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ABSTRACT 

An important and very crucial component of many systems involving images is the edge detection which includes 

object detectors and image segmentation algorithms. Edge patches always shows shapes of its inherent structure, 

like T junctions or lines. Taking advantage of the shapes available in the images we get to know of an edge 

detector which is accurate and efficient. In this approach the structured labels is robustly mapped to a space that is 

discrete by which evaluation of the measure of the standard information gain is possible. The outcome is a way 

that shows a real time performance which is many times faster than any of the traditional and modern  approaches 

available today, which also achieves the best results for edge detection both the Berkeley Segmentation Dataset 

and Benchmark (BSDS 500) and the NYU depth dataset. This approach also shows its strength as a an edge 

detector that can be used for any regular  purpose  by displaying how this method generalize across all datasets 

Keywords: Segmentation, structured random forests, Principal component analysis, giniim purity, real time 

systems. 

 

INTRODUCTION 

Edge detection can be said to a method by which 

the sharp change in image brightness or 

discontinuities can be identified using 

mathematical methods. The sharp change in 

image brightness are always depicted by a set of 

straight or curved lines at some points which is 

nothing but the edges. Image processing requires 

edge detection which is considered to be its main 

tool, same being applicable for machine and 

computer vision, especially in the those parts 

where we detect and extract features. 

It has remained as an critical component in 

computer vision since the early days. It is also a 

critical pre-processing step for many important 

tasks, which includes object recognition, 

segmentation and active contours. Traditional 

approaches generally computes the colour 

gradients and then does a non-maximal 

suppression. But, many a times edges do not 

show any relation to the colour gradients like 

texture edges and imaginary contours. A number 

of features are taken as input in many method, 

which includes brightness, colour, depth 

gradients and the texture. 

 

Since many edges shows relation to a number of 

visual characteristics, looking out for a single 

method to find the edges is not easy. Recent 

approaches proposes to take an image patch and 

then check whether the pixel located in the centre 

contains an edge. Optionally, then the edges 

which are predicted independently may be 

combined using global reasoning. Edges of a 

single patch will always be dependent on each 

other, which contains patterns like straight lines, 

parallel lines or junctions.  

By this edge detection method, a generalized 

structured learning approach is taken which 

makes use of the available shapes in the patches 

of edge. This method can compute edges in real 

time, which is many times faster than most of the 

recent approaches. Here a method is used in 

which structured information is captured using 

the random forest framework. The function to 

split each of the branches in the tree is 

determined  using structured labels. Each of the 

forest predicts the pixel labels in a patch of which 

an aggregate is taken to compute the final edge 

map.  
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Recent Approaches 

Over the past 50 years many approaches has been 

suggested in the field of edge detection. Initial 

approaches concentrated more on intensity 

detection or colour gradients. The peak gradient 

magnitude which is in right angle to the edge 

detector is taken by the Canny edge detector. 

Recent approaches explore edge detection in 

images in which there are textures. 

A lot of techniques have tried edge detection 

using learning. Boosted classifier was used in a 

method to separately label each pixel taking into 

account the surrounding image patch. Some used 

a method to combine the high, mid and low level 

cues which shows improvement for edge 

detections which are object specific. Recently, a 

method was introduced which made an 

improvement where it computed the gradients 

across learned sparse codes of patch gradients. 

The results were good, but it increased the 

already high cost of computation. Parallel 

algorithms was used to improve run time. 

Then, an edge detector was used which used 

random forest classifiers to classify edge patches 

into sketch tokens, and also attempts to capture 

local edge structure. These sketch tokens are 

directly computed from patches of the colour 

image not from edge maps which were computed 

earlier. It gives a well planned approach towards 

edge detection which is also apt for object 

detection. Previously defined classes of edge 

patches is not required here. 

For sequences, object pose, strings, graphs, 

object pose, bounding boxes etc where the space 

is arbitrarily complex in case of the input or 

output,  it faces problem of learning the mapping 

which is addressed by structured learning.  

