

Subba Reddy, Vikram Shinde www.ijetst.in Page 2300

IJETST- Vol.||02||Issue||04||Pages 2300-2305||April||ISSN 2348-9480 2015

International Journal of Emerging Trends in Science and Technology

Ascendible Quantizing of Streaming Data Warehouse

Authors

Subba Reddy
1
, Vikram Shinde

2

1
Assistant Professor, CSE Department, MLR Institute of Technology, Dundigal, Hyderabad,

Telangana, India

Email: subbareddy.lpu@gmail.com
2
CSE Department, MLR Institute of Technology, Dundigal, Hyderabad, Telangana, India

Email:vickyshinde87@gmail.com

Abstract

In this paper we study update scheduling problem in streaming data warehouse, streaming data Warehouse

combines the benefits of traditional data warehouses and data stream systems. In this problem jobs

Corresponds to the processes which a load the new data in to the table, and main is aim is to minimize data

staleness. Also it handle the challenges faced by streaming warehouse such as view hierarchies, preempt

updates, data consistency and heterogeneity of update jobs caused by different arrival times and size of data.

The scheduling metric is considered as staleness of data, we study the paper which explains how to schedule

view updates in streams and transactions in soft real time database system, where two definitions of

staleness are used one is MA (Maximum Age) and another is UU (unapplied Update). Four algorithms are

examined for scheduling transactions And installing updates in soft real time database systems. Deadlines

are very close To each other, SJF algorithm is used to schedule task within a group. Hence total execution

time is minimized.

Keywords: about Ascendible quantizing, Data Stream management system, streaming data warehouse,

QoD(Quality of Data),Strategy.

Introduction

The data warehouse market is continuing to

experience higher growth, primarily because of the

role of data warehouse as a powerful decision

support tool .Traditional data warehouses are

updated during down times and store layers of

complex materialized views over terabytes of

historical data
[1]

. Whereas On the other hand, Data

Stream Management Systems (DSMS) support

simple analyzes on recently arrived data in real time.

Data Depot, A streaming data warehouse, the goal

of a streaming warehouse is to propagate new data

across all the relevant tables and views as quickly as

possible. When new data are loaded, the applications

and triggers defined on the warehouse can take

immediate action. For improving the efficiency of

EDF algorithm in overloaded condition and in under

loaded condition dynamic grouping of tasks (Jobs) is

done whose deadlines are very close to each other

and Shortest job first technique is used to sort the

job within the group
[2]

. The business critical

applications receives append only data streams from

external sources. Recent work on streaming

warehouse focus on high speed Extraction,

Transformation & Load process. There has been

also work on maintenance policies such as update

views whenever the base changes & update view

only when queried. However there has been some

work on finding the out of date tables due to arrival

of new data, and choosing that one for update next.

There has also been work on supporting various

warehouse maintenance policies, such as immediate

(update views whenever the base data change),

Subba Reddy, Vikram Shinde www.ijetst.in Page 2301

IJETST- Vol.||02||Issue||04||Pages 2300-2305||April||ISSN 2348-9480 2015

deferred (update views only when queried), and

periodic. Whenever the update for base table arrives,

we update the corresponding base table T

immediately. After updating of base table, we

perform the updates of all the materialized views

whose source table is T, also all the views followed

by defined over those views, and so on. The problem

is new data may arrive on multiple streams, but

there is no procedure for limiting the number of

tables that can be updated simultaneously. Running

no of parallel updates can degrade performance due

to memory and CPU-cache thrashing (multiple

memories intensive ETL Processes are likely to

exhaust virtual memory), disk-arm overwhelm etc.

system model, formalize the notion of staleness, and

describe the solution for maintaining data

consistency under arbitrary update schedules. In this

scheme a multitrack algorithm orders jobs by some

reasonable means. This algorithm can be expanded

to handle the complications encountered by a

streaming warehouse. In case of to scale the large

and diverse job sets, this system combines the

efficiency of global scheduling with the guarantees

of partitioned scheduling In partitioned scheduling,

we group the update jobs by their execution times.

Each group defines a partition and runs its own local

algorithm. Normally, at most one job from each

partition can run at any given time. on the other

hand under certain conditions, we allow some

pending jobs to be scheduled on a different tracks if

their “home” track is busy. Thus, we can reserve

processing resources for short jobs while achieving

varying degrees of global scheduling.

