##plugins.themes.academic_pro.article.main##

Abstract

Thick-film VOCs sensors based on ruthenated multi-walled carbon nanotubes coated with tin-dioxide nanoparticles nanocomposite structures (MWCNTs/SnO2) are prepared using three methods: hydrothermal synthesis, sol–gel technique and their combined process. Properties prepared nanocomposite powders are characterized by TEM and SEM techniques. It is shown that the optimal conditions for applications as acetone, toluene, ethanol and methanol vapors sensors in view of high response and selectivity relative to each other depend on choice of material synthesis method, mass ratio of the nanocomposite components and selected operating temperature. MWCNTs/SnO2 sensor structures having the mass ratio of the components 1:4 and 1:24 exhibit selective sensitivity to acetone and toluene vapors at 150oC operating temperature, respectively. The samples with 1:200 mass ratio of the nanocomposite components show the selective and response to acetone vapor exposure in the range of 200-250oC operating temperatures. The high sensitivity to ethanol and methanol vapors at 200oC operating temperature was revealed for the sensor structures made by all three proposed methods with the 1:8, 1:24, 1:50 and 1:66 ratio of the components.

Keywords: MWCNTs/SnO2, VOCs, sensor acetone, toluene, ethanol, methanol

##plugins.themes.academic_pro.article.details##

How to Cite
Emma Khachaturyan, Arsen Adamyan, V. A. Z. A. S., & Peter Berki, K. H. Z. N. (2014). Comparative Study of VOC Sensors Based on Ruthenated MWCNT/SnO2 Nanocomposites. International Journal of Emerging Trends in Science and Technology, 1(08). Retrieved from http://igmpublication.org/ijetst.in/index.php/ijetst/article/view/375