Structured random forests is different from the 

rest in several respects. It is assumed that the 

output space operates on a standard input space 

and it is structured. This model will only output 

examples which are observed at the time of 

training, which assumes that a set of samples 

exist  

This method was inspired by a recent paper on 

learning random forests for structured class labels 

for cases which are specific and the output labels 

represent a semantic image labelling for a 

particular image patch. It was observed that for a 

given colour image patch, any output can be 

stored at each leaf that it is not dependent on the 

structured semantic labels alone. Using the above 

knowledge, a general learning framework is 

considered for structured output forests which 

can be utilised for a broad class of output spaces 

and then apply he framework to learn about a fast 

and accurate edge detector. 

 

Objective 

For edge detection a structured forest formulation 

is applied. The input is a multiple channel image, 

maybe a RGB or RGBD image. Each pixel is 

labelled with a binary variable to indicate the 

presence of an edge or not.  

In a given set segmented training images, the 

contours are the thresholds between the 

segments. For a given patch of image, this can be 

referred as a segmentation mask which indicates 

segment membership for all the pixel in the 

image or as a edge map in defined in binary 

terms. 

The input features x, mapping function Πφ which 

is used to determine splits, and the ensemble 

model which combines the multiple predictions 

are then computed. 

 

RANDOM DECISION FORESTS 

An example x2X is ordered by a choice tree ft(x) 

until the leaf hub by expanding in a recursive 

way to one side or directly down the tree. Every 

hub j in the tree is connected with a split capacity 

like 

h(x,θj) ∈ {0,1}  (1)          

On the off chance that h(x,θj) = 0 hub jx 

bifurcates to one side, generally to one side and 

ends at the leaf hub. For info x the yield is the 

outcome came to by the tree at the leaf hub, 

which is either the division mark y 2Y or the 

dissemination over the labels Y. 

A subjectively complex split capacity is h 

(x,θ).Another decision is a "stump" where x with 

a solitary element measurement is contrasted 
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with a limit. In particular, θ = (k,τ) and h(x,θ) = 

[x(k) < τ], where [·] signifies the marker 

capacity. Another prevalent decision is θ = 

(k1,k2,τ) and h(x,θ) = [x(k1) − x(k2) < τ]. Both 

are computationally productive and powerful 

practically speaking 
[7]

. 

A group of T independent trees ft makes a 

decision forest. Predictions ft(x) for an input x 

from the set of trees are merged into a one output 

with an ensemble model. Ensemble models are 

selected based on particular a problem and are 

dependent on Y, where classification uses 

majority voting and regression makes use of 

averaging, but there are even more enhanced 

ensemble models. 

 

 

 

 

 

 

Fig 1: Random decision tree/forest 

 

Any kind of information can be stored at the leaf 

node, but it depends only on the input x, and 

while the for castings from multiple trees has to 

be combined by the ensemble model, the leaf 

node stores any output y. Hence any complex 

outputs can be used which includes structured 

outputs. 

Training the random decision forests with 

structured segments is difficult though the inputs 

are straight forward. 

 

Training Decision Trees 

Training of the trees is done in a recursive 

manner. The goal is to find the parameter θjfor a 

given node j and training set Sj which is nothing 

but the split function h(x,θj) which will result in a 

‘good’ split of the data for which we need to 

define the  information gain criterion : 

 

 

 

Where 
S

j
L
 = {(x,y) ∈Sj|h(x,θj) = 0}, 

S
j
R
 =.Sj

\S
j
L
 

Maximum value of the information gain Ij gives 

the splitting parameter θj. Training then continues 

recursively towards the left node with data and 

similarly for the right node. It stops when a 

maximum depth is achieved or the information 

gain or training set size goes below the decided 

threshold values.  

The standard definition of information gain for 

multiclass classification is : 

    (3) 

 

 
 

H(S) =  py log(py) denotes the Shannon entropy 

and py is the fraction of elements in S with label 

y. Alternatively the Gini impurity H(S) = 

py(1−py) has also been used in conjunction with 

Eqn. (3) 
[5]

. 

For regression, entropy and information gain can 

be extended to continuous variables
[6]

. 

