##plugins.themes.academic_pro.article.main##
Abstract
Enhanced expression of amyloid β-peptide (Aβ) and deposition is the main causative factor in Alzheimer’s disease (AD). Factors that lead to the genesis of accumulation and toxicity of Aβs are yet to be identified. While studying the effect of systemic amyloid on the functions of the mice brain, it was accidentally found that the mice brains contain accumulated Aβs, which are extractable with hexafluroisopropanol (HFIP) solvent. By purifying with semi preparative HPLC on HFIP extracts, two major fractions containing mixture of Aβs with variable composition were observed. We have characterized these mixtures by electron microscopic and spectroscopic methods. Our results indicate that, the accumulated Aβ fibrils have similar morphological and conformational characteristics as that of Aβs of AD brains.
Keywords: Systemic Amyloidosis; β-amyloid; Alzheimer’s Disease; Circular Dichroism; FT Infra red Spectroscopy; Transmission Electron Microscopy; Congo red.##plugins.themes.academic_pro.article.details##
References
2. Botto, M., Hawkins, P. N., Bickerstaff, M. C. M., Herbert, J., Bygrave, A. E., McBride, A., Hutchinson, W. L., Tenneni, G. A., Walport M. J., and Pepys., M. B., 1997. Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nat. Med. 3, 855-859.
3. Fezoui, Y., Hartley, D.M., Harper, J.D., Khurana, R., Walsh, D.M., Condron, M.M., Selkoe, D.J., Lansbury, P.T. Jr., Fink, A.L., and Teplow, D.B., 2000. An improved method of preparing the amyloid beta-protein for fibrillogenesis and neurotoxicity experiments. Amyloid. 7, 166-178.
4. Hardy, J., and Selkoe, D. J., 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 297, 353-356.
5. Iwata, N., Tsubuki, S., Takaki, Y., Watanabe, K., Sekiguchi, M., Hosoki, E., Kawashima- Morishima, M., Lee, H. J., Hama, E., Sekine-Aizawa, Y., and Saido, T. C., 2000. Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat. Med. 6, 143-150.
6. Iwatsubo T., Odaka A., Suzuki N., Mizusawa H., Nukina N., and Ihara Y., 1994. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13, 45–53.
7. Kane, M. D., Lipinski, W. J., Callahan, M. J., Bian, F., Durham, R. A., Schwarz, R. D., Roher, E., Walker, L. C., 2000. Evidence for seeding of beta -amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein-transgenic mice. J. Neurosci. 20, 3606-3611.
8. Kuo, Y.M., Kokjohn, T.A., Beach, T.G., Sue, L.I., Brune, D., Lopez, J.C., Kalback, W.M., Abramowski, D., Sturchler-Pierrat, C., Staufenbiel, M., and Roher, A.E., 2001. Comparative analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer's disease brains. J. Biol. Chem. 276, 12991-12998.
9. Lansbury, P. T. Jr., 1992. In pursuit of the molecular structure of amyloid plaque: new technology provides unexpected and critical information. Biochem. 31, 6865-6870.
10. Lee, S.J., Liyanage, U., Bickel, P.E., Xia, W., Lansbury, P.T. Jr., and Kosik, K.S., 1998. A detergent-insoluble membrane compartment contains A beta in vivo. Nat. Med. 4, 730-734.
11. Lemere C. A., Blusztajn J. K., Yamaguchi H., Wisniewski T., Saido T. C., and Selkoe D. J., 1996. Sequence of deposition of heterogeneous amyloid beta peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3, 16– 32.
12. Naslund, J. Karlstrom, A. R., Tjernberg, L. O., Schierhorn, A., Teenius, L., and Nordstedt, C., 1996. High-resolution separation of amyloid beta-peptides: structural variants present in Alzheimer's disease amyloid. J. Neurochem. 67, 294-301.
13. Naslund, J., Schierhorn, A., Hellman, U., Lanntelt, L., Roses, A. D., Tuernberg, L. O., Silberring, J., Gandy, S. E., Winblad, B., Greengard, P., Nordstedt, C., and Terenius, L., 1994a. Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proc. Natl. Acad. Sci. USA. 91, 8378-8382.
14. Nichols, M. R., Moss, M. A., Reed, D. K., Lin, W. L., Mukhopadhyay, R., Hoh, J. H., and Rosenberry, T. L., 2002. Growth of beta-amyloid (1-40) protofibrils by monomer elongation and lateral association. Characterization of distinct products by light scattering and atomic force microscopy. Biochem. 41, 6115-61127.
15. Nielsen, E. H., Nybo, M., and Svehag, S. E., 1999. Electron microscopy of prefibrillar structures and amyloid fibrils. Methods. Enzymol. 309, 491-509.
16. Selkoe, D. J., 1991. The molecular pathology of Alzheimer's disease. Neuron. 6, 487-498.
17. Seubert, P. Vigo-Pelfrey, C., Eash, F., Lee, M., Dovey, H., Davis, D., Shina, S., Schlosmacher, M., Whaley, J., Swindlehurst, C., McCormack, R., Wolfret, R., Selkoe, D. J., Lieberburg, I., and Shenk, D. B., 1992. Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature. 359, 325-328.
18. Walsh, D.M., Hartley, D.M., Kusumoto, Y., Fezoui, Y., Condron, M.M., Lomakin, A., Benedek, G.B., Selkoe, D.J., and Teplow, D.B., 1999. Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274, 25945-25952.
19. Westermark, G. T., Johnson, K. H., and Westermark, P., 1999. Staining methods for identification of amyloid in tissue. Methods. Enzymol. 309, 3-25.
20. Yan, S. D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., Migheli, A., Nawroth, P., Stern, D., and Schmidt, A. M. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer'sdisease, Nature. 382 (1996) 685-691.