##plugins.themes.academic_pro.article.main##
Abstract
This paper studies perfect 2-tuple total domination number for the circulant graphs Cir(n,A), where A={1,2,...,x,n-1,n-2,...n-x} and x<=floor((n-1)/2)Â from an algorithmic point of view.
Â
##plugins.themes.academic_pro.article.details##
How to Cite
S. Palaniammal, A. S. (2015). An Algorithm for 2-Tuple Total Domination Number in Circulant Graphs. International Journal of Emerging Trends in Science and Technology, 2(06). Retrieved from http://igmpublication.org/ijetst.in/index.php/ijetst/article/view/705
References
1. D.W.Bange,A. Barkauskas,P.J.Slater,Efficient dominating sets in graphs in: R.D.Ringeisen, F.S.Roberts(Eds),Application of Discrete mathematics, SIAM, Philadelphia, PA (1988), 189-199.
2. B.Chaluvaraju and K.A.Vidya,Bounds on perfect domination in trees: An algorithmic approach,Opuscula Mathematica,32(4)(2012), 707-714.
3. T.W.Haynes,S.T.Hedetniemi and P.J.Slater, Fundamentals of domination in graphs,Marcel Dekker,2000.
4. A.P.Kazemi, K-tuple total domination and Mycieleskian graphs, Transaction on combinatorics. 1(1)(2012), 7-13.
5. J.K.Lan and G.J.Chang,On the algorithmic complexity of k-tuple total domination,2013
6. J.Lee, independent perfect domination sets in Cayley graphs,J.Graph theory 37(4)(2001), 213-219.
7. C.Liao and G.J.Chang, Algorithmic aspect of k-tuple domination in graphs,Taiwanese Journal of Mathematics,6(3),(2002),415-420.
8. A.Shobana,S.Jothimani and S.Palaniammal, Efficient 2-domination number in circulant graphs,Far East Journal of Mathematical Sciences 89(1)(2001)21-30.
9. A.Shobana and S.Palaniammal,2-tuple total domination number in circulant graphs, International Journal of Mathematics.
10. Sivagnanam Muthuarasu, Domination in Caylay graphs, Ph.D thesis, Manonmaniam Sundaranar university, 2011.
2. B.Chaluvaraju and K.A.Vidya,Bounds on perfect domination in trees: An algorithmic approach,Opuscula Mathematica,32(4)(2012), 707-714.
3. T.W.Haynes,S.T.Hedetniemi and P.J.Slater, Fundamentals of domination in graphs,Marcel Dekker,2000.
4. A.P.Kazemi, K-tuple total domination and Mycieleskian graphs, Transaction on combinatorics. 1(1)(2012), 7-13.
5. J.K.Lan and G.J.Chang,On the algorithmic complexity of k-tuple total domination,2013
6. J.Lee, independent perfect domination sets in Cayley graphs,J.Graph theory 37(4)(2001), 213-219.
7. C.Liao and G.J.Chang, Algorithmic aspect of k-tuple domination in graphs,Taiwanese Journal of Mathematics,6(3),(2002),415-420.
8. A.Shobana,S.Jothimani and S.Palaniammal, Efficient 2-domination number in circulant graphs,Far East Journal of Mathematical Sciences 89(1)(2001)21-30.
9. A.Shobana and S.Palaniammal,2-tuple total domination number in circulant graphs, International Journal of Mathematics.
10. Sivagnanam Muthuarasu, Domination in Caylay graphs, Ph.D thesis, Manonmaniam Sundaranar university, 2011.