Applications include:

1. Online stock trading in which new

transactions generated by various stock

exchanges and compared against historical

trends in nearly real time to gain maximum

profit.

2. Monitoring applications which use sensor

networks in which complex filtering and

activation of alarms required for unusual

conditions.

3. Network traffic analyses to monitor network

performance and detect network attacks all is

done by network data warehouses that are

maintained by Internet service providers.

Also these ISPs collect various system logs.

4. Financial tickers that is online analysis of

stock prices that involves co-relations ,

identifying trends and arbitrage opportunities

also forecasting future values. 5

Transactional log analysis: Online mining of

web usage logs, automated bank machine

transactions and telephone call records.

Contributions and work

We consider the update scheduling problem in

streaming warehouses. In topic 2 we discussed

related work to this as literature survey, In topic 3

we introduce system model which consists of

streaming data warehouse, system architecture. Our

topic 4 presents our multitrack scheduling algorithm

and the two strategies which are merged in our

algorithm. Topic 5 presents experimental results.

We find that our multitrack algorithm schedules jobs

on track efficiently and hence the track utilization is

better than tradition algorithm and topic 6 conclude

the paper.

Streaming data warehouse update problem is

modelled as scheduling problem in which jobs

corresponds to processes. These processes load new

data into tables, and aim is to improve data

freshness. The scheduling decisions depends on

effect of update job on data staleness. Average

staleness was considered as scheduling metric and

the scheduling algorithm were designed to handle

the environment of streaming data warehouse
[1]

. The

proposed system is algorithm which uses a two-level

scheduling strategy for scheduling non-pre-emptive

tasks. The dynamic grouping of tasks is done and

shortest job first (SJF) algorithm is used for

scheduling the jobs within the groups
[2]

 To keep the

database fresh a real time database system must

process new updates in timely manner, also at the

same time transaction should processed with their

time constraints. Four algorithms for scheduling of

transactions and processing of updates were

designed
[3]

.Data warehouse can be divided into two

parts for ensuring consistency: ensuring that each

view reflects a consistent stare of base table,

Subba Reddy, Vikram Shinde www.ijetst.in Page 2302

IJETST- Vol.||02||Issue||04||Pages 2300-2305||April||ISSN 2348-9480 2015

ensuring that multiple views are mutually consistent.

Guarantying multiple view consistency, Identify and

define three layers of consistency for materialized

views in distributed systems
.[4]

 A method to refresh

to a local copy of autonomous data source to

maintain the copy up to date. As the data size goes

increasing ,it becomes difficult to maintain the fresh

copy making it crucial to synchronize the copy

electively. Change model of the underlying data and

synchronization policies as the two fresh metrics

used
.[5]

.An operator scheduling strategy, chain

scheduling for data stream systems that is nearly

optimal in runtime memory usage for any collection

single stream queries involving projections,

selections, foreign-key joins with stored relations.

Chain scheduling can also be used for queries with

sliding window joins over multiple streams.
[6].

When

a database and the set of relations that are

materialized also the incoming relation update

stream is provided , the update schedule that

maximizes the overall quality of data. Lets consider

a database with two relations r1, r2 & eight

materialized views v1.....v8. Views v1 through v6

are materialized. Also assume all updates and

refresh operations take 1 time unit for views

excluding view v2 and v3.Here we have only two

updates one for relation r1 at time 0 and for r2 that

arrive at time 3. Using FIFO update propagation

schedule all the affected views can be refreshed.

When update for base relation is completed. The

FIFO update schedule avoids unnecessary refreshes

.FIFO performs breath first search traversal of the

view dependency graph to compute the refresh order
[7]

.

System Model

A. Streaming Data Warehouse

Two types of tables are maintained in streaming data

warehouse base table and derived table, these tables

are stored on hard disks may be partially or fully.

The base table is directly loaded from the data

stream whereas the derived table is materialized

view defined on one or baser or derived tables. The

base and derived table Tj has user defined priority Pj

also time dependent function Sj(t).Relationship

between base table and derived table can be defined

by dependency graph the may be acyclic and

directed
.[1]

 Each data stream i is generated by

external sources, with a batch of new data ,

consisting of one or more records that are being

pushed to the warehouse with period Pi. If the

period of a stream is unknown , then the user can

choose the period with which the new data should

checked by warehouse When new data arrive on

stream i an update job Ji is release means Ji is

inserted into the scheduler queue. Job executes ETL

process, loads new data in to the corresponding base

table Ti, and update any indices. When update for

base table is done number of update jobs are

released for update in derived tables of that source

table Ti. The aim of the update scheduler is to

decide which of the released update job to execute

next. If multiple update for a given table are

pending, then they must be completed in sequential

manner as their arrival time.

