

Ruchi Kulkarni,Samidha Diwedi Sharma www.ijetst.in Page 550

IJETST- Volume||01||Issue||04||Pages 550-553||June||ISSN 2348-9480 2014

 International journal of Emerging Trends in Science and Technology

Object Oriented Software Modularization Quality Measurement Based On API and

Information Theoretic Metrics

Authors

Ruchi Kulkarni
1
, Samidha Diwedi Sharma

2

1
M-TECH *,Department of Information Technology,

NRI Institutions, University of RGPV, Bhopal (MP)

India

E-mail:ruuchik@gmail.com

2
Prof, Department of Information Technology,

NRI Institutions, University of RGPV, Bhopal (MP)

India

E-mail:

samidhad2000@gmail.com

ABSTRACT

In this research project we are enhancing the software quality measurement using API and theoretic information

metrics. Along with the new set of metrics that measure the quality of modularization of a non-object-oriented

software system, we are presenting metrics that also measures the quality of modularization of object oriented

software system. We have proposed a set of design principles to capture the notion of modularity and defined metrics

centered on these principles. These metrics characterize the software from a variety of perspectives: structural,

architectural, and notions such as the similarity of purpose and commonality of goals. (By structural, we are

referring to inter module coupling-based notions, and by architectural, we mean the horizontal layering of modules

in large software systems.) We employ the notion of API (Application Programming Interface) as the basis for our

structural metrics.

In addition to this, we proposed a System to measure the quality of modularization of object-oriented software

system. Here our work is proposed in three Parts as follows:

Module 1: DEFINING METRICS FOR OBJECT ORIENTED SOFTWARE AND ALGORITHM. Module 2: CODE

PARSER and Finally Module 3: CODE ANALYZER.

Index Terms— Application programming interface; modularization; dependency; communication.

INTRODUCTION

The software development process is a difficult and

modularization can makes it more complicated. This is the

challenge to measure the quality of objects oriented software

modularization. Modularization of object oriented code is

distribution of the software in to modules and these modules

should communicate with each other through some

application programming interface (API). More properly

modularized software is also easy for maintenance work and

it can help the developer. In our work we are considering the

object oriented java language code for defining metrics and

modularization. In java the code is residing in directories of

some modules and java files are considered as modules. One

java file may consist of number of classes but one public

class [4]. Classes contain the elements such as methods,

interfaces, variables etc. This code contains many files with

thousands of line of code so we are using code parser to

analyze the modularity of the code.

Now days lot of software’s are developed by the

developers. Many of the software’s are very big in code

size.

So generally to maintain the quality of the code,

developers need to distribute the code in small pieces or

parts. But how to divide the software is also an important

task as it can lead to various problem of inter module

communication therefore this modularized code should also

be checked for the quality. There are problems in removing

the errors of non modularized code. Particularly in object

oriented software development developer needs to use a lots

of object oriented concepts which may introduced the inter

dependency of the various units of the software e.g.

Inheritance. Software metric is a measure of some property

of a piece of software or its specifications. Therefore

http://www.ijetst.in/

Ruchi Kulkarni,Samidha Diwedi Sharma www.ijetst.in Page 551

IJETST- Volume||01||Issue||04||Pages 550-553||June||ISSN 2348-9480 2014

software metrics suite is needed [2]. We are concentrating

on the same issue and providing the software metrics for this

modularized object oriented code.

PREVIOUS WORKS

In this previous works, we studied the metrics

which are developed only for the non-objective oriented

software systems.

PROPOSED APPROACH

In our proposed system we will be giving a

modularized object oriented code as an input. Then the code

will be parsed to get the details of the elements present in it.

Then the metrics which we are giving in this paper will be

applied. Finally with the help of the code analyzer we will

get the output chart. Now next time another modularized

version of the code will be given as an input and the same

steps will be followed to get the new output chart.

Now here we can compare the two charts to

identify the results of metrics implementation on the code.

From which the developer will be able to understand the

quality of modularized code and decision can be taken

which modularized code to be used for the software system.

PROPOSED METRICS

The following metrics are proposed based on

object oriented programming concepts which are largely

used for the software development. The non-object oriented

metrics given by Sarkar et. al. [1] is a base for our work.

