##plugins.themes.academic_pro.article.main##

Abstract

In this paper we discuss some analytical aspects of categories. Here we see that if  F : C→ D is a covariant functor then image of F will not form a subcategory of D. We provide an example to show it. Also we try to find some results of the category of rings ( Ring), the category of sets (Set), the category of groups (Gp) and category of topological spaces ( Top).  We define some functors between categories and discuss their properties.

Key words: Category, functor, morphism, monomorphism, epimorphism,bimorphism, isomorphism , balanced, normalcategory

##plugins.themes.academic_pro.article.details##

Author Biography

Dhanjit Barman, Gauhati University, Guwahati, Assam

Deptt. of Mathematics
How to Cite
Barman, D. (2015). Some Analytical Aspects of Categories. International Journal of Emerging Trends in Science and Technology, 2(04). Retrieved from http://igmpublication.org/ijetst.in/index.php/ijetst/article/view/601

References

1. Anderson,Frank W.& Fuller,Kent R., Rings and Categories of Modules, Springer- Verlag New York berlin Heidelberg London paris Tokyo Hong Kong Barcelona Budapast.
2. Mac Lane, S.,1971: Categories for the Working Mathematician, Springer-Verlag New York Berlin
3. Mitchel, Barry.1965: Theory of Categories, Academic Press New York and London.
4. Krishnan,V.S.,1981: An introduction to Category Theory, North Holland New York Oxford.
5. Schubert, Horst,1972: Categories, Springer-Verlag Berlin Heidelberg New York.
6. Popescu,N.,1973: Abelian Categories with Applications to Rings and Modules, Academic Press, London & New York.
7. Awodey, Steve.,2006: Category Theory, Second Edition,Clarendon Press,Oxford.
8. Borceux, Francis.,1994: Hand Book of Categorical Algebra, Cambridge Univer-sity Press
9. Simmons, Harold.,2011:An Introduction to Category Theory ,Cambridge University Press.
10. Freyd, P.,1965: Abelian Categories, An Introduction totheTheory of Functors, A Harper International Edition, 0 jointly published by Harper & Row, NewYork, Evaston & London and JOHN WEATHERHILL INC. TOKYO.
11. Pareigis,Bodo.,1970:Categories and Functors, Academic Press New York, London.