Alternatively, a common approach for single-

variate regression (Y = R) is to minimize the 

variance of labels at the leaves 
[4]

. If we write the 

variance as where, then substituting H for 

entropy in Eqn. (3) leads to the standard criterion 

for single-variant regression. 

 

 

 

 

 

 

 

Fig 2 : Training decision trees 

 

Randomness and optimality 

Individual decision trees exhibit high variance 

and tend to over-fit 
[5,9]

. Decision forests 

ameliorate this by training multiple de-correlated 

trees and combining their output. A crucial 

component of the training procedure is therefore 

to achieve a sufficient diversity of trees. 

High variance and over fitting is exhibited by 

individual decision trees 
[5,9]

 ,hence output from a 

number of de-correlated trees are used by the 

Ij=I(Sj,SjL,SjR) 

     

(2) 
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decision forests to improve the results. Achieving 

a sufficient  

High accuracy models can be achieved by 

injecting randomness at the level of nodes and 

has proven to be more popular 
[7]

. Specifically, 

when optimizing Eqn. (2), only a small set of 

possible θj are sampled and tested when choosing 

the optimal split. E.g., for stumps where θ = (√ 

k,τ) and h(x,θ) = [x(k)< τ], 
[9]

 advocates sampling 

d features where X = R
d
and a single threshold τ 

per feature. 

To achieve this high diversity ensemble the 

accuracy of individual trees has to be sacrificed 
[9]

. 

 

STRUCTURED RANDOM FORESTS 

Random decision forests is applied to general 

structured output spaces Y. If x∈ X represents an 

image patch and y∈Y represents the 

corresponding local image annotation maybe a 

segmentation mask or set of semantic image 

labels. 

 

 

 

 

 

 

Fig 3 : Structured random forest 

 

There are two main challenges faced by the 

structured labels when trained by the random 

forests which is high dimensionality and also 

being complex. Therefore the selected candidate 

splits over structured labels may prove to be  

expensive. More critically the information gain 

over these structured labels may not be well 

defined. 

But as per observation even an approximate 

value of information gain is enough to train 

effective random forest classifiers. Exact values 

are not required. So the basic plan is to map all 

the structured labels y∈Y at a given node into a 

discrete set of labels c∈C, where C = {1,...,k}, 

such that similar structured labels y are assigned 

to the same discrete label c. 

Now the information gain calculated directly and 

efficiently over C can give the same results for 

the information gain if calculated over the 

structured labels Y. By this method for each node 

we can make use of the existing random forest 

training procedures to learn structured random 

forests effectively. 

Calculating information gain relies on measuring 

similarity over Y. But for edge detection, 

calculating the similarity over Y is not defined 

properly. So here Y is mapped to an intermediate 

space Z where measuring of distance is easier. 

Hence a two stage approach is used where Y  is 

mapped first to Z followed the Z being mapped 

to the discrete space C. 

 

Intermediate Mapping Π 

Here mapping is done in the form: 

Π : Y → Z 

So that the an approximate value of the 

dissimilarity of y∈ Y can be taken by computing 

the Euclidean distance in Z. Here the labels yY 

are 16×16 segmentation masks and z = Π(y) is 

defined as a long binary vector which encodes 

whether every pair of pixels in y belong to the 

same or different segments. It is easier to 

measure the distance in Z. 

But computation of Z is also a challenge as it 

may be high dimensional. Like for edge detection 

there are  unique pixel pairs in a 

segmentation mask of 16 × 16 size, so computing 

z for every y would be expensive. Since only an 

approximate distance value is required, the 

dimensions of Z can be brought down. 

 

 

Structured       Intermediate    discrete 

   Space               space              space 

Fig 4 : Intermediate mapping 

 

For this, m dimensions of Z is sampled, which 

will result in a reduced mapping Πφ : Y → Z 

parameterized by φ. While training, the training 

labels Yj at each node is applied with a  distinct 

mapping Πφ which is randomly generated. That 

serves two requirements, first, Πφ can be 
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considerably faster Π. Second, taking samples of 

Z will also make it more random to the learning 

process and helps in getting more diversity of 

trees. 