Application programming interface (API) is the important

term which we are going to use. API functions are the

functions only which can be get called outside the module

and non API functions are not called outside the module. In

our implementation we are going to check if a function

calling is found in another module or class then it will be

API function and if not found then such functions will be

considered as isolated and non API functions. The

measurement technique is applying the metrics [3]. The

proposed metrics for object oriented code are as follows:

A. Index Factor for module communication (IFMC)

This metric calculates the index factor for module

communication and how well API functions of modules are

used by the other modules in the system for communication.

Assume that a module has n functions from 1 to n, of which

the n1 API functions are given by the subset {f1api …….f

n1api}. Cext is used to denote the total number of external

calls coming from the other modules. It is a java file as

module. Also assume that system has m1 to mi modules.

Total number of modules is M. Index Factor for module

communication (IFMC) for a given module and for the

entire software system by required

IFMC measures the degree of module encapsulation i. e.

here should be encapsulation of the module code and

communication of external function should be through

available APIs. These API functions represent the services

that the module has to offer. Since these API functions are

destined to be used by the other modules, the internal

functions of a module usually would not call the API

functions of the module. Therefore, a non-API function of a

module should not get external calls to the maximum extent

possible. In object oriented software, objects can call

methods from another class.

Here Numerator of the IFMC (module) for a particular

module increases as more and more inter module

communication is done through the API functions and the

ideal value of IFMC (module) will be tends to 1. Therefore,

IFMC largely measures the degree to which encapsulation

related concepts have been followed. Hence in many object

oriented software systems it should be tried to maintain a

big value for the IFMC.

B. Index Factor for API function Calls (IFAC)

This index factor determines the usefulness of calling the

API function by the other modules. Some times in one java

file (module) may consists of various classes and API

functions with different functionalities. If any other single

module is calling the API but need only small part of it then

it is unnecessarily calling the big API.

Hence to avoid the formation of such module this index

factor is used. Suppose module has n API functions and let’s

say that nj numbers of API functions are called by another

module mj. Also assume that there are z numbers of

modules from module1 to modulez that calls one or more

API functions of module.

If we assume that moduleapi is the total number of modules

having more than zero API functions. Then

http://www.ijetst.in/

Ruchi Kulkarni,Samidha Diwedi Sharma www.ijetst.in Page 552

IJETST- Volume||01||Issue||04||Pages 550-553||June||ISSN 2348-9480 2014

The maximum value of this metric IFAC (system) will be 1,

depending on the focus and nature of the modules with

similar purpose.

C. Index Factor for Non API function Calls (IFNC)

If the big software system is not modularized fully then

there can be the use of non API functions. This is not

preferable. As there should not be a use of non API function

outside the module or a java file.

Let us represent API function as functionapi and non API

functions as functionnapi for given module.

Then total function will be function = function api +

functionnapi

Total number of modules is M.

In good modularized object oriented software, functions will

be either API or non API type of functions. And non API

functions are not used outside the module.

Then function - function api will be equal to functionnapi.

So that IFNC (module) = 1.

Here sometimes the value of the IFNC (module) can be

between 0 and 1.

D. Index Factor for Implied Dependency (IFID)

When function in one module is writing to a global variable

that is in use by another module then there is indirect

dependency. There can be many events where this kind of

dependency occurs in program. Generally in large enterprise

application made in object oriented language may have

complex source for the hidden dependency between the

modules.

Let us say that dependency is denoted by Dglobal (modulea,

moduleb) where a≠b. In which dependency will be there

when modulea tries to write in to global entity (e.g. files,

variables etc) at the same time moduleb is also trying to

work on the same entity.

Let us say that Dfunction (modulea, moduleb) where a≠b. In

which the calls are made by the functions in modulea to

functions in moduleb. Then the Index factor for the implied

dependency for module will be given by,

From this metric we can say that there should be very less or

none implied dependencies in the system.

Generally the value of IFID (system) is equal to 1.

ALORITHM FOR METRICS

We are providing here the customized algorithm

for the proposed metrics as per the need of the project for

implementation.

