications such

as deployment errors or hardware failures. As a

result, the monitoring of software services on the

cloud is far complicated and time-consuming to be

manually handled by systems administrators. Given

a continuous automated monitoring procedure, the

system administrator can have early alarms on

possible failures before they trigger unforeseen

service downtime. Therefore, it can save expensive

economic loss to the service provider and his

tenants.

The focus of this paper is to propose a continuous

performance anomaly detection method that can

deal with the dynamicity of cloud computing

environments. The main contributions of the

proposed method can be summarized as follows:

1. Monitoring performance metrics for each

service tenant based on QoS aspects defined

by SLA.

2. Detecting performance anomalies based on

workload clusters to reduce the number of

false alarm rates.

3. Online monitoring of SaaS performance in a

continuous manner.

The first contribution ensures that the monitoring

process would be aware of the differences in target

performance metrics for each tenant of the cloud

service, which is a vital point as different tenants

will have different SLAs based on their

requirements and rent amount. The second one

guarantees the minimum false alarm rates which

may result from dealing with workload as a single

profile. Therefore, the workload is clustered based

on quartile ranges to create reference profiles used

during judgments on performance anomalies.

Finally, the third one emphasizes the continuity of

the monitoring process during the operation of the

cloud service.

The rest of this paper is organized as follows.

Section 2 explores the relevant literature. Section 3

presents the proposed methodology. Section 4

illustrates the experimental design and results.

Section 5 concludes the paper and indicated the

possible future work.

2. RELATED WORK

In this section, we are going to explore the relevant

literature for workload modelling of web

applications in general and cloud applications in

specific. We explore literature in two basic parts.

The first part presents workload modelling in web

and cloud applications. The second one shows

performance anomaly detection methods.

2.1 Workload Characterization and Modelling

A bottleneck is a resource or an application

component that limits the performance of a system

[1]. Malkowski et al.[3] describe a bottleneck

component as a potential root-cause of undesirable

performance behavior caused by a limitation (e.g.,

saturation) of some major system resources

associated with the component[4]. Such components

often exhibit frequent congestion of load [5]. Also,

application or system metrics correlating with an

observed performance limitation are referred to as

bottleneck metrics [6].

Types of bottlenecks are defined according to [1] as

two types, resource saturation bottlenecks and

resource contention bottlenecks. In resource

saturation bottlenecks, a resource is saturated when

its capacity is fully utilized or past a set threshold.

Moreover, saturation may also be estimated in terms

of the length of a resource queue of jobs or request

to be served by that resource. Saturation causes

different system resources to be bottlenecked

differently with varying performance impact.

While in resource contention bottlenecks,

application processes contend for limited system

resources such as CPU cycles, IO bandwidth, and

physical memory, and also software resources such

as buffers, queues, semaphores, and mutexes. The

impact of such contention is well pronounced in

Ghodai M. Abdelrahman, Mona M. Nasr

IJMEIT Volume 4 Issue 9 September 2016 Page 1775

IJMEIT// Vol.04 Issue 09//September//Page No: 1773-1781//ISSN-2348-196x 2016

cloud data centers due to resource interference

between multiple cloud tenants. The noisy

neighbours effect is an analogy for this interference

[7].

Characterization of load patterns on Content

Distribution Networks (CDN) has been introduced

by Jung et al. [8]. They proposed new ways of

characterizing flash events, such as rejecting the

service request of the users under a DOS attack.

They proposed adaptive algorithms based on

caching and dynamic delegation. Such algorithms

are relevant to cloud load prediction in identifying

load data generated by genuine (legitimate) users

and not attackers.

A holistic workload analysis of web applications

was explored by Lacort et al. [9]. The authors

collected the workload data over long time period

(weeks) with a huge users load simulation (greater

than 50,000 users and roughly122 million requests).

The stated that graphic files are the most common

files in the Web, comprising more than 60% of the

total web requests. It has also been reported that

there was a noticeable increase of requests for

dynamic pages against a decrease in the demand of

static pages, the thing that showed that new

generation of dynamic Web applications is gaining

popularity. This study serves as a good model for

similar characterization studies needed for cloud

workloads.

Prediction of traffic congestion in web servers has

been investigated by Baryshnikov et al. [10].

Authors monitored page request traffic in bus and

airline transportation networks with focus on

hotspot detection. A hotspot can be defined as an

abrupt peak in traffic amount. This is relevant to the

elasticity constraint in the cloud for satisfying the

service level agreement (SLA) demands during

hotspots. The authors proposed an autoregressive

regression model [11] for hotspot detection using

user's session request data. Their results showed

feasible accuracy to predict seasonal hotspots such

as Christmas holidays. While their study was

basically on web applications, their objective of

predicting hotspots in traffic is still needed in cloud

services.