In the end, Principal Component Analysis (PCA) 

is also used to reduce the dimensions of Z even 

further. This also helps in reducing the noise 

while giving an approximate Euclidean distance. 

In practice, Πφ with m = 256 dimensions 

followed by a PCA projection to at most 5 

dimension is used. 

 

Information Gain Criterion 

A number of choices are possible for the 

information gain criterion using the mapping Πφ : 

Y → Z. For discrete Z multi-variant joint entropy 

could be computed directly. Here it is observed 

that m ≥ 64 is required to get an accurate value of 

similarities between the various Z values. Also if 

a continuous Z is given, variance or a continuous 

formulation of entropy 
[7]

 can be used to define 

information gain. Here a simple and more 

efficient method is used. 

A set of structured labels y∈ Y is mapped into a 

discrete set of labels c∈ C, where C = {1,...,k}, in 

a way that labels z with same properties  are 

designated to the same discrete label c. These 

labels may be binary (k = 2) or multiclass (k > 2) 

hence  standard information gain criteria based 

on Shannon entropy or Gini impurity as given in 

Eqn. (3) can be used. This method of  

discretization is performed while training each 

node and is dependent on the distribution of 

labels at a given node. 

 

 

 

 

 

Fig 5 : Intermediate node splits 

There are two ways by which this method can be 

applied. The first method is to cluster z into k 

clusters using K-means or by second method 

which quantize z based on the top log2(k) PCA 

dimensions, giving z a discrete label c according 

to the orthant (generalization of quadrant) into 

which z falls. Both methods perform almost in 

the same manner but quantization is slightly 

faster. 

PCA quantization with k = 2 is used. 

 

Ensemble Model 

Here it is defined how to combine a set of n 

labels y1...yn∈ Y into a single prediction for both 

stages that is training (to associate labels with 

nodes) and testing (to merge multiple 

predictions). As earlier, take a sample of Πφ with 

m dimensions and then zi = Πφ(yi) for each i. 

Choose the label yk whose zk is the medoid ( zk 

that minimizes the sum of distances to all other 

zi
1
). 

This ensemble model depends on m and the 

selected mapping Πφ. However, medoidis  

computed for only small n, hence only a coarse 

distance metric is enough to select a 

representative element y . 

The only drawback is that any prediction y∈ Y 

must have been seen at the time of training, the 

ensemble model will not synthesize new labels. 

So you need additional information about Y. But 

in practice, domain specific ensemble models can 

be used. For edge detection the default ensemble 

model is used for training but utilize a tailor 

made method for merging all the outputs over a 

number of overlapping image patches 

 

EDGE DETECTION USING STRUCTURED 

FORESTS 

For edge detection a structured forest formulation 

is applied. The input is a multiple channel image, 

maybe a RGB or RGBD image. Each pixel is 

labelled with a binary variable to indicate the 

presence of an edge or not.  

In a small image patch the labels are always 

highly interdependent, which provides a 

promising candidate problem for the structured 

forest approach. 

If there is a given set of segmented training 

images, in which the boundaries between the 

segments correspond to contours
[2]

. From an 

image patch, its representation can be described 

either as a segmentation mask indicating segment 
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membership for each pixel or a binary edge map. 

Use y∈Y = Z
d×d

 to denote the mask and y0∈Y0= 

{0,1} for the edge map, d in this case denotes the 

patch width. The edge map y can always be 

formulated from the segmentation mask y, but 

not vice versa. Both representations are used here 

We then compute the input features x, the 

mapping functions Πφ used to determine splits, 

and the ensemble model used to combine 

multiple predictions. 

 

Input Features 

Using a 32 x 32 patch of image, a 16 × 16 

structured segmentation mask is predicted. Then 

enhance each of the image patch with multiple 

additional channels of information, which will 

give a result vector  

R
32×32×K

where K  is the number of channels.  

Pixel lookups x(i,j,k) and pair wise differences 

x(i1,j1,k) − x(i2,j2,k) both features are used. 