A. Algorithm for Index Factor for module

communication (IFMC)

Algorithm for IFMC

Step 1: To find API functions of modules

Step 2: To find external calls made to the API functions

Step 3: Addition of all external calls made to the API

functions

Step 4: To make total of all external calls to module

Step 5: Divide Step 3 by Step 4

Step 6: Repeat Step 1 to 5 for each module

Step 7: Add IFMC (module) for all modules

Step 8: Divide Step 7 by total number of modules

Step 9: Output is IFMC (system)

B. Algorithm for Index Factor for API function Calls

(IFAC)

Algorithm for IFAC

Step 1: To find the each of the API functions called by other

modules

Step 2: Add all those API functions

Step 3: Multiply total number of API functions available in

module with number of modules calling one or more API

functions of the module

Step 4: Divide Step 2 by Step 3

Step 5: To find the total number of modules having more

than zero API functions i.e. moduleapi

Step 6: Add IFAC (module)i for value of i from 1 to

moduleapi

Step 7: Divide Step 6 by Step 5

Step 8: Output is IFAC (system)

http://www.ijetst.in/

Ruchi Kulkarni,Samidha Diwedi Sharma www.ijetst.in Page 553

IJETST- Volume||01||Issue||04||Pages 550-553||June||ISSN 2348-9480 2014

C. Algorithm for Index Factor for Non API function

Calls (IFNC)

Algorithm for IFNC

Step 1: To find the total number of API functions of given

module

Step 2: To find the total number of non API functions of

given module

Step 3: Total number of functions in module = Add Step

1and Step 2

Step 4: Divide Step 2 by (Step 3 – Step 1), output is IFNC

(module)

Step 5: Add IFNC (module) of all the modules

Step 6: Divide Step 5 by Total number of modules

Step 7: Output is IFNC (system)

D. Algorithm for Index Factor for Implied Dependency

(IFID)

Algorithm for IFID

Step 1: To find the sum of functional dependencies

Dfunction (modulea,moduleb)

Step 2: To find the sum of functional dependencies

[Dfunction (modulea, moduleb)] and global dependencies

[Dglobal (modulea, moduleb)]

Step 3: Divide Step 1 by Step 2

Step 4: Output is IFID (module)

Step 5: Divide Step 4 by M

Step 6: Output is IFID (system)

WORK DONE

In this work we have given the metrics for object oriented

software which is made in java for measuring the quality of

the modularization. We have provided the algorithm for the

metrics based on which implementation is done. We have

implemented the metrics using java language. We are using

the java Swing for the creation of GUI for the module parser

and code analyzer. Module parser is basically separating the

elements of the input code module to the system and will be

saving them in database. Then code analyzer will be

analyzing the code with the defined metrics respect to the

metrics applied and will be showing the output chart for

comparing

CONCLUSION

 Here more emphasis is given on Module 1 of the

project “Defining metrics for object oriented software

modularization and algorithm for it”. Here we have

proposed four metrics for calculating the index factor for

module communication, Index Factor for API and non API

function Calls and Index factor for implied dependency of

the object oriented module.

REFERENCE

[1] Sarkar S., Kak A. C. and Rama G. M, “API-Based and

Information-Theoretic Metrics for measuring the Quality of

Software Modularization” IEEE Trans. Software Eng., vol.

33, no. 1, pp.14-30.

[2] Chidamber S. R. and Kemerer C. F.,“A Metrics Suite for

Object Oriented Design,” IEEE Trans. Software Eng., vol.

20, no. 6, pp. 476-493, June 1994.

[3] Pfleeger S. and Fenton N., Software Metrics: A Rigorous

and Practical Approach. Int’l Thomson Computer Press,

1997.

[4] Schildt H., The Complete Reference Java 2, Fifth Edition,

TATA McGRAW HILL, 2002, pp 13-54.

[5] Pressman R. S., Software Engineering: A Practitioners

Approach, 6/e, TATA McGRAW HILL, 2005, pp 461-670.

[6] E. Weyuker, “Evaluating Software Complexity

Measures,” IEEE Trans. Software Eng., vol. 14, no. 9, pp.

1357-1365, Sept. 1988.

[7] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for

Object Oriented Design,” IEEE Trans. Software Eng., vol.

20, no. 6, pp. 476- 493, June 1994.

[8] L.C. Briand, S. Morasca, and V.R. Basili, “Property-

Based Software Engineering Measurement,” IEEE Trans.

Software Eng., vol. 22, no. 1, pp. 68-85, Jan. 1996.

[9] N. Sharma, P. Joshi, and R.K. Joshi, “Applicability of

Weyuker’s Property 9 to Object Oriented Metrics,” short

note, IEEE Trans. Software Eng., vol. 32, no. 3, pp. 209-211,

Mar. 2006.

[10] B. Kitchenham, S. Pfleeger, and N. Fenton, “Towards a

Framework for Software Validation Measures,” IEEE Trans.

Software Eng., vol. 21, no. 12, pp. 929-944, Dec. 1995.

http://www.ijetst.in/

