##plugins.themes.academic_pro.article.main##

Abstract

BER is a key property of the digital communication system. Various types of modulation methods are used in the digital information transmission system. BER can be demarcated as the number of received bits of  a  data  stream  over  a  communication  channel  that  can  be  affected  due  to  noise,  interference  and  distortion or  bit synchronization errors. OFDM can be seen as either a modulation technique or a multiplexing technique. One of the main reasons to use OFDM is to increase the robustness against frequency selective fading or narrowband interference. In a single carrier system, a single fade or interferer can cause the entire link to fail, but in a multicarrier system, only a small percentage of the subcarriers will be affected.  The BPSK digital modulation technique for OFDM system over AWGN and Rayleigh fading channels.  From  comparison we  can  observe  that  the  OFDM- BPSK  modulation  has  no  any  specific advantage  over  a  conventional  BPSK  modulation  scheme  in  AWGN  channel  but  OFDM-BPSK  modulation  in  AWGN channel has great advantage over OFDM-BPSK modulation in Rayleigh fading channel.  The  performance  of  BER  of  BPSK  over AWGN  and  Rayleigh  channel  is  compared.  Simulation  of  BPSK  signals  is carried  with  both  AWGN  and  Rayleigh  channel. The work provides link level performance analysis of non-line of sight QPSK-OFDM data transmission over Rayleigh fading channels. Two scenarios have been considered in this thesis. Firstly, the performance of BPSK-OFDM and QPSK-OFDM over the AWGN and Rayleigh channel was obtained.

Keywords: OFDM,QPSK,BPSK,AWGN,RAYLEIGH CHANNEL

##plugins.themes.academic_pro.article.details##

Author Biography

Neha Mukul, Shailendra Singh Pawar, Mohd. Sarwar Raeen, All Saints’ College of Technology Bhopal, M.P.

Electronics and Communication
How to Cite
Mohd. Sarwar Raeen, N. M. S. S. P. (2014). BER and SER Based Performance Analysis of BPSK and QPSK Modulation Schemes with OFDM in Rayleigh Fading Channel. International Journal of Emerging Trends in Science and Technology, 1(08). Retrieved from http://igmpublication.org/ijetst.in/index.php/ijetst/article/view/357

References

1. J. Chuang and N. Sollenberger, “Beyond 3G: Wideband wireless data access based on OFDM and dynamic packet assignment,” IEEE Communications Mag., vol. 38, pp. 78– 87, July 2000.
2. Saltzberg, B. R., “Performance of an Efficient Parallel Data Transmission System,” IEEE Trans. on Communications, Vol. COM-15, No. 6, December 1967, pp. 805–811.
3. A.G.Armada, “Understanding the Effects of Phase Noise in OFDM,” IEEE Transaction on Broadcasting, vol. 47, No.2, June 2001.
4. Mehul Jain and M. Mani Roja, “ Comparison of OFDM with CDMA System in Wireless telecommunication for multipath delay spread,” The 1stIEEE and IFIP International Conference in Central Asia, 26-29 Sept., 2005, Pages 5.
5. Bernard Sklar, Digital Communication Fundamentals and Applications, Second Edition, Pearson Education, Asia, 2000.
6. Sami H. O. Salih, Mamoun M. A. Suliman, “Implementation of Adaptive Modulation and Coding Techniques using Matlab,” 53rd International Symposium ELMAR-2011, 14-16 September 2011, Zadar, Croatia.
7. Mosier, R. R., and Clabaugh, R.G., A Bandwidth Efficient Binary Transmission System, IEEE Trans., Vol. 76, pp. 723 - 728, Jan. 1958.
8. Salzberg, B. R., Performance of an efficient parallel data transmission system, IEEE Trans. Comm., Vol. COM- 15, pp. 805 - 813, Dec. 1967.
9. Orthogonal Frequency Division Multiplexing, U.S. Patent No. 3, 488,4555, filed November 14, 1966, issued Jan. 6, 1970.
10. S. Weinstein and P. Ebert, "Data transmission by frequency-division multiplexing using the discrete Fourier transform," IEEE Trans. on Communications., vol. 19, pp. 628--634, Oct. 1971
11. R.W. Chang, and R.A. Gibby [1968], “Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme,” IEEE Transactions on Communications, 16, 4, pp. 529-540.
12. A. Peled and A. Ruiz, "Frequency domain data transmission using reduced computationally complexity algorithms," in Proceedings of IEEE International Conference of Acoustics, Speech and Signal Processing, (Denver), pp. 964--967, April 1980.
13. B. Hirosaki. An Orthogonally Multiplexed QAM System Using the Discrete Fourier Transform. IEEE Trans. on Commun., 29(7):982-989, July 1981.
14. L.J. Cimini [1985], “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency-Division Multiplexing,” IEEE Transactions on Communications, 33, 7, pp. 665-675
15. R. Gross, and D. Veeneman [1993], “Clipping Distortion in DMT ADSL Systems,”Electronics Letters, 29, 24, pp. 2080-2081.
16. P.J. Tourtier, R. Monnier, and P. Lopez [1993], “Multicarrier Modem for Digital HDTV Terrestrial Broadcasting,” Signal Processing: Image Communication, 5, 5/6, pp.379-403.
17. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Standard, Supplement to Standard 802 Part 11: Wireless LAN, New York, NY, 1999.
18. “Analysis of new methods for broadcasting digital data to mobile terminals over an FM channel” Prasad.R and Bons JHThis paper appears in: Broad casting ,IEEE transactions Volume: 40 , Issue: 1 pages: 29 – 37
19. On multi rate DS/CDMA with interference cancellation for wireless multimedia applications Johansson, Ottossonm, svensson personal wireless comm, 1996, IEEE Vol 5,pages 102-107
20. Discrete Multitone Transceiver System for HDSL. Applications. Jacky. S. Chow, Student Member, IEEE, Jeny C. Tu, Student Member, IEEE,. and John. M. Cioffi, IEEE Commun. Mag., vol. 16, pp. 654-665, March 1995