References

1. S. Gokhale, T. Kohajda, U. Schlink, “Source apportionment of human personal exposure to volatile organic compounds in homes, offices and outdoors by chemical mass balance and genetic algorithm receptor models,” Sci. Total Environ. 407, pp. 122–138, 2008.
2. S. Wang, H.M. Ang, M.O. Tade, “Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art,” Environ. Int. 33, pp.694–705, 2007.
3. K. Inyawilert, A. Wisitsoraat, A. Tuantranont, P. Singjai, S. Phanichphant, C. Liewhiran, “Ultra-rapid VOCs sensors based on sparked-In2O3 sensing films,” Sensors and Actuators B 192, () 745– 754, 2014.\
4. S.A. Feyzabad, A.A. Khodadadi, M.V. Naseh, Y. Mortazavi, “Highly sensitive and selective sensors to volatile organic compounds using MWCNTs/SnO2,” Sens. Actuators B 166–167, pp. 150–155, 2012.
5. X. Li, Y. Chang, Y. Long, “Influence of Sn doping on ZnO sensing properties for ethanol and acetone,” Mater. Sci. Eng. C 32, pp. 817–821, 2012.
6. C. Garzella, E. Comini, E. Bontempi, L.E. Depero, C. Frigeri, G. Sberveglieri, “Sol-gel TiO2 and W/TiO2 nanostructured thin films for control of drunken driving,” Sens. Actuators B 83, pp. 230–237, 2002.
7. T. Brousse, D.M. Schleich, “Sprayed and thermally evaporated SnO2 thin films for ethanol sensors,” Sens. Actuators B 31, pp. 77–79, 1996.
8. M. Salaspuro, “Acetaldehyde as a common denominator and cumulative carcinogen in digestive tract cancers,” Scandinavian J. of Gastroenterology, 44 (8), pp. 912–925, 2009.
9. Xue Bai, Huiming Ji, Peng Gao, Ying Zhang, Xiaohong Sun, “Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors,” Sens. Actuators B 193, pp. 100–106, 2014.
10. N. Makisimovich, V. Vorotyntsev, N. Nikitina, O. Kaskevich, P. Karabun, F. Martynenko, “Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis,” ,Sens. Actuators B 35–36, pp. 419–421, 1996.
11. L. Wang, A. Teleki, S.E. Pratsinis, P.I. Gouma, Ferroelectric WO3 nanoparticles for acetone selective detection, Chem. Mater. 20, pp. 4794–4796, 2008.
12. J. Lerchner, D. Caspary, G. Wolf, “Calorimetric detection of volatile organic compounds,” Sens. Actuators B: Chem. 70, pp. 57–66, 2000.
13. M. Consales, A. Crescitelli, M. Penza, P. Aversa, P.D. Veneri, M. Giordano, A. Cusano, “SWCNT nanocomposite optical sensors for VOC and gas trace detection,” Sens. Actuators B: Chem. 138, pp. 351–361, 2009.
14. T. Sasahara, H. Kato, A. Saito, M. Nishimura, M. Egashira, “Development of a ppb level sensor based on catalytic combustion for total volatile organic compounds in indoor air,” Sens. Actuators B: Chem. 126, pp. 536–543, 2007.
15. M. Hanada, H. Koda, K. Onaga, K. Tanaka, T. Okabayashi, T. Itoh, H. Miyazaki, “Portable oral malodor analyzer using highly sensitive In2O3 gas sensor combined with a simple gas chromatography system,” Anal. Chim. Acta 475, pp. 27–35, 2003.
16. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, “Grain size effects on gas sensitivity of porous SnO2-based elements,” Sensors and Actuators B 3, pp. 147–155, 1991.
17. G. Korotcenkov, S.-D. Han, B.K. Cho, V. Brinzari, “Grain size effects in sensor response of nanostructured SnO2- and In2O3-based conductometric thin film gas sensor,” Critical Reviews in Solid State and Materials Sciences 34, pp. 1–17, 2009.
18. A.Z. Adamyan, Z.N. Adamyan, V.M. Aroutiounian, A.H. Arakelyan, J. Turner, K. Touryan, “Sol–gel derived thin-film semiconductor hydrogen gas sensor,” International Journal of Hydrogen Energy 32 pp. 4101–4108, 2007.
19. M. Tonezzer, N.V. Hieu, “Size-dependent response of single-nanowire gas sensors,” Sensors and Actuators B 163, pp. 146–152, 2012.
20. Wang, L.F. Zhu, Y.H. Yang, N.S. Xu, G.W. Yang, “Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen,” Journal of Physical Chemistry C 112, pp. 6643–6647, 2008.
21. L.P. Qin, J.Q. Xu, X.W. Dong, Q.Y. Pan, Z.X. Chen, Q. Xiang, F. Li, “The template free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors,” Nanotechnology 19, pp. 185705, 2008.
22. X.M. Han, B. Zhang, S.K. Guan, J.D. Liu, X. Zhang, R.F. Chen, “Gas-sensing properties of SnO2 nanobelts synthesized by thermal evaporation of Sn foil,” Journal of Alloys and Compounds 461, pp. L26–L28, 2008.