B. System Architecture

This paper presents a model as shown in the fig 1

When the updates for the table arrives on stream , it

is converted into jobs. These jobs are then sorted

according to their arrival time using PEDF

algorithm. The sorted list of jobs is then divided into

suitable clusters depending on some criteria.(such as

jobs having arrival time in between 1 to 5 goes in

first cluster and so on). All the jobs within one

cluster are sorted according to SJF (Shortest job

first) algorithm of their execution time and average

data.

Fig 1: System Architecture

Subba Reddy, Vikram Shinde www.ijetst.in Page 2303

IJETST- Vol.||02||Issue||04||Pages 2300-2305||April||ISSN 2348-9480 2015

The computing resource is then logically divided

into multiple tacks. Traditional way to ensure

resource allocation is job portioning and then

scheduling the partition independently. The recent

result indicates that by global scheduling better

performance is achieved in real time environment.

Two methods were investigated for ensuring

resources: EDF Partitioning strategy and

proportional partitioning strategy
[1]

.

By combining some features of these two strategies

our multitrack algorithm proves that the

performance is better than using only EDF

partitioning Strategy. When all the jobs are

scheduled & executed by multitrack algorithm the

data warehouse updates are done simultaneously.

Scheduling Model

For table Ti the update job is Ji, consider for base

table the period of Ji and the period of its source

stream are same. The freshness of base table can be

defined as increase in freshness after completion of

Ji. Let n is equal to time interval of data to be loaded

, execution time of update job Ji =αi+ßi*n Where αi

= Time for initialization of ETL process and ßi =

Rate at which data arrives. If no of updates are there

for same table then all the updates are merged into

single job that loads all the available data into that

table.

A. Multitrack Scheduling Algorithm:

The update jobs are partitioned according to their

expected processing time. The computing resources

are partitioned into tracks.. When any update job is

release it is placed into queue of respective partition.

Here scheduling decisions are made by scheduler.

The jobs are priorities by their local algorithm on

individual tracks. Multitrack scheduling algorithm is

as follows:

1. Create the jobs of updates which appears in

stream format.

2. Sort the jobs using PEDF algorithm.

3. Create no of clusters and add jobs to that

clusters respectively.

4. Sort the jobs within the cluster by SJF

algorithm and assign priorities to jobs.

5. Divide the computing resource in logical

tracks.

6. Partition the jobs by using EDF and

proportional partitioning strategy.

7. Update the data ware house.

We need some additional terminology for this

multitrack algorithm:

 Emax= Execution time of longest job,

Maximum processing time of job. Within

track

 Pmin= Minimum period of the job within the

track.

 U= Track utilization.

 Total track utilization =Σ iUi

Using this multitrack algorithm we make the updates

in the data warehouse more faster than the other

methods. We combine This EDF and Proportional

Partitioning strategy together in multitrack

algorithm.

EDF Partitioning algorithm is as follows: 1 Sort

the released jobs by the local algorithm. 2. For each

job Ji in sorted ordera. If Ji’s home track is

available, schedule Ji on its home track.

b. Else, if there is an available free track, schedule Ji

on the free track. c. Else, scan through the tracks r

such that Ji can be promoted to track r i. If track r is

free and there is no released job remaining in the

sorted list for home track r, A. Schedule Ji on track

r. 3. Else, delay the execution of Ji. Proportional

Partitioning strategy step1: 1. Order the jobs by

increasing execution time 2. Create an initial cluster

C0. 3. For each job Ji, in order a. If Ei(Pi) is less

than k times the minimum period in the current

cluster i. Add Ji to the current cluster. b. Else, create

a new cluster, make it the current cluster, and add Ji

to it. 4.For each cluster Cj A compute UCj=Σ

Ei(Pi)/Pi, ranging over tasks in Cj 5.Compute total

utilization= ΣCj.