Arlitt and Williamson et al. [12,13] aimed to

characterize web applications workload through

analysing transferred documents' type and size

distributions. They indicated that transferred

documents can reflect the behaviour and

geographical distributions of a web server's

requests. Authors used six different web request

data sets. The study showed that the mean size of

the transferred documents was between 5 and 21

KB. Almost 90% of the transferred documents was

HTML and image files. Techniques such as caching

showed the ability to enhance the web server

response time.

Methods for the management of virtualized

environments in the cloud were introduced by

Andreolini et al. [14]. The authors focused on

guidelines for supporting virtual machine (VM)

migration decisions in a cloud environment. Study

proposed management algorithms for deciding

about reallocations of virtual machines in a cloud

context characterized by large numbers of hosts.

Their results showed that proposed algorithms can

be robust to variable contexts with ability to limit

VMs migrations to only necessary situations.

2.2 Performance Anomaly Detection Methods

Tan et al. [15] presented a predictive performance

anomaly prevention system (PREPARE) for

virtualized cloud systems. PREPARE uses a Hidden

Markov Model (HMM) to predict the values of

attributes then, it selects suspicious attributes with

tree augmented naïve Bayes (TAN) model [16].

Wang et al. [17] presented a workload-aware online

anomaly detection method for enterprise

applications. Authors utilized an incremental k-

mean method to differentiate workloads then, they

used local outlier factor (LOF) [18] to detect

anomalies in each specific workload pattern.

However, this method has two basic limitations.

First, it is unable to automatically determine the

number of clusters in the data as it is given as an

input parameter. Second, the method computes LOF

for every arrival data instance, and the computation

complexity increases significantly as the number of

data instances increases.

Ghodai M. Abdelrahman, Mona M. Nasr

IJMEIT Volume 4 Issue 9 September 2016 Page 1776

IJMEIT// Vol.04 Issue 09//September//Page No: 1773-1781//ISSN-2348-196x 2016

Mi at al. and Zhang at al. [19,20] provided

performance anomaly detection methods that are

based on domain specific knowledge (e.g., the

system internal structure). It can pinpoint to specific

application's components which contribute to

performance bottlenecks. Although this is useful to

locate faulty parts in the application, it is dependent

on specific application design, which makes it

difficult to generalize on other designs.

3. METHODOLOGY

This section introduces the mathematical basis of

the proposed method, its algorithmic formulation

and the supposed operation workflow.

The proposed method depends on finding the

correlation between the workload represented by

user load and computing resources utilization. To

achieve this goal, we used the Multivariate Normal

(MVN) distribution [21] to estimate the probability

distribution of the computing resources with regard

to each user load range. While real data are not

exactly multivariate normal, the normal density is

often a realistic approximation to the “true”

population distribution according to the central limit

theorem [22].

MVN extends the univariate version by having to

be a vector instead of a scalar value such

() and () is the variance-

covariance matrix () whose diagonal terms are

variances and off-diagonal terms are covariances. It

can be calculated by the following equation:

 ,()() - ()

Definition 1

The random vector is said to be

multivariate normal if and only if the linear function

is normal for all ().

Theorem 1

If is a n-variate normal with mean and

covariance matrix , then has a probability

density function (pdf) given by

 ()

()

 | |

() () ()

Based on the last mathematical basis, the proposed

method utilizes the following algorithm to detect

performance anomalies.

Algorithm 1

Input: Reference resource utilization data set

* + and a test vector .

Processing:

1. Using the reference dataset, fit the MVN

parameters .

2. Calculate () using equation (2).

3. Anomaly if | () ()| .

Output: Anomaly alarm if satisfies the anomaly

condition.

In this study, each input vector represents the

utilization percentage of four computing resource:

CPU, memory, hard drive and network respectively.

Each resource represents a feature for the proposed

detection method. The anomaly condition is

checking that the difference between the expectation

of the MVN pdf and the probability of the new

sample is greater than a threshold . The threshold

value is set to the double of the standard deviation

of the MVN pdf. This value showed to achieve the

lowest false alarm rate (FAR) with feasible

adaptability.

Fig. 1 shows a sample from MVN pdf of CPU and

memory as it is the max feasible number of features

to visualize in a 3D graph, but in our analysis we

use the four features as input.

Fig. 1 Sample MVN pdf values for CPU and

memory utilization features

Ghodai M. Abdelrahman, Mona M. Nasr

IJMEIT Volume 4 Issue 9 September 2016 Page 1777

IJMEIT// Vol.04 Issue 09//September//Page No: 1773-1781//ISSN-2348-196x 2016

We transformed the four features to precisely fit the

Normal distribution. We calculate the () for the

CPU and Network features and for the memory

and HDD features.