In the CIE-LUV colour space, almost identical 

set of colour and gradient channels are used to 

compute three colour channels together with the 

normalized gradient magnitude at two scales i.e 

full and half resolution. On the basis of its 

orientation, divide each gradient magnitude 

channel into four channels. A triangle filter with 

radius 2 is used to blur these channels and then 

sampled down by a factor of 2. We get a three 

colour, two magnitude and eight orientation 

channels, which makes thirteen channels in all. 

The channels are then again down sampled by a 

factor of 2, so that we get 32·32·13/4 = 3328 

candidate features x(i,j,k). Pair wise difference 

features is also calculated. An eight pixel radius 

large triangle blur is applied to each of the 

channels, and then down sample to 5 × 5 

resolution. When all pairs of candidates are 

sampled and computed, the difference between 

them gives an extra  candidate features 

for every channel, which gives a total of 7228 

candidate features for every patch. 

 

Mapping Function 

For training the decision trees, a mapping 

function Π: Y → Z is defined. The 16x16 

segmentation masks are the structured labels y.  

Either use Π: Y → Y
0
, where y

0
 is the binary 

edge map equivalent to y but the Euclidean  

distance over Y
0
 gives a weak distance measure. 

So a substitute mapping Π is defined, where if 

y(j) for 1 ≤ j ≤ 256 denotes the j
th

 pixel of the 

mask(y) but a single value y(j) gives no details 

about y since it is defined only up to a 

permutation. But if a pair of locations j1 6= j2 is 

sampled and then check if y(j1) = y(j2), this 

defines z = Π(y) as a large binary vector that 

encodes [y(j1) = y(j2)] for every pair of indices j1 

6= j2  that is unique. Since Z has dimensions, 

only a subset of m dimensions is computed .If we 

set m = 256 and k = 2 the similarity of 

segmentation masks is effectively captured. 

 

Ensemble Model 

Random forests achieves strong results while the 

outputs of multiple de-correlated trees are 

combined. Averaging is possible with multiple 

edge maps y
0
 2Y

0
 to give a soft edge response 

though merging of multiple segmentation masks 

y 2Y is difficult. Since a decision tree is capable 

of storing arbitrary information at its leaf nodes, 

we can also store the almost similar edge map y
0 

along with the learned segmentation mask y. 

Averaging can then be done on the predictions 

obtained from multiple trees. The efficient use of 

structured labels that captures information for an 

entire image neighbourhood is reduced has 

resulted in reduced number of decision trees T to 

be evaluated for every pixel. Thus with a 16×16 

output patch, each pixel receives 16
2
T/4 ≈ 64T 

predictions, though in practice  1 ≤ T ≤ 4 is used 

which is possible for an image with a step of two 

pixels because the structured output is computed 

heavily on it. 

As the inputs and outputs of all trees overlap, 

training a total of 2T trees and then evaluating an 

alternate set of T trees at every adjoining location 

helps. By putting in a larger gap between the 

trees improves results to a certain extent but will 

not give any further improvement. 
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ENHANCEMENT TECHNIQUES 

Multi scale Detection (SE+MS) 

For a given input image, the detector is run on all 

the resolution versions, half, original and double 

of the original image and then the results from all 

three are averaged after the image is got back to 

its original dimensions. This approach improves 

the edge quality. 

 

Edge Sharpening (SE+SH): 

Non maximal suppression is used on the edges 

predicted from this method since there are not 

clear and this can help in detecting strong, 

isolated edges. But for fine image structures the 

edges in the image may blend together which will 

result in missed detections whereas for edges 

which are not strong no detection may happen. 

Diffused edge responses are due to the edge maps 

which are individually predicted where the edges 

are already noisy and not very perfectly aligned 

to the image data under it or to each other.  

It is a sharpening procedure in which edge 

responses from overlapping predictions are 

aligned. To exactly localize the predicted 

responses, values of the local image colour and 

depth values can be used. The predicted 

segmentation mask if morphed slightly is better 

matched with the underlying image. A sharper 

and better localized edge responses can be 

achieved by aligning the underlying image data 

and the masks over it. 

Now compute and average the edge maps derived 

by using the new sharpened segmentation masks. 

Butthe resulting edge map is sharper, since the 

edge maps are better aligned to the image data. 