Experimental Results

The updates received are converted into jobs, that

jobs are then sorted according to their arrival time,

Subba Reddy, Vikram Shinde www.ijetst.in Page 2304

IJETST- Vol.||02||Issue||04||Pages 2300-2305||April||ISSN 2348-9480 2015

by PEDF algorithm. The sorted list is then clustered

into four groups, the jobs which satisfy the criteria

of the cluster is added in that cluster, After that the

shortest job first algorithm is used to sort the jobs

within the cluster. Hence the jobs having minimum

average data are placed at the top position. Then the

multitrack algorithm uses the combined partitioning

strategies (EDF& Proportional) and jobs are

assigned to different tracks accordingly.(Here we

have taken 4 tracks). Now we calculate the values

for Emax and Pmin and we calculate the track

utilization using multitrack algorithm and also track

utilization using EDF partitioning algorithm finally

on comparison it is seen that multitrack algorithm

gives better results than EDF partitioning algorithm.

The below screen shows result of the multitrack

algorithm. The jobs are scheduled on multiple

tracks.

The below screen shows comparative result of the

multitrack algorithm and EDF portioning strategy on

samesorted list of jobs. The multitrack algotithm

performs better than EDF algorithm. As the track

utilization is more the updates are done faster.

Hence we can update streaming data warehouse

tables faster if we use multitrack algorithm to

schedule the jobs. In below snap shot it is shown

that the track utilization of EDF is 0.2147 and track

utilization of multitrack algorithm is 0.41099. Also

it shows the update data warehouse button and track

wise comparison of EDF and multitrack algorithm

where EDF is represented as RED colored bar and

Multitrack is represented as BLUE bar.

The below snapshot shows that when we click on

Update Data Warehouse all the jobs are exexuted

according to their secheduled sequence and finally it

shows the message “Data WareHouse Updated

Successfully!!”

Conclusion

In this paper we solved the problem of non

preemptively scheduling updates in streaming data

warehouse. We propose the multitrack algorithm

that convert the update queries into jobs, sorts the

jobs according to their arrival time and execution

time and finally schedule the jobs on multiple tracks

so that the jobs are executed as early as possible

hence short jobs are not suffered from long jobs. As

the track utilization is higher in case of multitrack

algorithm the updates are done proportionally. As

future work we plan to improve the efficiency of our

multitrack algorithm.

Subba Reddy, Vikram Shinde www.ijetst.in Page 2305

IJETST- Vol.||02||Issue||04||Pages 2300-2305||April||ISSN 2348-9480 2015

References

1. Lukasz Golab, Theodore Johnson, and

Vladislav Shkapenyuk,” “Scalable

Scheduling of Updates in Streaming Data

Warehouses”,”IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA

ENGINEERING, VOL. 24, NO. 6, JUNE

2012”

2. Li, Wenming, “Group-EDF - a new approach

and an efficient non-preemptive algorithm

for soft real-time systems”. Doctor of

Philosophy (Computer Science), August

2006, 123 pp., 6

3. B. Adelberg, H. Garcia-Molina, and B. Kao,

“Applying Update Streams in a Soft Real-

Time Database System,” Proc. ACM

SIGMOD Int’l Conf. Management of Data,

pp. 245-256, 1995.

4. Qingchun Jiang, Sharma Chakravarthy,”

Scheduling Strategies for a Data Stream

Management System”.

5. M.H. Bateni, L. Golab, M.T. Hajiaghayi, and

H. Karloff,“Scheduling to Minimize

Staleness and Stretch in Real-timeData

Warehouses,” Proc. 21st Ann. Symp.

Parallelism inAlgorithms and Architectures

(SPAA), pp. 29-38, 2009.

6. B. Babcock, S. Babu, M. Datar, and R.

Motwani, “Chain:Operator Scheduling for

Memory Minimization in DataStream

Systems,” Proc. ACM SIGMOD Int’l

Conf.Management of Data, pp. 253-264,

2003.tables, 49 illustrations, references, 48

titles.

Author’s Profile

Subba Reddy, B.Tech, M.Tech CSE. He is

currently working in the Department of Computer

Science and Engineering, MLRIT, Telangana,

India. His research interesting areas Programming

(C&DS, C++, and JAVA), Data Mining, Software

Engineering, Network Security & Computer

Networks.

Vikram Shinde Currently Pursuing Master of

Technology in CSE from MLR Institute of

Technology, Dundigal, Hyderabad, Telangana,

India

	PointTmp