23. Youngjae Kwon, Hyunsu Kim, Sangmin Lee, In-Joo Chin, Tae-Yeon Seong, Wan In Lee, Chongmu Lee, “Enhanced ethanol sensing properties of TiO2 nanotube sensors,” Sensors and Actuators B 173, pp. 441– 446, 2012.
24. Yi-Jing Li, Kun-Mu Li, Chiu-Yen Wang, Chung-I. Kuo, Lih-Juann Chen, “Low-temperature electrodeposited Co-doped ZnO nanorods with enhanced ethanol and CO sensing properties,” Sensors and Actuators B 161, pp. 734–739, 2012.
25. Y. Tan, C.C. Li, Y. Wang, J.F. Tang, X.C. Ouyang, “Fast-response and high sensitivity gas sensors based on SnO2 hollow spheres,” Thin Solid Films 516, pp. 7840–7843, 2008.
26. Cheng, S.Y. Ma, X.B. Li, J. Luo, W.Q. Li, F.M. Li, Y.Z. Mao, T.T. Wang, Y.F. Li, “Highly sensitive acetone sensors based on Y-doped SnO2 prismatic hollow nanofibers synthesized by electrospinning,” Sensors and Actuators B 200, pp. 181–190, 2014.
27. Lin Mei, Jiwei Deng, Xiaoming Yin, Ming Zhang, Qiuhong Li, Endi Zhang, Zhi Xu, Libao Chen, Taihong Wang, “Ultrasensitive ethanol sensor based on 3D aloe-like SnO2,” Sensors and Actuators B 166–167, pp. 7–11, 2012.
28. L. Zhao, M. Choi, H.-S. Kim, S.-H. Hong, “The effect of multiwalled carbon nanotube doping on the CO gas sensitivity of SnO2-based nanomaterials,” Nanotechnology, 18, pp. 445501, 2007.
29. Sadegh Ahmadnia-Feyzabad, Abbas Ali Khodadadia, Masoud Vesali-Naseh, Yadollah Mortazavi, “Highly sensitive and selective sensors to volatile organic compounds using MWCNTs/SnO2,” Sensors and Actuators B 166–167, pp. 150–155, 2012.
30. V.M. Aroutiounian, A.Z. Adamyan, E.A. Khachaturyan, Z.N. Adamyan, K. Hernadi, Z. Pallai, Z. Nemeth, L. Forro, A. Magrez, “Methanol and ethanol vapor sensitivity of MWCNT/SnO2/Ru nanocomposite structures,” In Proc. of the 14th Int. Meeting on Chemical sensors, pp. 1085-1088, 2012.
31. V.M. Aroutiounian, A.Z. Adamyan, E.A. Khachaturyan, Z.N. Adamyan, K. Hernadi, Z. Pallai, Z. Nemeth, L. Forro, A. Magrez, E. Horvath, “Study of the surface-ruthenated SnO2/MWCNTs nanocomposite thick-film gas sensors,” Sensors and Actuators B 177, pp. 308–315, 2013.
32. P. Berki, Z. Németh, B. Réti, O. Berkesi, A. Magrez, V. Aroutiounian, L. Forró, K. Hernadi, “Preparation and characterization of multiwalled carbon nanotube/In2O3 composites,” Carbon 60, pp. 266-272, 2013.
33. N.V. Hieu, L.T.B. Thuy, N.D. Chien, “Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite,” Sensors and Actuators B 129, pp. 888–895, 2008.
34. Y.-L. Liu, H.-F. Yang, Y. Yang, Z.-M. Liu, G.-L. Shen, R.-Q. Yu, “Gas sensing properties of tin dioxide coated carbon nanotubes,” Thin Solid Films 497, pp. 355–360, 2006.
35. B.-Y. Wei, M.-C. Hsu, P.-G. Su, H.-M. Lin, R.-J. Wu, H.-J. Lai, “A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature,” Sensors and Actuators B 101, pp. 81–89, 2004.
36. G. Korotcenkov, S.H. Han, B.K. Cho, “Material design for metal oxide chemiresistive gas sensors,” Journal of Sensor Science and Technology 22(1) pp. 1-17, 2013.
37. E. Couteau, K. Hernadi, J.W. Seo, L. Thien-Nga, Cs. Mikó, R. Gáal, L. Forró, “CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production,” Chem. Phys. Lett., 378, pp. 9-17, 2003.
38. Arnaud Magrez, Jin Won Seo, Rita Smajda, Marijana Mionić, László Forró, “Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth,” Materials 3 pp. 4871-4891, 2010.
39. Zoltan Nemeth, Balazs Reti, Zoltan Pallai, Peter Berki, Judit Major, Endre Horvath, Arnaud Magrez, Laszlo Forro, Klara Hernadi, “Chemical challenges during the synthesis of MWCNT-based inorganic nanocomposite materials,” Phys. Status Solidi B pp. 1-6, 2014.
40. A.Z. Adamyan, Z.N. Adamyan, V.M. Aroutiounian, A.H. Arakelyan, J. Turner, K. Touryan, Sol-Gel Derived Thin-film Semiconductor Hydrogen Gas Sensor, Int. J. of Hydrogen Energy, 32, pp. 4101-4108, 2007.
41. Thanh Thuy Trinh, Ngoc Han Tu, Huy Hoang Le, Kyung Yul Ryu, Khac Binh Le, Krishnakumar Pillai, Junsin Yi, “Improving the ethanol sensing of ZnO nano-particle thin films-The correlation between the grain size and the sensing mechanism,” Sensors and Actuators B 152, pp. 73–81, 2011.