Repeat the procedure multiple times before 

taking an average of the corresponding edge 

maps. In practice only two steps are required 

where initial sharpening step gives the best 

results.  

Sharpened segmentation masks, compute and 

average their corresponding edge maps as before. 

However, since the edge maps are better aligned 

to the image data the resulting aggregated edge 

map is sharper. Sharpening can be repeated 

multiple times prior to averaging the 

corresponding edge maps. Experiments reveal 

that the first sharpening step produces the largest 

gains, and in practice two steps suffice. Taking 

advantage of the sparcity of edges, the 

sharpening procedure can be implemented 

efficiently. 

Across all modalities on all measures SE 

outperforms both gPb and SCG while running 3 

orders of magnitude faster. 

In Table 6.2 this method is compared to the state-

of-the-art approaches gPb-owt-ucm (adopted to 

utilize depth) and SCG 
[16]

. When using RGB and 

depth individually as an input, SE-SS and SE-MS 

perform significantly better than SCG. For 

RGBD the multi scale approach performs 

considerably better, while the single scale 

approach is similar to SCG. The improved scores 

are also accompanied by a runtime which is 

orders of magnitude faster than the rest. 

 

PARAMETER TESTING 

Here the performance of the structured edge 

detector is verified in detail. First the influence of 

parameters is verified in Section 6.1 and then test 

the SE variants in Section 6.2. Then compare the 

results on the BSDS 
[1]

 and NYUD 
[44]

 datasets to 

the other recent approaches with respect to both 

accuracy and runtime. Also verified is the cross 

dataset generalization of this approach. 

The majority of the testings are performed on the 

Berkeley Segmentation Dataset and Benchmark 

(BSDS500) 
[1], [35]

. The dataset contains 200 

training, 100 validation, and 200 testing images. 

Each image has hand labeled ground truth 

contours. Three standard measures Optimal 

Dataset Scale (ODS) or fixed contour threshold, 

Optimal Image Scale (OIS)per-image best 

threshold and average precision (AP) is used to 

test the edge detection accuracy . Recall at 50 

per-cent precision (R50) is used to evaluate 

accuracy in the high recall regime. A standard 

non-maximal suppression is used before 

evaluation to the edge maps to obtain 

thinned edges
[7]

. 
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Parameter sweeps 

BSDS validation set is used to set all 

parameters which is completely independent 

of the test set. Parameters include: structured 

forest splitting parameters (e.g., m and k), 

feature parameters (e.g., image and channel 

blurring), and model and tree parameters (e.g. 

number of trees and data quantity). Training 

takes 20 minute per tree using one million 

patches and is parallelized over trees. All trees 

are evaluated in parallel. Quad-core machine 

is used for all reported runtimes. 

The effect of choices of splitting, model and 

feature parameters are verified. Training is 

done on the 200 image training set and then 

verify edge detection accuracy on the 100 

image validation set. An average of the results 

are done after five trials. Initially all 

parameters are set to their default values 

indicated by orange markers in the plots. 

Then, the parameters are changed with only 

one parameter kept fixed to check the effect 

on the edge detection accuracy. 

Training is done using fewer patches and 

utilize only sharpening (SH) not the multi 

scale detection (MS). Since the validation set 

is more challenging than the test set 

evaluation is done using 25 thresholds instead 

of 99 further reducing accuracy (.71 ODS).  

Splitting Parameters : How best to measure 

information gain over structured labels is 

verified in fig 5 Plots (a) and (b) shows that m 

should be large and k small. Results are robust 

to both the discretization method and the 

discrete measure of information gain as shown 

in plots (c) and (d). 

 

 
 

 
 

 
 

 
Fig 6 : Splitting parameters sweep 

 

Feature Parameters: How varying the 

channel features affects accuracy is shown 

in fig 6. Here it is seen that performance is 

relatively insensitive to a broad range of 

parameter settings. 
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Fig7 : Features parameter sweep 

 

Model Parameters: The influence of 

parameters governing the model and training 

data are plotted in Fig 7. The effect of image 

and label patch sizes on accuracy is shown in 

(a) and (b), 32x32 image patches and 16x16 

label patches are seen to be the best choice. 