For an illustration of the operation workflow of the

proposed method, Fig. 2 presents a diagram that

describes the involved entities and operations during

the anomaly detection process.

Fig. 2 Operation workflow of the proposed method

The workflow design comprises the following

execution sequence:

a. The system administrator starts the

workflow by performing a load test for the

SaaS application according to a tenant’s

SLA that defines targeted performance

metrics. Basically, this step is executed on

the operation environment or at least an

identical simulation environment in terms of

computing resources and workload.

b. After performing the reference load test, the

admin saves the test data in the tenant

database using the tenant_ID.

c. When one of the tenant’s users tries to

launch the SaaS service instance using the

tenant_ID, the SaaS launcher middleware

will initiate new monitoring session passing

the tenant_ID to the proposed monitoring

process.

d. Given the tenant_ID the proposed

monitoring process retrieves the reference

load test data and uses it to fit the MVN

model parameters.

e. At every configured time window length, the

monitoring process calculates the average

user load and resources utilization features

vector to testify it against the configured

anomaly threshold.

f. If the pdf value of the current time window

satisfies the anomaly condition in Algorithm

1, the monitoring process sends an anomaly

alarm to the system administrator to take a

corrective action.

The proposed operation workflow is designed to fit

the cloud computing operation style which is tenant-

based working environment focused on defined

SLAs metrics. Building our proposed method on the

same concepts makes it able to:

 Manage multiple configured tenants’

accounts.

 Help the SaaS providers to satisfy each SLA

requirement.

 Reduce false alarm rates as the monitoring is

tenant-based.

4. EXPERIMENTAL DESIGN AND RESULTS

This section shows the experimental design for

testifying the proposed method and summarized the

results.

As stated earlier, we are presenting the computing

resources in the working environment by four basic

features as shown in Table 1.

Table 1 Computing resource features

Name Description

CPU Average CPU utilization in percentage

Memory Average RAM utilization in percentage

HDD Average hard disk utilization in percentage

Network Average network utilization in percentage

During the reference load test, we divide the user

load values into four quartile ranges (each 25%).

These quartiles are stored with its relevant resource

utilization values. This helps to reduce the FARs by

comparing each test example with its nearest

quartile value.

Standard benchmarks including TPC-C, TPC-D and

TPC-W [23] utilized to simulate different user

workloads. These benchmarks are described in the

following points.

 TPC-C is an on-line transaction processing

(OLTP) benchmark. TPC-C involves a mix

of five concurrent transactions of different

Ghodai M. Abdelrahman, Mona M. Nasr

IJMEIT Volume 4 Issue 9 September 2016 Page 1778

IJMEIT// Vol.04 Issue 09//September//Page No: 1773-1781//ISSN-2348-196x 2016

types and complexity either executed on-line

or queued for deferred execution.

 TPC-D represents a broad range of decision

support (DS) applications that require

complex; long running queries against large

complex data structures.

 TPC-W is a transactional web benchmark.

The workload exercises a breadth of system

components associated with such

environments.

For each benchmark, we run two stages simulating

the real proposed working scenario:

1. We only run the benchmark on the

simulation environment (which is a virtual

machine) and record the user load and its

relevant resource utilization features.

2. We run the same benchmark, but we alter

the virtual machine resource values or inject

additional queries from another benchmark

at random time points.

We used Dell’s benchmarking software called

“Benchmark Factory” to run the three configured

benchmarks [24]. This useful tool provides a wide

range of standard benchmarks in addition to its

ability to configure, run and store multiple

benchmarks simultaneously.

A description of utilized software in this

experimental design is listed in Table 2 which

shows all the utilized software and their role.

Table 2 Utilized software in the experimental

design and its role

Software Role

Benchmark Factory Configuring benchmarks,

executing it and storing

load data.

ORACLE VM VirtualBox For configuring and

running virtual

machines.

Microsoft SQL Server 2012 Stores the reference tests

data per each tenant_ID.

Moreover it is used to

store anomaly alarm

notifications.

.NET Framework (C#) Used to implement the

monitoring service as a

windows service.

Matlab 2015b For results visualization.

We configured each benchmark to run a maximum

of 100 user load scaled gradually over 1 hour of

runtime.

Running our experiments on virtual machines

simulates the real working environment on the

cloud while providing more control on the available

computing recourses for each run.

For the hardware description, Table 3 states the

hardware specifications of the utilized machine.