More number of patches and training images 

improves the accuracy as shown by (c) and 

(d).(e) shows that about half the sampled 

patches should be ‘positive’ (have more than 

one ground truth segment) and (f) shows that 

training each tree with a fraction of 

proportionally lower memory usage). In (g)-

(i) we see that many, deep, un-pruned trees 

give best performance (nevertheless, we prune 

trees so every node has at least eight training 

samples to decrease model size). Finally (j) 

shows that two sharpening steps give best 

results.  
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Fig 8 : Model parameter sweep 

 

Structured Edge variants 

Edge sharpening (SH) and multi scale 

detection (MS) is used to give more accurate 

results. The performance of the four different 

combinations are analysed here. The model 

which has been trained can also be used for 

both sharpening and multi scale detection 

SE, SE+MS, SE+SH, and SE+MS+SH are the 

four combinations for which the precision 

/recall curve is plotted. Summary for all four 

has been given in the bottom rows of Table 

6.1. SE has an ODS score of .73 and SE+MS 

and SE+SH both has an ODS score of .74. 

SE+MS+SH, which is a combination of multi 

scale detection and sharpening gives an ODS 

of .75. For all the combinations OIS is two 

points higher than ODS which is measured 

using a separate optimal threshold per image. 

Accuracy is improved by both sharpening and 

multi scale detection. R50 measures accuracy 

in the high recall regime. R50 for SE is .90 

but SE+MS does not make any improvement 

to this. Whereas, SE+SH increases R50 to .93. 

Multi scale makes a considerable 

improvement to the precision in the low-recall 

regime. On an average, both SH and MS 

improves AP, where SE+SH+MS achieves an 

AP of .80. 

The runtime for the four combinations are 

shown in the last column of Table 6. 1.Real 

time processing is enabled by SE that runs at a 

frame rate of 30 hz. MS incurs high cost as 

both SH and MS slow the detector. SE+SH 

achieves good accuracy as it run sat over 12 

hz. So SE + SH achieves best results in the 

high recall regime needed for most common 

requirements so for see it as the default 

variant for various applications. 

 

BSDS 500 Results: Testing is done on the 

Berkeley Segmentation Dataset and Benchmark 

(BSDS 500) which contains 200 training, 100 

validation and 200 testing images. Each of the   

images has hand labelled ground truth contours. 

Three standard measures Optimal Dataset scale 

(ODS) also called the fixed contour threshold, 

Optimal Image scale (OIS) also called the per 

image best threshold and average precision (AP)is 

used to test the edge detection 
[2]

. R50 that is 

recall at 50% precision is additionally used to 

evaluate accuracy in the high recall regime. 

N on-maximal suppression technique i s  

u s e d  b e f o r e  e v a l u a t i o n  to the edge 

maps to obtain thinned edges 
[19]

. 

Detections examples on BSDS are shown in Fig 

8 

Original image                      SE 
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Fig 9 : Detection using BSDS dataset 
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The Structured Edge (SE) detector is tested by 

computing at a single scale (SS) and at multiple 

scales (MS). At T=1 and T=4 decision trees there 

are two results for SE-SS at each location. The 

state-of-the-art approaches are out per formed in 

speed by the multi scale approach. Single scale 

approach also betters the runtime by 5 to 10. 

With T = 1, the method can perform at a frame 

rate of 60hz which is faster than 
[2,19]

 while also 

bringing the  ODS score from 0.74 to 0.72. 

This method shows best performance on the 

BSDS while also being magnitudes of order 

faster than other methods that are equally 

accurate. Three variants of the Structured Edge 

detector are shown using either the single (SS) or 

multiscale (MS) detection with different numbers 

of evaluated trees T .For SE-SS, T = 4 achieves 

nearly identical accuracy as gPb-owt-ucm 
[1]

 but 

is also faster. Compared to other methods of 

similar approach to edge detection, this method 

considerably outperform
[7]

 which computes edges 

independently at each pixel given its surrounding 

image patch. It also slightly outperforms sketch 

tokens 
[8]

 in both accuracy and runtime 

performance. This may be because the sketch 

tokens use a fixed set of classes for selecting split 

criterion at each node, whereas the structured 

forests captures finer patch edge structure. 