Table 3 Hardware specifications of the

experimental design’s machine

Hardware Specification

CPU Intel Core i7 (2.8 GHz, 8MB cache)

RAM 16 GB

Hard Disk Drive 1 TB

Network Bandwidth 35 Mbps

For sample results visualization, Fig. 3 shows the

pdf values for the TPC-C benchmark in the first

quartile range of user load. In Fig. 4, we show the

same pdf values but with injecting additional

queries by running another benchmark

simultaneously. This is done at configured time

points to testify the anomaly detection method.

As per our benchmark configuration, the time to run

each quartile range of user load is roughly 15

minutes which is visualized on the y-axis. The x-

axis shows the pdf values in terms of mean and

standard deviation magnitudes.

Fig. 3 MVN pdf values for the four resource

utilization features (CPU, Memory, HDD and

Network) of the first quartile range of user load [1-

25] by running TPC-C benchmark.

Ghodai M. Abdelrahman, Mona M. Nasr

IJMEIT Volume 4 Issue 9 September 2016 Page 1779

IJMEIT// Vol.04 Issue 09//September//Page No: 1773-1781//ISSN-2348-196x 2016

Fig. 4 MVN pdf values of the first quartile range of

user load [1-25] by changing the workload of TPC-

C benchmark.

The red dashed lines mark the anomaly threshold

ranges based on the standard deviation. The outlier

MVN pdf values have been marked by orange

circles. Basically, these points represent the time

points at which the anomaly represented by changes

in computing resources or queries load.

For summarization of test results over all the three

benchmarks, Table 4 lists the detection accuracy in

terms of the percentage of truly detected anomalies.

Table 4 Detection accuracy in percentage of

anomalies per each benchmark

Benchmark Detection Rate (%)

TPC-C 98

TPC-D 96

TPC-W 94

AVG 96

STD 2

5. CONCLUSION

In this paper, an automatic performance anomaly

detection method has been proposed for cloud

services. The design of the proposed method

depends on finding the correlation between

computing resources and user load during a

reference load test that is configured to fulfil a

specific SLA of a tenant account. During the service

operation, the monitoring procedure compares the

average user load and its relevant average resource

utilization against the reference test data of the

closest quartile range of user load. The results

showed an average of 96% of detection accuracy

over the three configures benchmarks.

The main contribution of the proposed method can

be summarized in three main parts. First, it stores

and analyzes load data based on each SLA

requirements as it is the same configuration

mechanism in cloud services. This can help the

service provider to customize the target

performance objectives per each tenant and reduce

false alarm rates. Moreover, it also can be

considered as guarantee of other important non-

functional requirements such as availability and

reliability. Second, it compares anomalies with

relevant user load using quartile ranges to provide

better resolution and reduce false alarm rates.

Finally, it provides the potential to early detect

denial of service security attacks as it can be

considered as a sudden change in the generated

queries which has been simulated during our

experimental design.

Our future work will be exploring the feasibility of

other anomaly detection methods such as Local

Outlier Factor LOF and Local Outlier Probability

(LoOP) and investigating adaptive techniques for

setting the anomaly detection threshold.

REFERENCES

1. B. Gregg, Systems Performance: Enterprise

and the Cloud. Pearson Education, 2013.

2. D. Oppenheimer, A. Ganapathi, and D. A.

Patterson, “Why do internet services fail,

and what can be done about it?” in USENIX

symposium on internet technologies and

systems, vol. 67. Seattle, WA, 2003.

3. S. Malkowski, M. Hedwig, and C. Pu,

“Experimental evaluation of n-tier systems:

Observation and analysis of multi-

bottlenecks,” in Workload Characterization,

2009. IISWC 2009. IEEE International

Symposium on. IEEE, 2009, pp. 118–127.

4. D. Lee, S. K. Cha, and A. H. Lee, “A

performance anomaly detection and analysis

framework for dbms development,” IEEE

Transactions on Knowledge and Data

Ghodai M. Abdelrahman, Mona M. Nasr

IJMEIT Volume 4 Issue 9 September 2016 Page 1780

IJMEIT// Vol.04 Issue 09//September//Page No: 1773-1781//ISSN-2348-196x 2016

Engineering, vol. 24, no. 8, pp. 1345–1360,

2012.

5. N. Mi, G. Casale, L. Cherkasova, and

E. Smirni, “Burstiness in multi-tier

applications: Symptoms, causes, and new

models,” in Proceedings of the 9th

ACM/IFIP/USENIX International

Conference on Middleware. Springer-Verlag

New York, Inc., 2008, pp. 265–286.