Table 1: Edge detection results on BSDS 

  ODS OIS AP FPS 

Human 0.8 0.8 - - 

          

Canny 0.6 0.64 0.58 15 

Felz-Hutt 
[11]

 0.61 0.64 0.56 10 

Hidayat-Green 
[19]

 
.62y - - 20 

BEL 
[9]

 .66y - - 1/10 

gPb + GPU 
[6]

 .70y - - 1/2z 

gPb 
[2]

 0.71 0.74 0.65 1/240 

gPb-owt-ucm 
[2]

 0.73 0.76 0.73 1/240 

Sketch tokens 
[9]

 0.73 0.75 0.78 1 

SCG 
[17]

 0.74 0.76 0.77 1/280 

SE-SS, T =1 0.72 0.74 0.77 60 

SE-SS, T =4 0.73 0.75 0.77 30 

SE-MS, T =4 0.74 0.76 0.78 6 

 

NYU dataset Results: The NYU Depth dataset 

(v2) [18] contains 1,449 pairs of RGB and depth 

images with corresponding semantic 

segmentations. 60%/40% training/testing split is 

used and 1/3 of the training set is used for 

validation with the images reduced to 320 x 240 

.The depth channel is treated similar to the other 

colour channels. Specifically, the gradient 

channels are re-computed over the depth channel 

(with identical parameters) resulting in 11 

additional channels.  

Table 2 : Edge detection results on NYUD 

  ODS OIS AP FPS 

gPb [1] (rgb) 0.51 0.52 0.37 1/240 

SCG[17] (rgb) 0.55 0.57 0.46 1/280 

SE-SS (rgb) 0.58 0.59 0.53 30 

SE-MS (rgb) 0.6 0.61 0.56 6 

          

gPb[2] (depth) 0.44 0.46 0.28 1/240 

SCG[17] 

(depth) 
0.53 0.54 0.45 1/280 

SE-SS (depth) 0.57 0.58 0.54 30 

SE-MS (depth) 0.58 0.59 0.57 6 

 
        

gPb [1] (rgbd) 0.53 0.54 0.4 1/240 

SCG[17] (rgbd) 0.62 0.63 0.54 1/280 

SE-SS (rgbd) 0.62 0.63 0.59 25 

SE-MS (rgbd) 0.64 0.65 0.63 5 

 

Cross dataset generalization:  Table 6.3 shows 

results where we tested on NYU using structured 

forests trained on BSDS500 and tested on 

BSDS500 using structured forests trained on 

NYU. Both methods achieve a high score. When 

tested on the NYU dataset using BSDS500 as 

training, the scores achieved is same as SCG and 

using NYU as training outperforms gPb-owt-

ucm. Therefore this method can serve general 

purpose edge detector. 

 

Table 3: Edge detection results using cross 

dataset 

  
   

ODS 

    

OIS 

     

AP 

  

FPS 

BSDS /BSDS 0.74 0.76 0.78 6 

NYU / BSDS 0.72 0.73 0.76 6 

          

BSDS / NYU 0.55 0.57 0.46 6 

NYU / NYU 0.6 0.61 0.56 6 
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CONCLUSION 

This approach is capable of real time frame rates 

while achieving state-of-the-art accuracy. This 

may enable new applications that require high 

quality edge detection and efficiency. For 

instance, our approach may be well suited for 

video segmentation or for time sensitive object 

recognition tasks such as pedestrian detection. 

This approach to learning structured decision 

trees may be applied to a variety of problems. 

The fast and direct inference procedure is ideal 

for applications requiring computational 

efficiency. Given that many vision applications 

contain structured data, there is significant 

potential for structured forests in other 

applications. 

In conclusion, a structured learning approach to 

edge detection is proposed. A general purpose 

method for learning structured random decision 

forest that robustly uses structured labels to select 

splits in the trees is described. State of the art 

accuracies on two edge detection datasets, while 

being orders of magnitude faster than most 

competing state-of-the-art methods is described. 
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