6. J. Parekh, G. Jung, G. Swint, C. Pu, and

A. Sahai, “Issues in bottleneck detection in

multi-tier enterprise applications,” in

200614th IEEE International Workshop on

Quality of Service. IEEE, 2006, pp. 302–

303.

7. X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh,

and C. Pu, “Understanding performance

interference of i/o workload in virtualized

cloud environments,” in 2010 IEEE 3rd

International Conference on Cloud

Computing. IEEE, 2010, pp. 51–58.

8. J. Jung, B. Krishnamurthy, and

M. Rabinovich, “Flash crowds and denial of

service attacks: Characterization and

implications for cdns and web sites,” in

Proceedings of the 11th International

Conference on World Wide Web, ser. WWW

’02. New York, NY, USA: ACM, 2002, pp.

293–304. [Online]. Available: http://-

doi.acm.org/10.1145/511446.511485

9. J. A. Lacort, A. Pont, J. A. Gil, and

J. Sahuquillo, “A comprehensive web

workload characterization,” in Proc. of the

Conference on Performance Modelling and

Evaluation of Heterogeneous Networks.

Citeseer, 2004.

10. Y. Baryshnikov, E. Coffman, G. Pierre,

D. Rubenstein, M. Squillante, and

T. Yimwadsana, “Predictability of web-

server traffic congestion,” in 10th

International Workshop on Web Content

Caching and Distribution (WCW’05), Sept

2005, pp. 97–103.

11. J. D. Hamilton, Time series analysis.

Princeton university press Princeton, 1994,

vol. 2.

12. M. F. Arlitt and C. L. Williamson, “Internet

web servers: Workload characterization and

performance implications,” IEEE/ACM

Trans. Netw., vol. 5, no. 5, pp. 631–645,

Oct. 1997. [Online]. Available: http://-

dx.doi.org/10.1109/90.649565

13. A. Williams, M. Arlitt, C. Williamson, and

K. Barker, “Web workload characterization:

Ten years later,” in Web content delivery.

Springer, 2005, pp. 3–21.

14. M. Andreolini, S. Casolari, M. Colajanni,

and M. Messori, Dynamic Load

Management of Virtual Machines in Cloud

Architectures. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010, pp. 201–214.

15. Y. Tan, H. Nguyen, Z. Shen, X. Gu,

C. Venkatramani, and D. Rajan, “Prepare:

Predictive performance anomaly prevention

for virtualized cloud systems,” in

Distributed Computing Systems (ICDCS),

2012 IEEE 32nd International Conference

on, June 2012, pp. 285–294.

16. F. Zheng and G. I. Webb, “Tree augmented

naive bayes,” in Encyclopedia of Machine

Learning. Springer, 2011, pp. 990–991.

17. T. Wang, W. Zhang, J. Wei, and H. Zhong,

“Workload-aware online anomaly detection

in enterprise applications with local outlier

factor,” in 2012 IEEE 36th Annual

Computer Software and Applications

Conference, July 2012, pp. 25–34.

18. M. M. Breunig, H.-P. Kriegel, R. T. Ng, and

J. Sander, “Lof: Identifying density-based

local outliers,” SIGMOD Rec., vol. 29, no. 2,

pp. 93–104, May 2000. [Online]. Available:

http://doi.acm.org/10.1145/335191.335388

19. H. Mi, H. Wang, Y. Zhou, M. R. T. Lyu, and

H. Cai, “Toward fine-grained, unsupervised,

scalable performance diagnosis for

production cloud computing systems,” IEEE

Transactions on Parallel and Distributed

Ghodai M. Abdelrahman, Mona M. Nasr

IJMEIT Volume 4 Issue 9 September 2016 Page 1781

IJMEIT// Vol.04 Issue 09//September//Page No: 1773-1781//ISSN-2348-196x 2016

Systems, vol. 24, no. 6, pp. 1245–1255, June

2013.

20. Y. Zhang, Z. Zheng, and M. R. Lyu, “An

online performance prediction framework

for service-oriented systems,” IEEE

Transactions on Systems, Man, and

Cybernetics: Systems, vol. 44, no. 9, pp.

1169–1181, Sept 2014.

21. C. B. Do, “The multivariate gaussian

distribution,” Section Notes, Lecture on

Machine Learning, CS, vol. 229, 2008.

22. A. Araujo and E. Giné, The central limit

theorem for real and Banach valued random

variables. Wiley New York, 1980, vol. 431.

23. M. Poess and C. Floyd, “New tpc

benchmarks for decision support and web

commerce,” ACM Sigmod Record, vol. 29,

no. 4, pp. 64–71, 2000.

24. “Benchmark factory,” https://-

software.dell.com/products/benchmark-

factory/, accessed: 2016-09-05.

